
diagnostics

Review

A New Dawn for the Use of Artificial Intelligence in
Gastroenterology, Hepatology and Pancreatology

Akihiko Oka * , Norihisa Ishimura and Shunji Ishihara

����������
�������

Citation: Oka, A.; Ishimura, N.;

Ishihara, S. A New Dawn for the Use

of Artificial Intelligence in

Gastroenterology, Hepatology and

Pancreatology. Diagnostics 2021, 11,

1719. https://doi.org/10.3390/

diagnostics11091719

Academic Editor: Consolato M. Sergi

Received: 31 August 2021

Accepted: 17 September 2021

Published: 19 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Internal Medicine II, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan;
ishimura@med.shimane-u.ac.jp (N.I.); si360405@med.shimane-u.ac.jp (S.I.)
* Correspondence: aoka@med.shimane-u.ac.jp; Tel.: +81-853-20-2190

Abstract: Artificial intelligence (AI) is rapidly becoming an essential tool in the medical field as well
as in daily life. Recent developments in deep learning, a subfield of AI, have brought remarkable
advances in image recognition, which facilitates improvement in the early detection of cancer by
endoscopy, ultrasonography, and computed tomography. In addition, AI-assisted big data analysis
represents a great step forward for precision medicine. This review provides an overview of AI
technology, particularly for gastroenterology, hepatology, and pancreatology, to help clinicians utilize
AI in the near future.
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1. Introduction

Rapid developments in artificial intelligence (AI) technologies bring huge benefits to
daily life through smartphones (iPhone’s Siri, etc.), wearables (smart watches, etc.), and
robotic assistants (smart speakers, self-driving cars, etc.) [1,2]. In the medical field, AI
also holds great promise. Major advances in medical AI have had a tremendous impact at
two main levels: (1) image recognition and (2) big data analysis. AI can detect very small
changes that are difficult for humans to perceive. For example, AI can detect lung cancer
up to a year before a physician [3], and AI can correctly diagnose skin cancer with superior
diagnostic performance compared to that of a physician [4]. In addition, AI can reach the
desired output within seconds and with more “consistent” performance. Doctors may have
“inconsistent” performance due to insufficient training or exhaustion from busy clinical
demands. A visual assessment by imaging physicians is qualitative, subjective, and prone
to errors, and subject to intra-observer and inter-observer variability. AI may have better
performance than physicians in some cases [5], and it has great promise to reduce clinician
workload and the cost of medical care. However, it is necessary for clinicians to verify the
output from AI for patient care.

In addition to image analysis, big data analysis is suitable for AI to generalize across a
variety of data types and to provide interpretation across complex variables [6]. Therefore,
AI techniques have been widely applied to big data analyses, such as in genomics, novel
medicine discoveries, and predictions of disease outcomes [7–9]. For example, IBM Watson
supports oncologists by providing possible therapeutic options based on information from
over 300 medical journals, over 200 academic books, and over 15,000,000 pages of literature
related to 11 types of neoplasia [10,11]. In the field of gastroenterology, AI has also made
remarkable progress, and many international meetings highlight AI-related sessions. In
addition, several new conferences have been established over the past few decades, such
as the Global GI-AI Summit [12]. Owing to the potential for image recognition and big
data analysis, not only clinician, but also researchers can benefit from the application of AI
methodologies. This review focuses on recent AI research in the fields of gastroenterology,
hepatology, and pancreatology (summarized in Figure 1) and provides an overview of AI
technology to help clinicians utilize AI in the near future.
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fields of gastroenterology, hepatology, and pancreatology (summarized in Figure 1) and 
provides an overview of AI technology to help clinicians utilize AI in the near future. 

Figure 1. Summary of AI technologies for gastroenterology, hepatology, and pancreatology. IBS: 
irritable bowel disease, GI: gastrointestinal, GIST: gastrointestinal stromal tumor, IBD: inflamma-
tory bowel disease, EUS: endoscopic ultrasonography, VCE: video capsule endoscopy, NBI: narrow-
band imaging, CT: computed tomography, MRI: magnetic resonance imaging, HCC: hepatocellular 
carcinoma, FNH: focal nodular hyperplasia, IPMN: intraductal papillary mucinous neoplasm, 
NAFLD: nonalcoholic fatty liver disease, PSC: primary sclerosing cholangitis, AIP: autoimmune 
pancreatitis. 

2. Artificial Intelligence 
AI is “a broad discipline with the goal of creating intelligent machines, as opposed to 

the natural intelligence that is demonstrated by humans and animals” (from the state of 
AI report 2020) [1]. In 1950, Alan Turing published a landmark paper describing the cre-
ation of machines that “think” [13]. In 1955, John McCarthy et al. used the word “artificial 
intelligence” for the first time in a proposal for the Dartmouth Conference held in 1956 
[14], which is considered the dawn of AI technology. In 1959, Arthur Samuel developed 
an algorithm for machine learning, a subfield of AI, which referred to a computer’s ability 
to learn from data in order to detect patterns and make decisions without explicitly being 
programmed for the output [15,16]. Before learning algorithms were developed, humans 
alone were required to analyze data and program machines with human-designed algo-
rithms. In contrast, AI can automatically detect patterns and attributes from data and 
make decisions without human input.  

An integral breakthrough in AI technology came in 2012, when deep learning, a new 
type of machine learning, was developed by Geoffrey Hinton et al. [17]. The authors pre-
sented a dramatically improved error rate for visual recognition at a competition confer-
ence, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), jointly held by 
multiple universities in the United States [18]. Hinton’s team at the University of Toronto 
used deep learning for the first time to improve the error rate by about 10%. The network 
used was a convolutional neural network (CNN) called AlexNet, which has since been 
widely applied for image recognition tasks [19]. Deep learning uses a system called a neu-
ral network, which imitates the neuronal network of the human brain and combines dif-
ferent mathematical models. The input layer and the output layer are not sufficient to 
process complex information (Figure 2A), and more sophisticated analyses can be per-
formed by creating intermediate layers between them. This increase in the number of in-
termediate layers is expressed as deep = deep, and deep learning is a computer processing 
system that has many such intermediate layers (Figure 2B). The layer is composed of a 
filter that extracts features from the original images to determine the characteristics of the 

Figure 1. Summary of AI technologies for gastroenterology, hepatology, and pancreatology.
IBS: irritable bowel disease, GI: gastrointestinal, GIST: gastrointestinal stromal tumor, IBD: in-
flammatory bowel disease, EUS: endoscopic ultrasonography, VCE: video capsule endoscopy,
NBI: narrow-band imaging, CT: computed tomography, MRI: magnetic resonance imaging,
HCC: hepatocellular carcinoma, FNH: focal nodular hyperplasia, IPMN: intraductal papillary mu-
cinous neoplasm, NAFLD: nonalcoholic fatty liver disease, PSC: primary sclerosing cholangitis,
AIP: autoimmune pancreatitis.

2. Artificial Intelligence

AI is “a broad discipline with the goal of creating intelligent machines, as opposed to
the natural intelligence that is demonstrated by humans and animals” (from the state of AI
report 2020) [1]. In 1950, Alan Turing published a landmark paper describing the creation
of machines that “think” [13]. In 1955, John McCarthy et al. used the word “artificial
intelligence” for the first time in a proposal for the Dartmouth Conference held in 1956 [14],
which is considered the dawn of AI technology. In 1959, Arthur Samuel developed an
algorithm for machine learning, a subfield of AI, which referred to a computer’s ability
to learn from data in order to detect patterns and make decisions without explicitly being
programmed for the output [15,16]. Before learning algorithms were developed, humans
alone were required to analyze data and program machines with human-designed algo-
rithms. In contrast, AI can automatically detect patterns and attributes from data and make
decisions without human input.

An integral breakthrough in AI technology came in 2012, when deep learning, a new
type of machine learning, was developed by Geoffrey Hinton et al. [17]. The authors
presented a dramatically improved error rate for visual recognition at a competition
conference, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), jointly held
by multiple universities in the United States [18]. Hinton’s team at the University of Toronto
used deep learning for the first time to improve the error rate by about 10%. The network
used was a convolutional neural network (CNN) called AlexNet, which has since been
widely applied for image recognition tasks [19]. Deep learning uses a system called a neural
network, which imitates the neuronal network of the human brain and combines different
mathematical models. The input layer and the output layer are not sufficient to process
complex information (Figure 2A), and more sophisticated analyses can be performed by
creating intermediate layers between them. This increase in the number of intermediate
layers is expressed as deep = deep, and deep learning is a computer processing system that
has many such intermediate layers (Figure 2B). The layer is composed of a filter that extracts
features from the original images to determine the characteristics of the original images
where higher level features are extracted from lower level ones: for example, the first layer
extracts patterns at the texture level, the second layer extracts patterns at the frame level,
the third layer extracts at the shape level, and the last layer indicates a list of parts in the
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original input image. Notably, the filter is automatically created after recognition of the
features through learning from the input data (see details and examples in [18,20–23]. This
breakthrough in deep learning was facilitated by advances in graphic processing units
(GPUs), which were faster than central processing units (CPUs) for real-time graphics and
multitasking [18]. In 2015, AI outperformed humans in the ILSVRC. Another example
to illustrate the outstanding performance of deep learning was indicated by AlphaGo, a
deep learning algorithm to win the game “Go” [24]. These attractive developments in deep
learning have greatly contributed to the proliferation of studies, which have attempted
to automate the interpretation and evaluation of medical images and clinical data, and
have expanded the application of AI to various fields. Indeed, over 10,000 papers in the
medical field were published last year (Figure 2C). Based on these recent developments in
AI technology, the U.S. Food and Drug Administration (FDA) enacted a law to approve
medical AI devices in December 2016. In April 2018, the first AI device was approved
to provide screening decisions without the assistance of a clinician’s interpretation for
diabetic retinopathy in adults with diabetes [25]. To date, several AI-aided devices have
been approved by the FDA and the European Union (EU) in the field of gastroenterology,
hepatology, and pancreatology (Table 1).
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Modality Device Name Institution Memo 
Endoscopy EndoBRAIN-EYE Olympus Colon tumor detection; made for endocytoscope 

 EndoBRAIN Olympus Colon tumor diagnosis; made for endocytoscope 
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Figure 2. Schematics of neural networks and number of publications of medical AI. (A) A schematic
of a traditional neural network algorithm. (B) A schematic of a neural network with deep learning
algorithm. (C) The number of publications involving AI in the medical field. The results of a
PubMed search using the following key words (“artificial intelligence” OR “machine learning” OR
“deep learning” OR “neural network”) AND (medicine OR gastroenterology OR hepatology OR
pancreatology OR endoscopy OR radiology OR ultrasonography OR “computed tomography” OR
“clinical imaging“) are shown.

Table 1. AI-aided devices approved in the fields of gastroenterology.

Modality Device Name Institution Memo

Endoscopy EndoBRAIN-EYE Olympus Colon tumor detection; made for endocytoscope
EndoBRAIN Olympus Colon tumor diagnosis; made for endocytoscope

EndoBRAIN-Plus Olympus Tumor depth diagnosis; made for endocytoscope
EndoBRAIN-UC Olympus UC activity diagnosis; made for endocytoscope

CAD EYE Fujifilm Colon polyp detection and diagnosis

WISE VISION NEC Colon tumor detection
Connectable to 3 major endoscope manufactures

WavSTAT4 PENTAX 1 Colorectal cancer diagnosis
GI Genius Medtronic Colorectal cancer diagnosis
Discovery PENTAX 1 AI-assisted colon polyp detector

CT Liver AI Arterys Liver lesion detection
US Poseidon Ultrasound BUTTERFLY NETWORK Liver lesion detection

1 Hoya group. UC: ulcerative colitis, CT: computed tomography, US: ultrasonography.
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3. Pharyngeal Cancer

Pharyngeal cancer is generally detected by otolaryngologists, and the majority of
pharyngeal cancer patients are diagnosed at an advanced stage, resulting in a poor disease
prognosis [26]. Therefore, early detection is critical to improve the survival rate of pharyn-
geal cancer patients. With recent advances in endoscopic technology, such as narrow-band
imaging (NBI) and magnifying endoscopy, not only otolaryngologist, but even gastrointesti-
nal endoscopist, are able to detect laryngopharyngeal cancers at an early stage [27–29]. A
few reports regarding the AI-aided detection of pharyngeal cancers have been published by
nasopharyngiologists and gastroenterologists [30–33]. Tamashiro et al. trained an AI-aided
endoscopy system with 5403 images of superficial and advanced pharyngeal cancers and
validated the system with 1912 images of cancers and non-cancers [32] (Figure 3A). The AI
system correctly detected all cancers (even those smaller than 10 mm), and the pictures
from NBI provided to the AI resulted in a much higher sensitivity (85.6%) than that from
white-light endoscopy (70.1%). In actual clinical care situations, “real-time” detection is
more practical and effective. Kono et al. developed a real-time detection system [33,34] that
diagnosed 23/25 pharyngeal cancers as cancers (sensitivity: 92%) and 17/36 non-cancers
as non-cancers (specificity: 47%) in a validation study, which used video images with
a high transaction speed of 0.03 s per image. They theorized that the pseudo-positive
or negative cases were due to the complex environment of the laryngopharyngeal area,
including things such as saliva, bubbles, blurring, and inadequate filming conditions.
Further improvements in the AI system with a variety of training images from normal and
pharyngeal cancer patients are needed.
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Figure 3. Representative images of AI-aided endoscopies and ultrasonography. (A) Pharyngeal
cancer detected by AI with narrow-band imaging. Adapted from (Tamashiro A, Dig Endosc 2020) [32].
(B) Early gastric cancer detected by an AI system. Adapted from (Hirasawa T, Gastric Cancer
2018) [35]. (C) Small intestinal bleeding detected by an AI system. Adapted from (Tsuboi A, Dig
Endosc 2020) [36]. (D) A liver mass detected by an AI system. Adapted from (Schmauch B, Diagn
Interv Imaging 2019) [37].

4. Upper Gastrointestinal Diseases

The overall survival rates for upper gastrointestinal cancers are poor, since many
are diagnosed at advanced stages [38]. However, if detected early, the five-year survival
rates exceed 90% [39–41]. For the early detection of neoplasms, endoscopists should pay
attention to very small changes in the mucosa. Unfortunately the detection rates and
accuracy of endoscopic diagnosis depends largely on the endoscopists’ experience [42].
AI-aided detection systems are therefore a hopeful and promising tool in this field.

4.1. Esophageal Cancer

Esophageal cancer is the seventh most common neoplasm and sixth most deadly can-
cer worldwide [43]. Squamous cell carcinoma (SCC) is the most common tumor type of all
esophageal cancers [43], and several AI systems to detect SCCs have been reported [44–48].
Recently, Tokai et al. demonstrated that AI using a CNN detected 95.5% (279/291) of
SCCs in 10 s [44]. They also showed that NBI was more sensitive than white-light imaging,
which is consistent with previous reports [45]. In addition, they demonstrated that the
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AI correctly estimated the invasion depth with a sensitivity of 84.1% and an accuracy of
80.9%, which was higher than that of endoscopists. In addition, several reports showed that
magnified endoscopy enhanced the accuracy of the depth diagnosis [46,47]. Interestingly,
the AI performance was the same as that of the experts. In clinical endoscopy practice,
‘real-time’ diagnosis is required for AI-aided endoscopy. In a multicenter case-control
study, Luo et al. validated an established AI system, known as GRAIDS, which was trained
with 1,036,496 endoscopic images, and demonstrated high sensitivity, specificity, and accu-
racy [48]. This is one of the largest studies in the field of AI for medical applications.

While the majority of esophageal cancers are SCCs, the incidence of adenocarcinoma
in the esophagus is increasing rapidly in Europe and North America [49]. Several reports
have been published for the detection of adenocarcinoma using AI methodologies [50–58].
An AI system with white-light endoscopy developed by de Groof et al., detected Barrett’s
neoplasia with high performance (a sensitivity of 95%, a specificity of 85%, and an accuracy
of 92%) [50]. Subsequently, they developed an AI algorithm with multi-step training
and successfully improved the accuracy of AI detection for Barrett’s neoplasia over the
performance of endoscopists [51]. Recently, Hashimoto et al. used a high-speed real-time
AI detection algorithm and demonstrated high sensitivity (96.4%), specificity (94.2%), and
accuracy (95.4%) for the detection of early neoplasia on Barrett’s esophagus [52]. A recent
meta-analysis by Arribas et al. showed that AI-aided endoscopy can detect both types of
esophageal neoplasia, SCC and adenocarcinoma, with high sensitivity (approximately 90%)
and accuracy (AUC approximately 0.95) [53], indicating that an AI system is a promising
tool to avoid missing neoplasia during endoscopy.

4.2. Gastric Cancer

Gastric cancer is the fourth most lethal cancer worldwide [43]. As with the other
gastrointestinal cancers described above, early detection is critical to improve survival
rates [59]. In 2018, Hirasawa et al. first reported a novel AI-aided (computer-aided)
diagnostic system for the detection of gastric cancer using a deep learning CNN [35]
(Figure 3B). In total, 13,584 endoscopic images of gastric cancer as well as non-cancer
images were collected to train the AI system. For verification of the diagnostic accuracy,
2296 endoscopic images of 69 consecutive cases of gastric cancer (77 lesions) were used. The
trained AI detected 92.2% of gastric cancer lesions. Using another CNN algorithm, Wu et al.
demonstrated higher performances in the AI group than those of expert endoscopists
(accuracy 92.5% vs. 89.7%, sensitivity 94% vs. 93.9%, specificity 91% vs. 87.3%) [60]. In
addition to these “still” image detection methodologies, Horiuchi et al. developed an
AI to enable “real-time” diagnosis using magnifying endoscopy with NBI [61]. The AI
system demonstrated an accuracy of 85.1%, a sensitivity of 87.4%, and a specificity of 82.8%,
which was significantly more accurate than two experts. More recently, they employed
a larger number of experts (67 endoscopists) to determine whether the performance of
the AI detection system is better than that of endoscopists [62]. The AI system detected a
greater number of early gastric cancer cases in a shorter time than the endoscopists with a
significantly higher sensitivity of 58.4% versus 31.9%, respectively. Although the accuracy
of the system was slightly lower than that of the experts, and requires further training and
adjustments, it presents a promising tool to detect early cancer lesions.

Since AI is highly sensitive in image recognition, there can be misdiagnoses. To
improve the accuracy of the diagnosis for cancer versus non-cancer, several reports have
been published. In a study by Hirasawa et al., most of the misdiagnoses by AI were gastritis
diagnosed as gastric cancer mainly due to the high sensitivity of the AI [35]. Horiuchi et al.
established AI-aided magnifying endoscopy using NBI and demonstrated that gastritis
could be distinguished from gastric cancer with a correct diagnostic rate of 85.3% [63,64].
Another color-enhanced imaging modality, flexible spectral imaging color enhancement
(FICE) can also be used for the AI-aided detection of gastric cancer. Miyaki et al. used a
support vector machine, which includes machine learning with training and validation
images, and found that the system yielded a detection accuracy of 85.9%, a sensitivity
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of 84.8%, and a specificity of 87.0% [65]. Furthermore, for gastritis, the delineation of
cancerous regions can be challenging. Kanesaka et al. first reported the introduction of
AI for the diagnosis of gastric cancer [66]. The diagnosis by AI showed relatively good
results with a sensitivity of 65.5%, a specificity of 80.8%, and a correct diagnostic rate of
73.8%. Kubota et al. developed an AI for the diagnosis of the invasion depth using a neural
network and demonstrated accuracies of 77%, 49%, 51%, and 55% for T1, T2, T3, and T4
stages, respectively [67]. Zhu et al. also developed an AI for the diagnosis of the invasion
depth in gastric cancer. For the diagnosis, which can distinguish a depth of M, SM1, SM2,
or deeper, for all gastric cancers, including advanced stages, the sensitivity, specificity, and
accuracy for AI were 76.5%, 95.6%, and 89.1%, respectively, and for endoscopists, they were
87.8%, 63.3%, and 71.5%, respectively [68]. Yoon et al. reported an AI that could classify
early gastric cancer into intramucosal or submucosal cancers, with an area under the curve
(AUC) of 0.851 [69]. Furthermore, they found that the factor that contributed most to the AI
prediction of tumor depth was histologic differentiation. Undifferentiated-type histology
corresponded to a lower AI accuracy.

4.3. Helicobacter pylori Infection and Gastric Atrophy

Helicobacter pylori infection followed by gastric atrophy is an important cause of
gastric cancer [70]. Early diagnosis and management of H. pylori infection and gastric
atrophy is a key strategy to reduce gastric cancer-related death. However, the diagnosis
of H. pylori infection based on endoscopic findings remains a subjective process, which
greatly depends on the competence of the treating physician, and the accuracy of diagnosis
varies widely [71]. Shichijo et al. first developed an AI system for the diagnosis of
H. pylori-induced gastritis, using 32,208 white-light endoscopic images from 1768 patients
both H. pylori positive and negative for training [72]. Interestingly, the AI exceeded the
performance of the endoscopists to diagnose H. pylori infection. In addition, given that
the detection of H. pylori infection includes current infection and successful eradication
therapy (post-eradication), the authors [73] and another group [74] trained an AI system
with cases that included current infection, no infection, and post-eradication. These studies
demonstrated a similar diagnostic performance compared to that of endoscopists, with
a correct diagnostic rate of 84.2% for no infection, 82.5% for current infection, and 79.2%
for post-treatment resolution [74]. In a more recent study, Nakahira et al. developed a
unique AI system to evaluate the risk of gastric cancer [75]. The AI was trained on images
of high-risk (patients with gastric cancer), moderate-risk (patients with current or past
H. pylori infection or gastric atrophy), or low-risk (patients with no history of H. pylori
infection or gastric atrophy) patients. The trained system successfully stratified the risk of
cancer for the low-, moderate-, and high-risk patients, who were diagnosed by the AI as
having gastric cancer at 2.2%, 8.8%, and 16.4%, respectively.

4.4. Upper Gastrointestinal Bleeding

In addition to image analysis above, AI can be applied to big data analysis to predict
disease outcomes. For acute upper gastrointestinal bleeding, a systematic review by
Shung et al., which included 14 studies with 30 assessments of machine learning models,
revealed that AI performance was better than validated clinical risk scores to predict
mortality from upper gastrointestinal bleeding [76]. Then, the authors published an
excellent risk scoring system using machine learning models with a greater AUC, higher
levels of specificity, and a 100% sensitivity compared to the clinical risk scores [77].

4.5. Quality Control

Blind spots potentially exist, even if endoscopists intend to observe the entire stomach,
which is a cause of missed gastric cancer [78]. Wu et al. established a real-time quality
improvement system, named WISENSE (wise + sense), and conducted a randomized
controlled trial of 324 patients to confirm the comprehensiveness of the real-time imaging
for the entire stomach. The study findings indicated that the AI reduced imaging omissions
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by 15% [60,79]. Using a similar AI, Chen et al. conducted a randomized controlled trial
comparing six groups, including the presence or absence of sedation, normal-diameter or
small-diameter endoscope, and with or without AI. They reported that normal-diameter
endoscopy, with AI, and under sedation resulted in significantly fewer omissions [80]. An
AI system should be able to detect cancer even under less than ideal conditions because sub-
optimal conditions are quite common in daily medical practice, particularly in pharyngeal
areas. Normal images under such “real life” conditions are needed for AI training.

5. Gastrointestinal Stromal Tumor (GIST)

Large GISTs often show various findings on endoscopy and endoscopic ultrasonog-
raphy (EUS), which makes it challenging for clinicians to distinguish GISTs from other
submucosal tumors (SMTs). Minoda et al. reported the first study to evaluate the ability
of AI to diagnose SMTs by EUS images. The AI-aided EUS showed a good diagnostic
capability for large SMTs (≥20 mm) with a sensitivity of 91.7%, a specificity of 83.3%, and
an accuracy of 90.0%, which were better than those of the EUS experts, (50.0%, 83.3%, and
53.3%, respectively) [81]. The AUC of the AI-aided EUS for large SMTs was 0.965, which
was significantly higher than that of the EUS expert readers (0.684). In the future, with the
help of the AI-aided EUS, non-experts might be able to make a differential diagnosis of
GIST with the same or higher accuracy than that of EUS experts and without an invasive
sampling process.

6. Duodenal and Small Intestinal Lesions

Duodenal neoplasia is relatively rare and sometimes missed during upper gastroin-
testinal endoscopy. Inoue et al. pretrained an AI system (deep learning CNN) with many
cases of duodenal neoplasia (65 adenomas, 31 high-grade dysplasias) and showed that
the system could detect duodenal neoplasia (sensitivity 94.7%), although there were some
false positives (12.6%) probably due to a peristalsis-related raised fold [82]. The diagnostic
ability of video capsule endoscopy (VCE) for small intestinal lesions is as high as 63%,
which is superior to push endoscopy (single or double balloon endoscopy) [83]. VCE
produces large amounts of data (over 50,000 images), which require considerable time for
manual review by clinicians (30–120 min) [84,85]. Time-saving approaches are needed [86].
AI is a promising tool for this, and several studies have been performed and summarized
previously [87]. Small intestinal bleeds are the most frequent indication for the use of VCE.
Although commercially available reading systems include blood content enhancement
algorithms, referred to as “suspected blood indicators” (SBIs), the false positive rate is
still high at over 70% [88]. Xiao et al. and Hassan et al. developed AI algorithms for the
detection of bleeds with high sensitivity and specificity (99%) [23,89]. Aoki et al. also
developed a novel AI-based blood detection algorithm with high sensitivity, specificity,
and accuracy (96.6%, 99.9%, and 99.8%, respectively), which were significantly higher than
those of the SBI (76.9%, 99.8%, and 99.3%, respectively) [90]. They also showed the utility
of an AI-based system for various small intestinal lesions (erosion, ulcer, angioectasia,
and protruding lesions) in their multiple clinical studies [36,91,92] (Figure 3C). Hopefully,
these novel AI algorithms will reduce the reading time for clinicians in the near future [93].
However, there are some limitations for developing AI-aided VCE, since small intestinal
diseases are rather rare, and it is difficult to obtain sufficient large data sets for training.
In addition, the VCE images may contain many artifacts (dark and red) and other objects
(bile, food, air bubbles, etc.). There is a need for large collaborative databases to develop
more precise systems.

7. Colon Cancer and Polyps

Colorectal cancer is the second most lethal cancer worldwide [43]. The total removal
of colorectal adenomas by colonoscopy (clean colon) can reduce colorectal cancer deaths
by 53% [94]. It is well known that approximately 20–50% of colorectal polyps are over-
looked [95,96]. This incidence might be affected by the skill and fatigue of the endoscopist.
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Recent developments in deep learning algorithms have improved the detection sensitiv-
ity and specificity of AI-aided colonoscopy (in other words, computer-aided detection
(CADe)). Using a deep learning algorithm, Misawa et al. first reported real-time detection
for colon polyps, with a sensitivity of 90% and a specificity of 63.3% [97]. Urban et al.
improved the specificity to 93% with a sensitivity of 93% using a wider variety of images
(4088 unique polyps) for training [98]. In a more resent study, they demonstrated that
AI-aided colonoscopy trained by more images (56,668 images) detected polyps with a
higher sensitivity (98%) and an improved specificity (93%) using a novel publicly accessi-
ble video database (entitled SUN-database: http://amed8k.sundatabase.org/ (accessed
on 19 September 2021)) they established [99]. The first randomized, controlled trial was
conducted by Wang et al., in which a total of 1058 patients (536 standard colonoscopies
and 522 computer-aided colonoscopies) were included [100]. The AI-aided colonoscopy
significantly increased the adenoma detection rate (53% in the AI group versus 31% in
the control group). Recently, the same group conducted high-quality studies, including
a double-blind randomized trial with an AI–colonoscopy system compared to a sham
system, and demonstrated that the adenoma detection rate was significantly higher in
the AI-colonoscopy group (34%, 165/484) than in the sham group (28%, 132/478) [101].
The adenoma miss rate was significantly lower in the AI–colonoscopy group compared
to a routine colonoscopy (13.8% vs. 40.0%) [102]. They mentioned that the characteristic
profiles of the polyps initially missed by the endoscopist but identified by the AI system
were of small size, isochromatic, flat, and located behind the colon folds, as well as on the
edge of the visual field.

If optical colonoscopy is not possible, a colon capsule endoscopy or CT colonography
may be performed. In a clinical trial, Deding et al. found that the sensitivity of colon capsule
endoscopy (estimated location by AI) following an incomplete optical colonoscopy was su-
perior to CT colonoscopy, and the relative sensitivity of colon capsule endoscopy compared
with CT colonography was 2.67 for polyps >5 mm and 1.91 for polyps >9 mm [103].

To reduce unnecessary endoscopic resections and decrease complications and medical
costs, it is important to distinguish neoplasms from non-neoplasms. In the first prospective
clinical study in the field, Kominami et al. achieved high performance for a real-time
diagnosis by an AI-aided colonoscopy (in other words, computer-aided diagnosis (CADx)),
with a sensitivity of 93.3% and a specificity of 93.3% [104]. Tamami et al. demonstrated that
a computer-aided NBI colonoscopy correctly diagnosed T1b stage cancer with a sensitivity
of 83.9% and a specificity of 82.6%, which was better than a normal endoscopy [105]. Mori
et al. successfully proved the utility of AI-aided endocytoscopy, which is an ultra-high mag-
nification endoscopy that permits an in vivo assessment of cellular structure, in prospective
clinical trials. In their studies, the AI-aided endocytoscopy had a sensitivity of 92% and
an accuracy of 89.2%, which was quite similar to expert pathologists [106,107]. In a recent
multicenter study, Kudo et al. showed a much better performance (96.9% sensitivity, 100%
specificity, and 98% accuracy) of AI endocytoscopy trained using 69,142 endocytoscopic
images, taken at 520× magnification, from patients with colorectal polyps who underwent
endoscopy at five academic centers [108]. These tremendous efforts by endoscopists and
engineers have resulted in a powerful basis for the development of AI-assisted devices,
and several AI-aided endoscopic systems have been approved by the FDA and the EU
(Table 1). Using AI-aided devices, endoscopists can begin an endoscopic exam immedi-
ately by connecting the endoscope to a terminal and monitor equipped with the software.
Moreover, a prototype of a novel AI including a colonoscope, which has two lenses, a 160◦

to 240◦ angle lateral-backward-view lens and a standard 160◦-angle forward-view lens,
was published with videos included [109].

Depth prediction for colon cancer is another issue in a colonoscopy diagnosis. Takeda et al.
demonstrated that AI endocytoscopy correctly diagnosed invasive colorectal cancer with
a sensitivity of 98.1% and a specificity of 100% [110]. Chen et al. used EUS with AI for
predicting tumor deposits with a higher AUC than that obtained by magnetic resonance
imaging (MRI) [111]. Recently, Kudo et al. established an AI prediction system using

http://amed8k.sundatabase.org/
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patient’s data (age, sex, tumor size, morphology, lymphatic and vascular invasion, and his-
tology), demonstrating that the AI system identified patients with lymph node metastases
of T1 colon cancer better than the United States guidelines (AUC 0.83 vs. 0.73) [112]. They
mentioned that these prediction models might be used to determine which patients require
additional surgery after endoscopic resection of T1 colon cancer.

8. Inflammatory Bowel Disease

The incidence of inflammatory bowel disease (IBD), represented by Crohn’s disease
(CD) and ulcerative colitis (UC), is increasing throughout the world, but its pathogene-
sis remains unclear [113–116]. Recent studies have indicated that IBD is a multifactorial
immune-mediated disease resulting from a complex interplay between host genetic, en-
vironmental, and resident microbial factors [115,117–119]. To explore the pathogenesis,
big data analysis by AI, such as pathological elucidation and biomarker identification, is
ongoing and summarized in another review [120]. Using AI data analysis, Waljee et al.
predicted remission in patients with moderate-to-severe CD with an AUC of 0.78 at week
8 and an AUC of 0.76 at week 6 [121]. Wang et al. applied AI to predict medication
non-adherence in CD patients [122].

An endoscopic assessment of inflammation in IBD may vary among endoscopists
depending on their level of experience. Several AI-aided UC scoring algorithms trained by
unbiased UC imaging data that were linked to histological data demonstrated excellent
performances in distinguishing endoscopic remission (Mayo 0–1) from moderate-to-severe
disease (Mayo 2–3) [123–125]. Even Mayo 1 level mucosa has very mild inflammation.
Ozawa et al. focused on distinguishing Mayo 0 from 0–1 and showed a high level perfor-
mance of AI-aided diagnosis with an AUC of 0.86 and 0.98 for Mayo 0 and 0–1, respec-
tively [126]. In a more resent prospective study, Takenaka et al. trained an AI algorithm
with 40,758 images of colonoscopies and 6885 biopsy results from 2012 UC patients and
showed that the system identified endoscopic remission with 90.1% accuracy and histologic
remission with 92.9% accuracy [127]. Another approach using endocytoscopy with AI was
reported by Maeda et al. [128]. As indicated above, using capsule endoscopy, Kumar et al.
reported the first AI-aided diagnostic system for CD lesions with various levels of severity,
which resulted in a high sensitivity of over 90% and a high specificity of over 90% [86].
Charisis et al. reported an improved algorithm for capsule endoscopy to detect CD lesions
with a sensitivity of 95.2%, a specificity of 92.4%, and an accuracy of 93.8% [129]. In a more
recent study, Klang et al. employed a deep learning algorithm with more training images
for detecting CD lesions by AI-aided capsule endoscopy and demonstrated excellent per-
formance with an AUC of 0.99 and an accuracy of 95.4–96.7% [130]. CT and MRI images
are necessary to determine the disease activity in IBD. Although it is challenging for AI to
recognize the intestinal wall structure on CT and MRI, semi-automated AI-aided systems
have been reported and summarized previously [131,132].

UC-associated dysplasia and cancer are often difficult to detect. A recent case report
suggested the usefulness of AI-based colonoscopy for the detection of dysplasia in patients
with longstanding UC [133].

9. Irritable Bowel Syndrome (IBS)

The prevalence of IBS is estimated at 10–20% worldwide [134]. A few AI-related stud-
ies for IBS have been published. Most patients with IBS identify certain foods as triggers
for their symptom flare-ups. There are two unique smartphone applications for identifying
potential trigger foods. Using photos of food from the mobile applications, Chung et al.
developed a personal informatics system, which allows patient–provider collaboration and
supports precise individual management [135]. Zia et al. designed an application using an
AI algorithm based on regression analyses to identify possible relationships between foods
and IBS symptoms. Their two-week study featured assessments of symptoms four times a
day and at every meal using a 100-point graded sliding scale [136]. These AI-aided mobile
applications tether patients directly to clinicians by capturing frequent and continuous
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data from patients, and providing individual precision feedback from clinicians to patients.
This direct interaction is an advantage of AI and will change health care strategies.

In IBS, gut microbiota is likely linked to its symptoms and pathogenesis [137]. Fukui
et al. established a unique AI prediction model for identifying IBS patients based on gut
microbiota (sensitivity >80% and specificity >90%) [138].

10. Liver Diseases

This section reviews AI-aided image analyses for diagnosing liver masses. In addition,
many data analysis studies using AI algorithms have been conducted to predict patients’
outcomes and to discover biomarkers.

10.1. Liver Masses

The risk factors for hepatocellular carcinoma (HCC), such as obesity, type 2 diabetes,
and nonalcoholic fatty liver disease, are replacing viral- and alcohol-related liver dis-
ease [139]. With an increase in metabolic disorders, liver cancer is steadily growing and is
the third leading cause of cancer-related death [43,140,141].

The detection and diagnosis of liver masses is performed by ultrasonography, CT, and
MRI, and AI has been developed for hepatic mass identification. Yasaka et al. employed
an AI-aided enhanced CT, which resulted in high performance (AUC = 0.92) in differen-
tiating malignant liver masses (HCCs and other malignant masses) from benign tumors
(hemangiomas) or cysts [142]. An AI-aided, multi-phasic MRI developed by Hamm et al.
demonstrated higher performance than two radiologists for the detection of six common
liver masses (HCC, cyst, hemangioma, focal nodular hyperplasia (FNH) intra-hepatic
cholangiocarcinoma, and metastatic tumor) with a sensitivity of 90% vs. 80%/85% and
a specificity of 98% vs. 96%/96% [143]. In particular for HCC, the AI had a sensitivity
of 90%, compared to 60%/70% from the radiologists. Furthermore, the AI processing
speed was extremely fast at 5.6 ms. These results are promising, and the FDA recently
approved a liver AI for liver lesion detection by AI-aided MRI and CT (Table 1). It is
difficult to develop AI-aided ultrasonography because of several technical issues, which
include variability in the data formats and investigator skill level, and, as such, the quality
of an ultrasonographic image is highly operator dependent. Although the conditions of
examination directly affect the quality of ultrasonographic images, several positive results
have been reported and summarized [144]. Schmauch et al. showed that AI-aided ultra-
sonography detected and diagnosed liver masses (HCC, hemangioma, metastasis, cysts,
and FNH) with high performances (AUC 0.935 and 0.916, respectively) [37] (Figure 3D).
Enhanced ultrasonography [145] for AI-aided EUS also demonstrated the capability of an
EUS-CNN model to autonomously identify liver masses and to accurately classify them as
either malignant or benign lesions [146]. AI development in the field of ultrasonography
has challenges, including a high dependence on operator experience for acquiring quality
imaging data, numerous different equipment vendors and models, multiple image qual-
ity parameters, and a high diversity of images and hurdles in database construction. In
particular, ultrasound waves require high-speed processing. For histopathology, Sun et al.
reported the first paper showing a method to classify liver cancer histopathological images
using AI [147].

To screen high-risk patients for the development of HCC from patients with cirrhosis,
Singal et al. used an AI algorithm and reported good performance [148]. Another important
clinical issue for HCC patient management is to identify patients at high risk for post-
treatment recurrence. To predict post-operative recurrence, Feng et al. used an AI-aided
contrast-enhanced MRI and reported an AUC of 0.83, a sensitivity of 90%, a specificity of
75%, and an accuracy rate of 84% compared to radiologists with an AUC of 0.47–0.57, a
sensitivity of 19.3–45.2%, a specificity of 67.3–83.7%, and an accuracy rate of 58.8% [149].
Abajian et al. also showed the utility of AI combined with MRI and patient data [150].
For a similar purpose, Saillard et al. used histopathology images and highlighted the
importance of pathologist–AI interactions in the construction of deep-learning algorithms,
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which benefit from expert knowledge [151]. It was superior to the existing prognostic
factors. Factors reflecting a poor prognosis include the presence of vascular space in the
tumor and a cord-like shape. AI ultrasonography can also be used for the prediction
of response to transcatheter arterial chemoembolization (TACE) and the prediction of
post-radiofrequency ablation (RFA) and post-operation survival [152,153].

10.2. Nonalcoholic Fatty Liver Disease (NAFLD)

With the increase in systemic metabolic diseases (obesity, diabetes, hyperlipidemia,
etc.), the incidence of NAFLD is also increasing worldwide [154]. Since NAFLD-derived
HCC is increasing, the early detection of NAFLD is critical to avoid future carcinogenesis.
Recently, deep learning algorithms, such as CNNs, have improved the detection of fatty
liver disease by ultrasonography [155,156]. Fibrosis is an advanced stage of liver steatosis
and the most important risk factor for carcinogenesis. The gold standard for the diagnosis
of fibrosis is a liver biopsy, which is invasive and costly [157,158]. The systematic review by
Decharatanachart et al. suggested that AI-aided systems (ultrasonography, elastography,
CT, and MRI) have promising potential for the diagnosis of liver steatosis and fibrosis
with an overall sensitivity of 97% and a specificity of 91% [159]. Elastography is currently
the most commonly used modality for staging liver fibrosis [160], and two papers have
demonstrated the utility of AI-aided elastography to detect liver fibrosis [161,162]. Gatos
et al. designed an AI-aided shear-wave elastography based on a support vector machine
model to discriminate chronic liver disease patients (fibrosis) from healthy individuals
with a sensitivity of 93.5%, a specificity of 81.2%, an accuracy of 87.3%, and an AUC of
0.87 [162]. Wang et al. applied deep learning to shear wave elastography and compared the
AI elastography to a liver biopsy [161]. The AI elastography similarly diagnosed cirrhosis
(AUC 0.97) and advanced fibrosis (AUC 0.98).

Other AI approaches using clinical and laboratory variables routinely measured in
clinical practice have been developed [163]. Using serial laboratory data over a person’s
timeline, AI analysis can provide a better understanding of a multitude of mechanisms and
relationship of risk factors and symptoms. Furthermore, the risk assessment of NAFLD by
AI algorithms using serial laboratory variables over a person’s timeline should improve a
physician’s management and a patient’s motivation. There are many algorithms challenged
in medical AI fields [164], and choosing the best algorithm is an important issue for data
analysis by AI. Ma et al. used the Bayesian network model and showed better performance
in diagnosing NAFLD based on clinical data than that of logistic regression [165]. Sowa
et al. suggested that random forest and decision tree are better than a support vector
machine for the separation of NAFLD from alcoholic liver disease [166].

10.3. Viral Hepatitis

Viral hepatitis (B and C) is still recognized as a major cause of liver cirrhosis and
carcinogenesis worldwide, particularly in developing countries. Several AI-based models
have been developed to predict the risk of hepatitis-related cirrhosis [167–171]. More
recently, a unique prediction model using gut microbiome data was published [172]. Oh
et al. used a random forest-based AI algorithm with differential abundance analysis to
profile the gut microbiota and metabolites and detect cirrhosis with an AUC of 0.91.

10.4. Primary Sclerosing Cholangitis (PSC)

PSC lacks effective medical treatments and occasionally requires a liver transplant
due to advanced fibrosis [173]. Moreover, PSC is a premalignant condition and is as-
sociated with bile duct cancer at an incidence of 10–30% [173]. Eaton et al. developed
an AI-based prediction model, called the Primary Sclerosing Cholangitis Risk Estimate
Tool (PREsTo), and demonstrated that the model accurately predicts liver failure in PSC
patients, which exceeded the performance of other established, noninvasive prognostic
scoring systems [174].
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10.5. Liver Transplantation

Liver transplantation offers an excellent outcome for several end-stage liver disor-
ders. However, challenges remain, such as insufficient donors, high mortality on the
waiting list, and graft failures. Regarding the discrepancy between the number of donors
and the number of recipients, the appropriate organ allocation should be performed to
avoid human bias. The current allocations are based on widely used scoring systems,
such as the model for end-stage liver disease (MELD) score, the Delta-MELD score, and
the balance-of-risk score, and may yield conflicting results [175,176]. Some AI-based,
donor–recipient matching models have been developed [177,178]. Graft failure is the most
common problem after liver transplantation. AI-based algorithms developed by Lau et al.
using donor, transplant and recipient characteristics predicted graft failure with a high
AUC of 0.818 [179]. To identify novel factors associated with death after transplantation,
AI has been applied [180,181]. Using a machine learning approach, Bhat et al. found that
new-onset or preexisting diabetes was associated with high mortality [180].

11. Pancreatic Disease

This section reviews AI-aided image and data analyses for the diagnosis of pancreatic disease.

11.1. Pancreatic Cancer

Pancreatic cancer is the seventh most lethal cancer worldwide [43,182]. Tumor size
is the most prognostic factor in pancreatic cancer [183]. The five-year survival of patients
with lesions smaller than 10 mm (TS1a) is more than 80%, while the five-year survival of
patients with larger lesions (>10 mm) is less than 50% [184]. The challenges for pancreatic
ductal cancer include a lack of definition in the high-risk group and difficulty in early
detection by imaging. Pereira et al. nicely summarized the literature regarding early
detection by AI technology [185]. Although abdominal CT is commonly used for screening
pancreatic cancer, the detection sensitivity is not high for small lesions [186,187]. To resolve
this issue, Liu et al. first trained an AI algorithm with 436 CT images, including 300 normal
cases and 136 pancreatic cancer cases [188]. The AI system achieved a sensitivity of
80.2% with a specificity of 90.2%, which may be improved by a larger number of training
images. Alternatively, EUS is a more powerful modality to detect small lesions in the
pancreas [187,189]. Tonozuka et al. published a pilot study using video to detect pancreatic
ductal cancer by AI-based EUS [190]. The system was trained with 920 images of cancers
as well as control images from patients with chronic pancreatitis and those with a normal
pancreas and, subsequently, validated with an additional 470 test images. The system
diagnosed cancers successfully with an AUC of 0.94. To differentiate between cancer and
non-cancer (chronic pancreatitis and a normal pancreas), several algorithms have been
applied since the first report using a simple conventional algorithm by Norton et al., and
three recent reports have used deep learning algorithms [191].

The identification of high-risk individuals is another important factor for the early
detection of pancreatic cancer [185]. Using AI methodologies and the National Health
Insurance Research Database of Taiwan (total 1,358,634 patients), Hsieh et al. developed
the first prediction models for pancreatic cancer in patients with type 2 diabetes [192].
They demonstrated that a logistic regression algorithm predicted pancreatic cancer more
accurately (AUC of 0.727) than an artificial neural network algorithm, although several
researchers have reported that artificial neural networks are suitable to predict some
diseases [193]. Further investigations are necessary to identify the most suitable model.

11.2. Intraductal Papillary Mucinous Neoplasm (IPMN)

Pancreatic cystic lesions, particularly IPMN, are the precursors of pancreatic can-
cer [194]. Kuwahara et al. successfully established an AI-aided EUS using deep learning to
distinguish malignant IPMNs from benign ones [195]. The AI-aided EUS could diagnose
malignant probability with a high sensitivity of 95.7% and a high accuracy of 94.0%, which
was much greater than that of experts’ diagnoses (56.0%). AI-aided diagnosis is under
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development not only for IPMNs but also for other cystic lesions of the pancreas, such as
serous cystic neoplasms, mucinous cystic neoplasms, solid pseudopapillary neoplasms,
and cystic pancreatic neuroendocrine neoplasms [196].

11.3. Autoimmune Pancreatitis (AIP)

Mass-forming AIP may be misdiagnosed as pancreatic cancer and unnecessary sur-
gical resections can occur. Marya et al. demonstrated that an AI-aided EUS accurately
differentiated AIP from pancreatic ductal adenocarcinoma and benign pancreatic condi-
tions, thereby permitting an earlier and more accurate diagnosis [197]. The use of this
model offers the potential for more timely and appropriate patient care and an improved
outcome.

12. Future Needs and Conclusions

AI technologies in the medical field hold tremendous promise, although systematic
reviews have not provided sufficient evidence that AI outperforms physicians [198]. Several
AI-aided devices are commercially available (Table 1), and for future use, multiple studies
are on-going in promising areas, such as the identification of anatomical structures and
lesions during endoscopic ultrasound, robotic endoscopic surgery, and mobile application.
However, there are potential pitfalls, including technical and legal issues [199]. To improve
the accuracy of AI diagnosis, more data, including imaging and clinical data, are required to
train AI systems. The training data should be collected not only from patients with disease
but also from healthy individuals, because larger databases will increase the specificity
of the AI system. Particularly for rare diseases, international multicenter projects and
open-source libraries, such as ImageNet and cloud net systems [135,136,200], are ideal
to provide sufficient training data. However, another issue involves ‘data formatting’
such that different institutions/software may have different data formats. Standardization
is critical for future AI developments. To resolve these issues, clinicians need to better
understand AI technologies through reading AI-related articles and through collaboration
with AI engineers. Even with a large amount of training data, the performance of a
particular AI system changes with each training step (annotation, selection of algorithm,
selection of data set, etc.), and the addition of inappropriate data will adversely affect
performance. Moreover, even in situations where sufficient high-quality training data are
used, “overfitting” may occur. To design precise AI systems, we must validate the systems
in real-world situations [104,201,202].

In conclusion, there is little doubt that AI technology will benefit almost all medical
personnel, ranging from specialty physicians to paramedics, in the future [7]. Furthermore,
patients should benefit from AI technology directly via mobile applications [135,136].
Physicians should collaborate with the different stakeholders within the AI ecosystem
to provide ethical, practical, user-friendly, and cost-effective solutions that reduce the
gap between research settings and applications in clinical practice. Collaborations with
regulators, patient advocates, AI companies, technology giants, and venture capitalists will
help move the field forward.
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