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Abstract: Today, there are many parameters used for cardiovascular risk quantification and to identify
many of the high-risk subjects; however, many of them do not reflect reality. Modern personalized
medicine is the key to fast and effective diagnostics and treatment of cardiovascular diseases. One
step towards this goal is a better understanding of connections between numerous risk factors.
We used Factor analysis to identify a suitable number of factors on observed data about patients
hospitalized in the East Slovak Institute of Cardiovascular Diseases in Košice. The data describes
808 participants cross-identifying symptomatic and coronarography resulting characteristics. We
created several clusters of factors. The most significant cluster of factors identified six factors: basic
characteristics of the patient; renal parameters and fibrinogen; family predisposition to CVD; personal
history of CVD; lifestyle of the patient; and echo and ECG examination results. The factor analysis
results confirmed the known findings and recommendations related to CVD. The derivation of new
facts concerning the risk factors of CVD will be of interest to further research, focusing, among other
things, on explanatory methods.

Keywords: cardiovascular diseases; factor analysis; risk factors

1. Introduction

More than 4 million people die each year in Europe from cardiovascular disease
(CVD). Despite the progress in CVD treatment, it will not be significantly reduced by the
prevalence of coronary heart disease. The cause of this condition is either unrealized or
late indicated diagnostic methods for early diagnosis of coronary artery disease. Modern
drug therapy and specialized intervention centers are helpful for the prevention and
treatment of CVD. However, coronary artery disease and preventive medicine screening
could be better, confirming data from Euroaspire I-V programs. We have modern PCI
(percutaneous intervention) centers, but patient’s medical care after hospitalization has
some limitations [1–3]. The timeline of the clinical trials and the available data are only
the traditional risk factors included in this scoring system. Consequently, the system
lacks certain crucial aspects, including, among other things, the presence of diabetes
mellitus type 2, smoking, obesity, or the results of the newest clinical trials dealing with
the inflammatory theory of atherosclerosis, genetic parameters, and respectively familiar
hypercholesterolemia differences. Waiting for invasive diagnostic and therapeutic methods
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is often the subject of delay, caused by the inadequate selection of patients undergoing
selective coronarographies due to the unnecessary examinations of low-probability patients.
This over-diagnosing is not associated with a better prognosis; it merely highlights the
need to optimize the examination process, especially personalized medicine, artificial
intelligence (AI), machine learning (ML), or statistical methods. These personalized aspects
based on the patient and the available data concerning the cardiovascular risk and the risk
stratification of positive coronarography findings could bring us more effective diagnostics
and treatment of cardiovascular disease [4].

Artificial intelligence can help in some aspects of medical care, patient management,
and examination (better diagnostic, decreased risk of iatrogenic complications, better re-
covery). A set of methods is used for this, including ML methods. The growing importance
of ML methods lies in the fact that these methods can process vast volumes of different
types of data in a relatively short time. Likewise, the number of such research studies in
medicine is constantly growing, as medicine is extremely rich in data. In addition, ML
offers different options depending on the methods used. The most typical example is the
classification of patients according to the presence of a particular disease. However, there
are other perspectives on medical issues. As mentioned above, risk factors lead to disease,
and early detection of risk factors can help diagnose a disease in its early stages. It can lead
to specific changes that can subsequently improve the patient’s condition. Here we come
to the concept of personalized medicine.

However, for the enormous amount of data, providing personalized medicine is
a challenging task. We come to the potential of ML methods, respectively AI, which
also includes ML. Patient data contained in electronic health records (EHR) must first be
extracted [5], then data can be used to train algorithms that are part of Clinical Decision
Support Systems (CDSS) [6]. Such systems then generate recommendations based on a
combination of available theoretical knowledge and facts “read” from the analyzed data.
However, as stated in [6,7], these recommendations should not be taken in any other way
than the recommendations. They should not be used as automated diagnostic procedures,
as they cannot replace a trained healthcare professional.

The presented work aim is to provide a less typical view of the issue of risk factors.
Specifically, our effort will be to examine the existence of clusters between the attributes of
the monitored dataset. For this purpose, we focus on Factor Analysis, revealing the clusters
of the observed characteristics. We subsequently extended our decision support system for
cardiologists (DSSC) (not the presented work’s subject).

The rest of this paper is organized as follows. Section 2 presents our analysis of related
work motivating our research in this direction. Section 3 describes the background of the
data collection, the data used for experiments, and the necessary preprocessing operations.
Section 4 presents details about the used research method-factor analysis and the results of
our experiments. Section 5 discusses the results achieved in a broader context and their
implications on medical practice. Finally, Section 6 concludes this paper and sketches the
future directions of our research.

2. Related Work

In recent years, the use of factor analysis, not only in the field of CVD, has been
increasing. Tsai and co-workers [8] focused on the relationship between cardiometabolic
factors, systemic inflammation, and data on the Taiwanese population’s sitting time and
physical activity using principal component analysis. They created five clusters of factors
and demonstrated that traditional CVD risk factors are not similar to those describing the
physical activity that falls into one cluster. The combination of factors they created was
able to explain almost 70% of the variability of the 14 examined characteristics. Another
significant result of their work described the interrelationship between inflammation and
adiposity. In conclusion, they also suggest that insulin resistance and inflammation are
signs of adiposity.



Diagnostics 2021, 11, 1284 3 of 24

The connection between factor analysis and CVD was grasped by Tsai’s research [9]
in terms of modifiable risk factors within the Taiwanese population. In this way, they
created five factors corresponding to the usual guidelines. The analysis showed an intense
significance of waist circumference, blood pressure, and total cholesterol related to CVD.
Their results indicated that the prevalence of metabolic syndrome in Taiwan was higher in
men (15.5%), but found no significant gender difference compared to other CVD risk factors.
In conclusion, the research authors evaluated that their research revealed other risk factors
for CVD, including lifestyle factors, exercise, and total cholesterol. They point out that early
identification of modifiable risk factors may play an essential role in preventing CVD.

Both studies focused on the middle-aged to elderly population. However, as [10]
points out, the atherosclerotic process begins much earlier, so they decided to target the
child population (8–10 years old) in New Zealand. The study’s authors identified four
factors describing blood pressure, adiposity, lipids, and vascular, which explained the 60%
variance of the monitored variables. The blood pressure factor explained almost 40% of this
variance. They also confirmed that glycated hemoglobin and fibrinogen acted on several
factors, and fibrinogen suggests short-term glycemic control. They identified a higher risk
of adiposity, vascular and cumulative risk score in overweight and obese children.

Another study looking at the association between factors of hospital practice related to
heart failure and mortality at 7 and 30 days after hospitalization and during hospitalization
in Japanese hospitals, respectively, provided a different perspective [11]. The researchers
identified five factors describing interventional cardiology (F1), cardiovascular surgery
(F2), pediatric cardiology (F3), electrophysiology (F4), and cardiac rehabilitation (F5). This
combination of factors explained approximately 100% of the variance of the original data
(90 observed characteristics), with the factor of cardiovascular surgery contributing the
most. Subsequently, the association was evaluated based on logistic regression. As a result
of their research, while F3, F4, and F5 were associated with lower mortality during the
period under review, factor F1 was associated with a higher mortality, and factor F2 did
not show any significant association with mortality.

As we have pointed out, factor analysis can be used in one domain, the CVD domain,
from different angles. It is possible to focus on risk factors either in the adult population or
in the child population. It is possible to focus on a specific group of patient characteristics
obtained from healthcare records or questionnaires. It is possible to focus on medical
procedures in connection with the continuation of the disease. Most of the research was
carried out in Asian countries or America. Studies linked to the European population are
not significantly represented. Another gap is also shown in the direction of factor analysis
in the field of CVD. In the survey, we did not find any similar study that would focus
on commonly monitored patient symptoms obtained by laboratory tests or admission
examinations following coronary heart disease and coronary artery obstruction.

3. Background of the Data Collection, Overview of Data and Data Preprocessing

The idea of the mentioned-above decision support system for cardiologists was based
on collaboration between the East Slovak Institute for Cardiovascular Diseases in Košice
(ESICD), the Faculty of Medicine of the Pavel Jozef Šafárik University in Košice (FM PJŠU),
and the Department of Cybernetics and Artificial Intelligence of the Faculty of Electrical
Engineering and Informatics of the Technical University of Košice (DCAI). A common
multidisciplinary research team is developing DSS within the Kosice Selective Coronarog-
raphy Multiple Risk (KSC MR) Study project. The idea of KSC MR is to use ML methods to
analyze the characteristics of patients, including physical findings, laboratory examination,
questionnaires, and, among other things, the results of selective coronarography. All the
significant results from the processing and modeling of these data should be part of the
software (in the form of DSSC), which will enable the early detection of high-risk patients
concerning the possibilities of personalized medicine [12]. The KSC MR study plan was
to enroll prospectively approximately over 1000 patients aged 18 and above, without an
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upper limit, who will be admitted to the associated hospital suspected of having coronary
artery disease.

The population of our study was collected on the 1st Cardiology department of ESICD.
We randomized patients with one of the more known risk factors of CVD and subclinical
atherosclerosis detected by CT angiography or other noninvasive imaging or exercise exami-
nations. Every patient from our study has performed selective coronarography examination
(diagnostic, and if also needed, therapeutic), assessment of laboratory parameters. The exclu-
sion criteria were—known coronary artery disease and history of acute coronary syndrome.

Patients were hospitalized in ESICD between June 2017 and March 2018. Data col-
lection was performed retrospectively concerning the described inclusion and exclusion
criteria. Electronic health records (EHR) underwent natural language processing and were
further analyzed as a set of structured data [5]. All experiments and work with the data
file were performed in the R Studio environment (version 1.4.1106) in the R programming
language (version R-4.0.2).

Overall, the data contains 66 attributes, which we divided into the following groups:
identifying attributes, symptomatic attributes, and resulting attributes. Each group of
features is capturing specific information about patients. An overview of the used attributes
and their essential characteristics and distribution of values is described in Table 1.

Table 1. Overview of attributes.

Attribute Type Description Values

Identifying attributes

Id numeric according to a medical report -
BN text encrypted birth number -

Year numeric year of birth of the patient min: 1930; mean: 1952.06; sd: 9.36;
median: 1952; max: 1982; IQR: 13

Gender binary patient’s gender 0 (male): 460; 1 (female): 348

Symptomatic attributes

P_CAD binary personal ischemic heart disease FALSE: 478; TRUE: 329; NA: 1
P_Stroke binary personal stroke FALSE: 703; TRUE: 104; NA: 1

P_MI binary personal infarct myocardium FALSE: 591; TRUE: 216; NA: 1

P_Hyperch binary personal disease associated with high-level
cholesterol FALSE: 748; TRUE: 59; NA: 1

P_HT binary personal high blood pressure FALSE: 264; TRUE: 543; NA: 1
P_DM binary personal type 2 diabetes FALSE: 570; TRUE: 237; NA: 1
P_AoS binary personal aortic stenosis FALSE: 738; TRUE: 69; NA: 1
F_CAD binary ischemic heart disease—occurrence in family FALSE: 616; TRUE: 185; NA: 7

F_Stroke binary stroke—occurrence in family FALSE: 702; TRUE: 104; NA: 7
F_MI binary infarct myocardium—occurrence in family FALSE: 655; TRUE: 146; NA: 7

F_Hyperch binary disease associated with high-level
cholesterol—occurrence in family FALSE: 801; NA: 7

F_HT binary high blood pressure—occurrence in family FALSE: 735; TRUE: 66; NA: 7
F_DM binary type 2 diabetes—occurrence in family FALSE: 570; TRUE: 237; NA: 7
F_AoS binary aortic stenosis—occurrence in family FALSE: 800; TRUE: 1; NA: 7

Smoking categorical type of smoker 1 (smoker): 100; 2 (ex-smoker): 140; 3
(non-smoker): 489; NA: 79

S_Duration numeric number of years of smoking min: 0; mean: 2.79; sd: 8.43; median: 0;
max: 60; IQR: 0; NA: 79

S_Freq numeric number of daily smoked cigarettes min: 0; mean: 2.21; sd: 6.24; median: 0;
max: 60; IQR: 0; NA: 79

Alcohol binary alcohol consumption FALSE: 488; TRUE: 127, NA: 193

Weight numeric patient weight min: 41; mean: 88; sd: 17.96; median: 88;
max: 180; IQR: 20; NA: 27

Height numeric patient height min: 45; mean: 165.74; sd: 11.65; median:
166; max: 193; IQR: 14; NA: 27

BMI numeric body mass index min: 18.22; mean: 31.84; sd: 8.3; median:
31; max: 208.12; IQR: 7; NA: 27
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Table 1. Cont.

BP numeric blood pressure min: 12; mean: 167.91; sd: 510.18; median:
150; max: 14090; IQR: 30; NA: 54

Urea numeric blood urea level min: 2.29; mean: 6.29; sd: 2.66; median:
5.69; max: 27.13; IQR: 2.42; NA: 26

Creat numeric blood creatinine level min: 6.6; mean: 87.83; sd: 50.17; median:
80.4; max: 735.2; IQR: 25.53; NA: 14

AST numeric the level of enzyme secreted by the liver min: 0.08; mean: 0.73; sd: 6.27; median:
0.38; max: 141; IQR: 0.16; NA: 303

Sodium numeric blood sodium level min: 4.4; mean: 138.8; sd: 8.56; median:
139; max: 169.7; IQR: 3.75; NA: 7

Potassium numeric blood potassium level min: 2.9; mean: 4.33; sd: 1.99; median:
4.26; max: 58.45; IQR: 0.70; NA: 18

Chol numeric total cholesterol min: 0.82; mean: 5.78; sd: 22.03; median:
4.81; max: 614; IQR: 1.67; NA: 39

TG numeric level of triacylglycerols min: 0.46; mean: 1.79; sd: 1.72; median:
1.41; max: 30.01; IQR: 0.91; NA: 59

HDL numeric high-density lipoprotein level min: 0.51; mean: 1.47; sd: 3.93; median:
1.27; max: 108; IQR: 0.45; NA: 62

LDL numeric low-density lipoprotein level min: 0.89; mean: 3.07; sd: 1.06; median:
2.94; max: 9.6; IQR: 1.42; NA: 84

CRP numeric C-reactive protein level min: 0.1; mean: 5.86; sd: 10.88; median:
3.21; max: 130.4; IQR: 5.15; NA: 401

Chloride numeric blood chloride level min: 91.8; mean: 103.5; sd: 3.38; median:
103.6; max: 111.2; IQR: 3.9; NA: 695

FBG numeric fibrinogen levels min: 2.1; mean: 3.91; sd: 1.06; median: 3.7;
max: 7.4; IQR: 1.25; NA: 661

HIV binary the presence of HIV FALSE: 627; NA: 181

HBsAG binary the presence of an antigen evoking the
presence of jaundice type B FALSE: 626; NA: 182

ECG_HR numeric heart rate for minute min: 45; mean: 69.54; sd: 12.23; median:
68; max: 130; IQR: 14; NA: 56

ECG_Rhythm binary type of heart rhythm 0 (SR): 704; 1(Fib): 60; NA: 44

ECG_PQ numeric
the length of the interval from the beginning

of the P wave to the beginning of the
ventricular complex in milliseconds

min: 14; mean: 170.2; sd: 33.08; median:
160; max: 360; IQR: 30; NA: 170

ECG_QRS numeric heart ventricular depolarization time in
milliseconds

min: 60; mean: 95.8; sd: 19.57; median: 90;
max: 180; IQR: 20; NA: 117

ECG_QT numeric time from the beginning of the QRS to the
end of the T wave in milliseconds

min: 40; mean: 386.4; sd: 43.57; median:
380; max: 518; IQR: 40; NA: 249

ECG_LBBB binary the presence of a blockage of the left Tawar
arm FALSE: 764; NA: 44

ECG_RBBB binary the presence of a blockage of the right Tawar
arm FALSE: 696; TRUE: 68; NA: 44

ECG_VES binary presence of ventricular extrasystoles FALSE: 721; TRUE: 43; NA: 44

ECG_SVES binary presence of supraventricular (atrial)
extrasystoles FALSE: 739; TRUE: 25; NA: 44

ECG_STD binary the presence of depression in the ST segment FALSE: 643; TRUE: 121; NA: 44
ECG_STE binary presence of elevations in the ST section FALSE: 529; TRUE: 235; NA: 44

ECG_T binary ventricular myocardial repolarization FALSE: 163; TRUE: 604; NA: 44

ECHO_EF numeric left ventricular ejection fraction min: 15; mean: 52.72; sd: 9.93; median: 55;
max: 75; IQR: 12; NA: 39

ECHO_PH categorical degree of pulmonary hypertension 0: 629; 1: 78; 2: 44; 3: 56; NA: 1

Resulting attributes

Muscle_bridge binary the presence of a muscle bridge in one of the
branches FALSE: 802; TRUE: 5; NA: 1

ACS numeric percentage narrowing of the branch of
Arteria coronaria sinistra

min: 0; mean: 6.35; sd: 19.44; median: 0;
max: 100; IQR: 0; NA:1
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Table 1. Cont.

RIA numeric percentage narrowing of the Ramus
interventricularis anterior branch

min: 0; mean: 21.73; sd: 33.18; median: 0;
max: 100; IQR: 0; NA: 1

RD1 numeric percentage narrowing of branch RD1, part of
RIA

min: 0; mean: 4.83; sd: 18.35; median: 0;
max: 100; IQR: 0; NA: 1

RD2 numeric percentage narrowing of branch RD2, part of
RIA

min: 0; mean: 1.24; sd: 9.35; median: 0;
max: 100; IQR: 0; NA: 1

RCX numeric percentage narrowing of the ramus
circumflex artery branch

min: 0; mean: 17.18; sd: 30.86; median: 0;
max: 100; IQR: 10; NA: 1

RIM numeric percentage narrowing of the RIM branch,
part of the RCX

min: 0; mean: 2.55; sd: 12.69; median: 0;
max: 100; IQR: 0; NA: 1

RMS1 numeric percentage narrowing of the RMS1 branch,
part of the RCX

min: 0; mean: 5.16; sd: 18.20; median: 0;
max: 100; IQR: 0; NA: 1

RMS2 numeric percentage narrowing of the RMS2 branch,
part of the RCX

min: 0; mean: 2.08; sd: 12.09; median: 0;
max: 100; IQR: 0; NA: 1

ACD numeric percentage narrowing of the Arteria
coronaria dextra branch

min: 0; mean: 23.62; sd: 35.66; median: 0;
max: 100; IQR: 50; NA: 1

RIP numeric percentage narrowing of the Ramus
interventricularis posterior branch

min: 0; mean: 2.78; sd: 13.58; median: 0;
max: 100; IQR: 0; NA: 1

Coron_result categorical the degree of severity of the finding 0: 310; 1: 67; 2: 36; 3: 103; 4: 164; 5: 126

Note: F—Family, P—Personal, sd—standard deviation, IQR—interquartile range.

The degree of severity of the finding of coronarography was derived from the narrow-
ing of the coronary arteries of the heart found during the examination of selective coronary
angiography as follows:

• 0—no finding;
• 1—at least one branch contains 10% narrowing;
• 2—any branch, except the RIA basin, has 20 to 50% stenosis;
• 3—RIA branches have 20 to 50% narrowing, the other 50 to 70% narrowing;
• 4—RIA branches have a maximum of 70% narrowing (50–70%), the other 70–100%;
• 5—at least one of the RIA branches has more than 70%.

The distribution of values of the Coron_result attribute is presented in the following
Figure 1.
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Data Preprocessing

Although the data contain a relatively large number of attributes describing the patient
from different angles, it was necessary to adjust them for our needs. The first step was
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to infer the patients’ age (using the Year (year of birth of the patient) and ID attributes
which contain information about the patient’s year of hospitalization). Therefore, we got
the attribute Age, which tells us that our cohort’s average age was 65.23 (min: 36, sd: 9.34,
median: 66, max: 88, IQR: 13).

Looking at the data structure and distribution of the values shown in Table 1, it can
be seen that not all values are correct. Incorrect entries can have their origin in patient
records or result from an error in the processing of medical reports. We have described
this process in more detail in the work of [5]. One of the problems can be observed on the
extreme values, outliers, which appear in the BMI (body mass index) attribute. Since the
calculation of the BMI value depends on the Height and Weight attributes, we must look
at these attributes together. In Figure 2a, the distribution of values displayed using the
so-called boxplot suggests the existence of outliers. The reader may notice a change in the
distribution of the values by comparing boxplots (a) and (b) of Figure 2.
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The second problem with outliers occurred with the BP (blood pressure) attribute.
The minimum value for this attribute was 12, and the maximum was 14,090. Both values
represent extremes that are incompatible with human life. We replaced the extreme values
by the 5th or the 95th percentile of a given attribute. The result can be seen in Figure 3,
which indicates that the range of values of the BP attribute is within the normal range.
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The cardiologist’s recommendation was to add another essential and well-known
attribute, the ESC risk score, representing the rate of cardiovascular risk for the nearest
ten years [13]. We created this attribute using several features from our dataset: the age
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of patients, gender, cholesterol, and blood pressure. The average value of ESC was 7.45
(min: 0, sd: 5.06, median: 6, max: 33, IQR: 5). Since many attributes contain NA values, this
was also reflected in ESC attributes, and thus ESC has 431 NA values.

The next step in preparing the dataset was to treat attributes that acquired only one
type of value, which can be a problem for Factor Analysis. Specifically, these were the
attributes R_Hyperch (occurrence of high blood pressure in the patient’s family history),
HIV (outcome of the patient’s HIV test), HBsAG (presence of hepatitis B virus antigen in the
patient), and ECG_LBBB (presence of left Tawar shoulder block in the patient). Therefore,
we could not use these attributes, and we decided to remove them from the dataset.

Another problem was that data contains 4749 missing values. In Figure 4, the reader
can see the distribution of missing values in %. As shown in Figure 4, the most considerable
amount of missing values is in the Chloride attribute, almost 80%. The FBG (fibrinogen
levels) attribute follows it with approximately 77% missing values.
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Based on the analysis of algorithms for the imputation of missing values [14], we decided
to focus on more sophisticated methods. We used a known method with reported good
results, k Nearest Neighbors (kNN), filling in the missing values through single imputation.

The last step of the preprocessing data phase was to deal with the attributes describing
coronary angiography. In the first part of this step, we removed all the attributes describing
the results of coronary angiography, based on which the attribute Nalez was also created.



Diagnostics 2021, 11, 1284 9 of 24

Specifically, the following attributes, represented the percentage narrowing of the heart
arteries, were removed: ACS, RIA, RD1, RD2, RCX, RIM, RMS1, RMS2, ACD, and RIP, as
well as the Muscle_bridge attribute.

Subsequently, we removed this target attribute to prevent it from being selected as
part of one of the factors created during the implementation of the Factor Analysis. In
addition, our goal was to find connections between features, ideally without considering
the resulting attributes derived from coronary angiography.

Part of the data preprocessing was also the transformation of all attributes to the
numeric data type.

4. Methods—Factor Analysis

Factor analysis (FA) is a statistical method that ranks among multivariate exploratory
techniques, and its origins date back to 1904 [15]. The source of its roots is attributed to
Charles Edward Spearman. Initially, the FA focused on its use in psychology, and only
later did it find application in other fields.

As F. Gorunescu writes [16], multivariate exploratory techniques focus on finding hidden
patterns in multidimensional data. He further states that FA can be used in two ways:

1. Reduction of the number of attributes to reduce the computational time in data
processing;

2. Detection of the structure of connections hidden in the data.

Using FA on data is a reduced/transformed set of data in both cases, where interrelated
attributes created, respectively, are replaced by new variables called factors.

The pair of authors Olson and Lauhoff even state in [17] that FA can be used as a
preprocessing technique to get an idea of the number of clusters and review the dataset’s
interrelated features. Another pair of authors, Wang and Kuo [18], agree with this view and
describe FA as an essential step towards effective aggregation and classification procedures.
They further add that the principal goal of FA is to find and rank crucial factors that can
sufficiently represent the problem to be solved. A suitable number of factors needs to
be chosen, and they should have two fundamental characteristics: independence and
importance. These properties can be considered a necessary condition for FA. Wang and
Kuo also point to a sufficient condition of FA, which indicates that the factors should be able
to represent complete information about the system, which the amount of undiscovered
knowledge can measure.

4.1. Evaluation of the Suitability of Using FA on a Selected Dataset

Before we get to the factor creation phase, it is necessary to verify whether the given
dataset is suitable for the FA application. For this purpose, we will focus on two statistics in
our work. The first is the Kaiser-Mayer-Olkin measure (KMO), which evaluates the degree
of homogeneity of the observed features and is considered the overall measure of the ade-
quacy of the experimental dataset. For KMO values, the Kaiser and Rice recommendation
(see also Table 2) is used in practice [19,20].

Table 2. The Kaiser and Rice recommendation (1974) (Data from [20]).

Value of KMO The Adequacy of the Observed Data Set

≥0.9 Excellent
<0.8; 0.9) Commendable
<0.7; 0.8) Moderately useful
<0.6; 0.7) Average
<0.5; 0.6) Weak

<0.5 Not enough

The second statistic observed is the Measure of Sampling Adequacy (MSA), which
indicates the extent to which others predict individual attributes. In other words, it
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evaluates the degree of correlation between unique characteristics [21]. As with KMO, if
the MSA is below 0.5, the investigated dataset is unsuitable for FA use. The results of this
calculation for our dataset can be seen in Figure 5, where the KMO (Overall MSA) rate is
0.61, corresponding to the average suitability of using FA on our dataset. The MSA rate is
listed separately for each attribute, and although not all attributes take values above 0.5,
we chose to keep them.
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4.2. Determination of the Approximate Number of Factors

As described in [21], it is further necessary to determine the appropriate number of
factors. Here, too, there are several approaches to determine the most appropriate number.
Since [22] recommends using several methods to select the optimal number of factors, we
focused on the Kaiser criterion, Scree test, and Parallel analysis.

4.2.1. Scree Test

The Scree test helps determine the approximate number of factors suitable for a given
dataset based on the point where the course of the Scree graph significantly changes (in the
so-called elbow). The horizontal line y = 1 in the Scree plot determines the limit to how
many factors whose eigenvalue is greater than 1. The Scree plot is often referred to as a
rubble test. In Figure 6, we can notice two waveforms of the graph. Both are important for
us, i.e., both the intrinsic values of the factors and the eigenvalues of the components [23].
The first line of the graph (corresponding to FA) determines the eigenvalues of the factors.
Based on the Scree plot recommendation, we should focus on creating three factors. The
second line of the graph corresponds to the actual values of the components (PC), while it
is recommended to develop 19 components.

4.2.2. Kaiser Criterion

Since the course of the Scree plot may not always show an unambiguous result, another
researcher came up with a proposal on how to estimate the number of factors. Hanry F.
Kaiser [24] proposed Kaiser’s rule, which directly examines the intrinsic values of factors.
According to this rule, only factors whose eigenvalues are above one are retained. However,
ref. [25] indicates that the number of factors with eigenvalues greater than 1 is related to the
number of variables examined and is typically in the range of 1/4 to 1/3 of the number of
variables. Ref. [25] refers to simulation studies that show that the Kaiser criterion is sometimes
inaccurate; determining the number of factors in this way is not considered reasonable.
However, we looked at this rule out of interest. The result is two recommendations:

• Empirical Kaiser Criterion suggests 23 factors.
• Traditional Kaiser Criterion suggests 19 factors.
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4.2.3. Parallel Analysis

Horn introduced parallel analysis (PA) in 1965, and its original purpose was to improve
the Kaiser criterion [25]. It also extends the rubble test. In addition to the essential display
of the Scree graph, it also generates random correlation matrices, which are the basis for
the averages of the eigenvalues of the random data displayed in the chart. Components,
respectively factors, are retained if the intrinsic value from the actual data exceeds the
intrinsic value from the random data [23,25]. Figure 7a shows graphs for estimating the
number of factors (or components) using PA. The blue line is the same as in the Scree graph
and corresponds to ‘FA’. However, we do not observe when it intersects with the horizontal
prime y = 1, but we keep its intersection with a red line. In estimating the number of
factors (the course corresponding to FA in Figure 7a), we get to a higher number than the
recommendation using a rubble test. In this case, the recommended number of factors is 15.
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Within R language packs, we can perform PA in another way, too. The result is
shown in Figure 7b. In this case, we compare the course of the blue and red lines. These
corresponds to the intrinsic values of the factors (red observed, blue random). Again, the
number of significant factors can be estimated based on their intersection. In our case, the
considerable number of factors is equal to 23.

Goldberg and Velicer [25] again refer to simulation studies that find that parallel
analysis is one of the most accurate methods. In our case, the PA confirmed the conclusions
of the application of the Kaiser criterion.

Based on the performed analyses, we decided to create several variants for 3, 15, 19,
and 23 factors.

4.3. Factor Rotation

The next step of the FA was to select the appropriate rotation type of the factor axes.
Factor rotation was presented shortly after the discovery of FA. This performance of factor
rotation has led to an effort to better explain and interpret the FA results. The term rotation
comes from the fact that the axes are rotated so that the clusters of factors were as close
as possible. Axis rotation methods can be divided into orthogonal and oblique (for the
angle between the x and y axes). The fundamental difference between these groups of
techniques is that while oblique rotations create correlated factors, orthogonal rotations
create uncorrelated factors. Thus, orthogonal rotations provided a more uncomplicated
explanation of the factors. However, there are areas of research where it is challenging to
expect factors to be uncorrelated. In this case, the use of orthogonal rotation may lead to
a less helpful solution. Conversely, using shim rotation is unlikely to skew the results if
the factors are uncorrelated. For each rotation method, the criterion of simple structure is
considered, and thus it is required that most factor loadings be high for only one factor,
and for the others, they should be around zero [25,26].

The most used method is Varimax, a type of orthogonal rotation. Its wide application
minimizes the number of variables with high loadings and thus simplifies the interpretation
of factors. Other examples of orthogonal rotation methods are Quartimax (aimed at
minimizing the number of factors) and Equamax (reduces the number of variables with
high loadings and the number of factors needed to explain the individual variables). Of
the group of oblique rotation methods, two are most used: Direct oblimin and Promax. The
fundamental difference between these methods is the speed of their calculations. Promax
is faster than Oblimin and is, therefore, the recommended method of oblique rotation for
large volumes of data [25,27]. In, ref. [28] choosing Varimax and Oblimin to begin with is
recommended and we will stick to them in this work.

4.4. Factor Analysis Modeling

After verifying the suitability of the dataset for FA, selecting the recommended number
of factors (3, 15, 19, and 23), and choosing the axis rotations (Varimax and Oblimin), we
could proceed to FA modeling. In total, we created eight models, but we will present only
the most important ones.

First, we will deal with the orthogonal rotation of factors, Varimax. We performed
separate modeling for each number of factors. The 15-factor model already showed signs
of excessive factor extraction, as the two factors consisted of only one-factor loading.
Nevertheless, we also looked at the remaining planned models. As we expected, the
number of factors with one-factor loading increased; Smyth and Johnson [23] also draw
attention to excessive extraction, where the research authors subsequently extract a smaller
number of factors. The authors in [22] also state that at least two or three-factor loads must
load a factor to give meaningful results. Thus, we also reduced the number of factors, and
the first modeling result, which did not show signs of over-extraction, was for ten factors.
Figure 8a shows a model for three factors and Figure 8b for ten factors.
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Subsequently, we focused on the rotation of Oblimin factors. Similarly, it was shown
that over-extraction already took place during the formation of 15 factors. As with the
Varimax rotation, we proceeded to reduce the intended number of factors. The first result,
when the factor was not formed by only one-factor loading, was obtained by creating ten
factors. The results can be seen in the following Figure 9.
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All selected factor loads reached at least 0.3 in absolute terms. According to [29], a factor
load value above 0.3 can be considered significant, although this may also depend on the
data sample size. For better clarity, we also present a table of individual solutions—Table 3.

Table 3. An overview of the most important FA results for Varimax and Oblimin rotations.

Factors Factor Loadings

The three-factor solution for Varimax rotation

Factor 1 Gender; Height; Smoking; Alcohol; S_Freq; Age;
S_Duration

Factor 2 F_CAD; F_MI; Urea; ECHO_EF; ECHO_PH;
ECG_Rhythm

Factor 3 P_MI; P_CAD; P_DM; P_Stroke

The ten-factor solution for Varimax rotation

Factor 1 Height; Gender; Weight
Factor 2 Urea; Creat; FBG
Factor 3 P_MI; P_CAD; P_Stroke
Factor 4 F_CAD; F_MI
Factor 5 ESC; BP; Age
Factor 6 Sodium; AST
Factor 7 Smoking; S_Freq; S_Duration; Alcohol
Factor 8 ECG_QRS; ECHO_EF; ECG_RBBB; ECHO_PH
Factor 9 ECG_HR; ECG_QT
Factor 10 F_DM; F_HT

The three-factor solution for Oblimin rotation

Factor 1 Gender; Height; Smoking; Alcohol; S_Freq; S_Duration;
Weight

Factor 2 F_CAD; F_MI; Age; Urea; ECHO_PH; ECG_Rhythm;
ECHO_EF

Factor 3 P_MI; P_CAD; P_DM; P_Stroke

The ten-factor solution for Oblimin rotation

Factor 1 Height; Gender; Weight
Factor 2 Urea; Creat; FBG
Factor 3 F_CAD; F_MI
Factor 4 P_MI; P_CAD; P_Stroke
Factor 5 Smoking; S_Freq; S_Duration; Alcohol
Factor 6 Sodium; AST
Factor 7 ESC; BP; Age
Factor 8 ECG_HR; ECG_QT
Factor 9 ECG_QRS; ECHO_EF; ECG_RBBB
Factor 10 F_DM; F_HT

Let us analyze the result of all models in more detail. We will first focus on the value
of SS loadings, which represents the sum of squared loadings. If a given factor acquires
this value above one, the given factor should have a specific informative value and should
be maintained [30]. The following Table 4 shows the SS loading values for each FA model.

As the reader can see, most of the values are above the recommended acceptance limit.
However, in the case of the ten-factor model, two factors do not reach the SS loadings
threshold above level one for both factor axis rotations. For the sake of interest, we also
added the result of observing the values of SS loadings for a model consisting of 23 factors.
In this case, only seven factors reached the value of SS loadings above one; the rest were
below this limit (rotation ‘Varimax’). To maintain the condition of SS loadings > 1, we
proceeded to reduce the number of factors.

The first usable result for the value of SS loadings was obtained by creating eight
factors. The following Figure 10 is a representation of these models.
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Table 4. SS loading values for individual factors.

Factors SS Loadings Factors SS Loading

Factor rotation ‘Varimax’ Factor rotation ‘Oblimin’

The three-factor solution

Factor 1 2.37 Factor 1 2.36
Factor 2 1.88 Factor 2 1.89
Factor 3 1.86 Factor 3 1.86

The ten-factor solution

Factor 1 1.89 Factor 1 1.96
Factor 2 1.56 Factor 2 1.49
Factor 3 1.77 Factor 3 1.75
Factor 4 1.71 Factor 4 1.77
Factor 5 1.22 Factor 5 1.76
Factor 6 1.23 Factor 6 1.23
Factor 7 1.81 Factor 7 1.23
Factor 8 1.2 Factor 8 0.98 *
Factor 9 0.96 * Factor 9 1.20

Factor 10 0.93 * Factor 10 0.98 *
Note: * SS loading values below 1.
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For better clarity, we presented the following Table 5 of factor loadings and SS loadings
for individual factors.

Table 5. SS loading values with factor loadings for individual solutions of FA.

Factors SS Loadings Factor Loadings

Factor rotation ‘Varimax’

Factor 1 1.87 Height; Gender; Weight
Factor 2 1.65 Urea; FBG; Creat; ECHO_PH; ECG_Rhythm
Factor 3 1.76 F_CAD; F_MI
Factor 4 1.24 ESC; BP; Age
Factor 5 1.77 P_MI; P_CAD; P_Stroke
Factor 6 1.22 Sodium; AST
Factor 7 1.84 Smoking; S_Freq; S_Duration; Alcohol
Factor 8 1.10 ECG_QRS; ECHO_EF; ECG_RBBB

Factor rotation ‘Oblimin’

Factor 1 1.97 Height; Gender; Weight
Factor 2 1.57 Urea; FBG; Creat
Factor 3 1.77 F_CAD; F_MI
Factor 4 1.25 ESC; BP; Age
Factor 5 1.77 P_MI; P_CAD; P_Stroke
Factor 6 1.23 Sodium; AST
Factor 7 1.78 Smoking; S_Freq; S_Duration; Alcohol
Factor 8 1.12 ECG_QRS; ECG_RBBB; ECHO_EF

The second thing we will look at in the created models is the cumulative variance of
each n-factor model. This value indicates how many (in %) of the monitored attributes a
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given n-factor model can explain. If these values are small, a more significant number of
factors must be selected [30]. Again, we offer a report in the form of a table.

As can be seen from Table 6, the variance of the models we created is relatively small
(only 13% for the three-factor model and 26% for the eight-factor model), which means that
these models do not meet the conditions discussed above.

Table 6. The cumulative variance of each n-factor solution.

Model Cumulative Variance

Factor rotation Varimax

The three-factor solution 13%
The eight-factor solution 26%

Factor rotation Oblimin

The three-factor solution 13%
The eight-factor solution 26%

Let us look at the composition of individual factors in terms of their medical signif-
icance. We will focus only on some unique models, as the total number of factors is not
negligible, and the models are pretty similar.

As in the first model, we will choose a three-factor model based on Varimax rotation.
The broader context of cardiovascular risk and rough groupings of related attributes is
evident for this model.

Factor 2 (F_CAD; F_MI; Urea; ECHO_EF; ECHO_PH; ECG_Rhythm) shows us some
genetic background of cardiovascular diseases. There is a typical connection between
family history of coronary artery disease and status after myocardial infarction and patient
parameters from examinations: changed renal parameters, ECG changes, and systolic
function of left ventricular of the hearth. These are well-known data supported by many
great population studies [1–3].

Factor 3 (P_MI; P_CAD; P_DM; P_Stroke) shows a prevalent connection with cardio-
vascular risk and traditional risk factors. The patient who has a personal history of diabetes
and status after stroke also has a connection with coronary artery disease and myocardial
infarction. This is a known knowledge about cardiovascular risk factors [1]. Factor analysis
shows us non-inferiority and detected connections between coronary artery diseases and
their risk factors.

The model for the Oblimin rotation is very similar. The difference is only in the
location of two-factor loadings—Age, in the case of Varimax rotation, loads Factor 1 and
thus frees up the place of Weight; in case of Oblimin rotation, Age loads Factor 2.

Another solution we will look at is the ten-factor rotation model Oblimin. Again,
it is very similar to the result of the Varimax rotation; the only slight difference is in the
significance of the individual factors (SS loadings value) and the inclusion of the ECHO_PH
factor load Varimax rotation results.

Factor 2 (Urea; Creat; FBG) shows us the typical connection between renal parameters
and fibrinogen levels. This connection could have an inflammatory background, increasing
renal parameters and fibrinogen levels. There is a place for advanced research in the next
steps of our study [31].

Factor 3 (F_CAD; F_MI) shows us that if the patient has in family history suspicion
of coronary artery disease, status after possible acute coronary syndrome (myocardial
infarction) or stroke, then there is an increased risk of cardiovascular disease [1].

Factor 4 (P_MI; P_CAD; P_Stroke) shows us the frequency of coronary artery disease,
and if this frequency increases, then there is also an increased frequency of acute coronary
syndromes, especially myocardial infarction [1]. Factor 7 (ESC; BP Age) shows us the
typical connection between cardiovascular risk and age and blood pressure. Increased
blood pressure and age are traditional risk factors of coronary artery diseases [1].
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As for Factor 8 (ECG_FR; ECG_QT) and Factor 10 (F_DM; F_HT), they are likely to
have some significance (albeit very small) and their low informative value. This fact is also
confirmed by the FA conclusions, where the SS loading value for these factors was below
level one.

Lastly, we will discuss the eight-factor solution. As indicated by the value of SS
loadings for a ten-factor solution, when the number of factors was reduced to eight, two
factors below the required limit were wholly omitted from the solution. Using the rotation
Oblimin, the structure of factor loads of individual factors did not change at all; there
was only a slight change of order for the values of SS loadings. The Varimax rotation also
changed the arrangement of the factors according to the SS Loadings value and shifted or
supplemented the factor loads ECHO_PH (for the ten-factor model loaded by Factor 8)
ECG_Rhythm of loading Factor 2.

The last series of experiments we performed involved a slightly modified dataset. Re-
turning to Figure 5, MSA statistics for individual attributes should be above the level 0.5 [20].
The data file we worked with also contained the monitored characteristics below this level—
specifically BP, AST, Sodium, Chol, ECG_SVES, ECG_STD. We therefore proceeded to
remove these attributes from the dataset.

Again, we performed analyses on such an adjusted set to determine the appropriate
number of factors. The values recommended by particular analyses methods were as follows:

• Scree plot: 3 factors;
• Kaiser criterion: 17 factors;
• Parallel analysis: 11 factors.

When creating individual clusters of factor loads, a similar result was crystallized as
in the previous phases. The solution of ten factors did not reach the value of SS loadings
above level 1 for all factors. We achieved this result only when reduced to six factors for
both the Varimax rotation and the Oblimin rotation. As we expected that the characteristics
should correlate with each other due to the nature of the monitored data, in the following
section, we will only approach the solution of the rotation Oblimin (Figure 11, Table 7).

Diagnostics 2021, 11, x FOR PEER REVIEW 21 of 25 
 

 

When creating individual clusters of factor loads, a similar result was crystallized as 
in the previous phases. The solution of ten factors did not reach the value of SS loadings 
above level 1 for all factors. We achieved this result only when reduced to six factors for 
both the Varimax rotation and the Oblimin rotation. As we expected that the characteris-
tics should correlate with each other due to the nature of the monitored data, in the fol-
lowing section, we will only approach the solution of the rotation Oblimin (Figure 11, 
Table 7). 

 
Figure 11. The six-factor solution for rotation Oblimin on the feature set. 

Table 7. SS loading values with factor loadings for the six-factors FA model with rotation Oblimin. 

Factors SS Loadings Factor Loadings 
Factor 1 1.97 Height; Gender; Weight 
Factor 2 1.50 Urea; FBG; Creat 
Factor 3 1.77 F_CAD; F_MI 
Factor 4 1.75 P_MI; P_CAD; P_Stroke 
Factor 5 1.76 Smoking; S_Freq; S_Duration; Alcohol 
Factor 6 1.23 ECG_QRS; Age; ECHO_EF; ECKG_PBBB 

The factors obtained can be identified by the following descriptions: Factor 1 de-
scribes the ‘Basic characteristics of the patient’. As several recommendations state, the dif-
ference in cardiovascular risk for men and women is that the patient’s height and weight 
correspond to the BMI (body mass index). Factor 2 can be characterized as ‘Renal param-
eters and fibrinogen’. In order, Factor 3 focuses on the ‘Family predisposition to CVD’. 
Factor 4 aggregates the loads describing the ‘Personal History of CVD’. The acquired Fac-
tor 5 points to a kind of ‘Patient’s lifestyle’ regarding bad habits. The last Factor 6 created 
describes ‘Echo and ECG examination results’. 

Regarding the degree of variance for individual factors themselves, we can state that 
they are very equivalent. However, the degree of variability values is relatively low, in 
the order of 4.7%, 3.6%, 4.2%, 4.2%, 4.2%, and 2.9%. The following Table 8 shows the val-
ues of individual factor loadings for each of the created factors. 

Figure 11. The six-factor solution for rotation Oblimin on the feature set.



Diagnostics 2021, 11, 1284 20 of 24

Table 7. SS loading values with factor loadings for the six-factors FA model with rotation Oblimin.

Factors SS Loadings Factor Loadings

Factor 1 1.97 Height; Gender; Weight
Factor 2 1.50 Urea; FBG; Creat
Factor 3 1.77 F_CAD; F_MI
Factor 4 1.75 P_MI; P_CAD; P_Stroke
Factor 5 1.76 Smoking; S_Freq; S_Duration; Alcohol
Factor 6 1.23 ECG_QRS; Age; ECHO_EF; ECKG_PBBB

The factors obtained can be identified by the following descriptions: Factor 1 describes
the ‘Basic characteristics of the patient’. As several recommendations state, the difference in
cardiovascular risk for men and women is that the patient’s height and weight correspond
to the BMI (body mass index). Factor 2 can be characterized as ‘Renal parameters and
fibrinogen’. In order, Factor 3 focuses on the ‘Family predisposition to CVD’. Factor 4
aggregates the loads describing the ‘Personal History of CVD’. The acquired Factor 5 points
to a kind of ‘Patient’s lifestyle’ regarding bad habits. The last Factor 6 created describes
‘Echo and ECG examination results’.

Regarding the degree of variance for individual factors themselves, we can state that
they are very equivalent. However, the degree of variability values is relatively low, in the
order of 4.7%, 3.6%, 4.2%, 4.2%, 4.2%, and 2.9%. The following Table 8 shows the values of
individual factor loadings for each of the created factors.

Table 8. Values of factors loadings with the rate of variance for each factor.

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

Height 0.890 * −0.023 −0.006 −0.035 −0.036 −0.034
Gender −0.702 * −0.030 0.013 −0.041 −0.166 −0.156
Weight 0.510 * 0.193 −0.042 0.076 −0.082 −0.085

Urea 0.010 0.684 * 0.007 −0.044 −0.057 0.028
FBG −0.012 0.463 * −0.034 0.097 0.260 −0.033
Creat 0.103 0.436 * 0.027 0.006 −0.037 −0.046

F_CAD −0.015 −0.002 0.912 * −0.014 −0.009 0.003
F_MI 0.004 0.009 0.896 * 0.016 −0.009 0.008
P_MI 0.016 −0.017 0.027 0.869 * 0.007 0.009

P_CAD −0.036 −0.006 −0.033 0.772 * −0.015 −0.007
P_Stroke −0.022 0.062 −0.044 0.329 * −0.007 0.025
Smoking −0.049 0.073 0.027 −0.057 −0.738 * 0.019
S_Freq −0.029 0.038 0.014 −0.054 0.652 * −0.079

S_Duration −0.024 0.091 0.058 −0.060 0.536 * 0.075
Alcohol 0.201 −0.062 0.042 −0.079 0.361 * 0.039

ECG_QRS 0.153 −0.074 0.042 0.006 −0.086 0.530 *
Age −0.372 0.207 −0.061 0.014 −0.092 0.414 *

ECHO_EF −0.270 −0.162 0.016 −0.092 −0.033 −0.309 *
ECG_RBBB 0.012 −0.046 0.019 −0.041 −0.009 0.309 *

SS loading 1.965 1.499 1.771 1.753 1.755 1.230
Proportion
Variance 0.047 0.036 0.042 0.042 0.042 0.029

Cumulative
Variance 0.047 0.083 0.125 0.167 0.209 0.238

Note: * The highest achieved SS loading absolute value through the created factors.

4.5. Interpretation of Factor Analysis Results

Although we focused on all the recommended procedures regarding the correct
selection of the examined attributes, selection of the number of factors, considering the
actual values of factors in the form of SS loadings, the nature of our data shows a relatively
low variance for any cluster of factor loads. In the last model we presented (the six
factors with rotation Oblimin), the achieved variance rate of 23% does not stand out from
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the other proposed solutions. However, the experiment results provide many fascinating
known cardiovascular risks and cardiovascular disease axioms. The result of factor analysis
confirm many well-known connections in cardiology. This shows us the very good potential
and consequences of factor analysis, and our results confirm the conclusions of many
randomized or population cardiovascular clinical trials [1–3,32,33].

4.6. Limitations of Our Study

We collected over 800 patients’ data. This could limit the smaller patient clusters if we
compare it to significant population studies. All laboratory parameters were not collected
at the same medical laboratory. There could be minor differences in the sensitivity and
ranges across the used medical laboratories.

Another limitation may be the number of factors chosen. Although we have used
several methods to estimate the most appropriate number of factors, it is still a subjective
choice. Likewise, the interpretation of the obtained factors can be considered subjective,
even though we can substantiate the found connections with the performed research and
professional literature.

5. Discussion

The present study describes the use of the factor analysis method on the data of
patients hospitalized at the East Slovak Institute for Cardiovascular Diseases in the period
between June 2017 and March 2018 to perform a selective coronary angiography examina-
tion. The examined data file contains 808 records and 66 monitored characteristics. The FA
method identified six factors: (1) Basic characteristics of the patient; (2) Renal parameters
and fibrinogen; (3) Family predisposition to CVD; (4) Personal history of CVD; (5) Lifestyle
of the patient; and (6) Echo and ECG examination results.

According to the value of SS loadings (sum of squared loadings), the essential Factor 1,
named as Basic characteristics of the patient, describes a person’s essential characteristics
(gender, height, and weight), while the individual monitored characteristics of gender and
height reached relatively high values of loads. The patient’s gender is one of the risk factors,
as men have a higher CVD risk. The conclusion that the patient’s gender is a significant
risk factor is also underlined by the result of the study [9], where the authors drew different
results for men and women. The patient’s height itself is one of the indicators of BMI that
indicates patient obesity. The patient’s weight is also related to another, often-observed
phenomenon, the circumference of the patient’s belt. Several research results [8–10,34–36]
are fully or particularly associated with these characteristics.

The correlation between the possible inflammatory effect of elevated fibrinogen levels
and renal parameters was named Renal parameters and fibrinogen. The markers of inflam-
mation and the plasma levels of IL-1β, IL-1RA, IL-6, TNF-α, hs-CRP and fibrinogen were
higher among participants with lower estimated glomerular filtration rates. Inflammation
score was higher among those with lower eGFRs and higher Urine Albumin-to-Creatinine
Ratios (UACR). Biomarkers of inflammation were inversely associated with measures
of kidney function. Atherosclerosis also has inflammatory pathogenesis, and patients
with acute or chronic renal diseases have increased cardiovascular risk [37]. Fibrinogen
also appeared in some of the studies analyzed, either as part of the adiposity [38] or in
connection with smoking [39]. For example, urea was also represented in the research as a
load on the metabolic factor [8,9].

Another critical factor is the CVD Family Predisposition Factor, which relates to
coronary heart disease and MI attributes. Very few studies would independently identify
them as significant factors corresponding to any family predisposition to CVD. However,
Marušič’s study [38] also included a family history of coronary heart disease in the FA,
resulting in a relatively high load factor. Collingwood also considered the family history
of CVD [40]. Several studies have focused on a group of patients who had some CVD
or related diseases, e.g., for the use of FA for patients suffering from DM [41], a group of
patients affected by IM [40,42].
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The analysis’s focus in [41,42] indicates that the personal history of CVD itself is
significant concerning the further course of CVD. The positive family history of CVD
itself is evaluated based on recommendations with a positive correlation to the patient’s
predisposition to CVD.

Factor 5 describing the patient’s lifestyle has appeared regularly in several studies,
particularly smoking and alcohol consumption [9,38,40,43]. These conclusions also agreed
with several expert recommendations that make smoking one of the risk factors associated
with CVD [1–3,32,33].

The data from population clinical trials MESA or the Framingham study reflected
many relationships between noninvasive or imaging examination results. Our factor
analyses show a significant correlation between the ejection fraction of the left ventricular
of the hearth measured by trans thoracal echocardiography, age, and ECG changes (QRS
complex, morphology, duration, and right bundle branch block (RBBB)). There are no
relevant data (clinical trials with a large population) to confirm this relationship. Some
clinical trials examined the relationship between the systolic function of the left atrium and
RBBB in patients after MI [44].

The presented results show us the interesting potential of factor analysis. There is
a place for implication for making decisions about new researches based on molecular
medicine, proteomics, or mRNA screening. This method could be a ‘gatekeeper’ for better
orientations between complex connections and various factors in medicine.

6. Conclusions

The results of the factor analysis confirmed the known conclusions and recommenda-
tions related to CVD. The derivation of new facts concerning the risk factors of CVD will
be of interest in further research focusing, among other things, on explanatory methods.
The indicated relationships between CVD risk factors can be investigated using different
machine learning methods, such as association rules, regression analysis, or a visualization
tool for Bayesian networks.
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