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Abstract: Bladder cancer has been increasing globally. Urinary cytology is considered a major
screening method for bladder cancer, but it has poor sensitivity. This study aimed to utilize clinical
laboratory data and machine learning methods to build predictive models of bladder cancer. A
total of 1336 patients with cystitis, bladder cancer, kidney cancer, uterus cancer, and prostate cancer
were enrolled in this study. Two-step feature selection combined with WEKA and forward selection
was performed. Furthermore, five machine learning models, including decision tree, random forest,
support vector machine, extreme gradient boosting (XGBoost), and light gradient boosting machine
(GBM) were applied. Features, including calcium, alkaline phosphatase (ALP), albumin, urine ketone,
urine occult blood, creatinine, alanine aminotransferase (ALT), and diabetes were selected. The
lightGBM model obtained an accuracy of 84.8% to 86.9%, a sensitivity 84% to 87.8%, a specificity of
82.9% to 86.7%, and an area under the curve (AUC) of 0.88 to 0.92 in discriminating bladder cancer
from cystitis and other cancers. Our study provides a demonstration of utilizing clinical laboratory
data to predict bladder cancer.

Keywords: machine learning; bladder cancer; feature selection; clinical laboratory data

1. Introduction

Bladder cancer has been noted as the 10th most common cancer in the world [1]. The
incidence of bladder cancer is rising globally, especially in developed countries, such as
U.S.A, Germany, and Taiwan; according to GLOBOCAN, 573,278 new cases of bladder
cancer and 212,536 new deaths [2]. Furthermore, bladder cancer is observed in men more
than in women, with respective incidence and mortality rates of 9.5 and 3.3 per 100,000
among men, which are four times those among women globally [2]. Moreover, smoking
is considered the major risk factor in patients with bladder cancer [3]. The gold standard
procedure for diagnosing bladder cancer is cystoscopy, with a sensitivity 88–100% and
specificity 77.1–97% [4]. Currently, urinary cytology is considered a major non-invasive
method to diagnose bladder cancer with high specificity, but only 38% sensitivity [5].
Therefore, a screening method with high sensitivity and high specificity is urgently needed
for the diagnosis of bladder cancer.

Clinical chemistry tests and urinalysis are the major diagnostic screening test in the
clinical laboratory [6]. The alteration of each test can be interpreted as a relationship with
diseases; for instance, aspartate aminotransferase (AST) and alanine aminotransferase
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(ALT) are the enzymes from liver, pancreas, and kidneys [7]. Furthermore, an increased
level of AST and ALT is used in the diagnosis of liver disease; however, it is also related
to the damage of other organs [7]. Large amounts of alkaline phosphatase (ALP) can be
found in liver, bone, intestine, and placenta; while, ALP can be considered an indicator of
bone formation [8]. In addition, the analysis of isoenzymes of ALP is an aid in diagnosing
bone and liver disease [9]. Studies indicated that ALP may be related to diseases such as
chronic kidney disease [10], rheumatoid disease [11], malignant disease [12], and prostate
cancer [13]. The physiological meaning of the alteration in ions, such as potassium ions,
sodium ions, calcium ions, and chloride, is complicated. Studies indicated that the alter-
ation of sodium ions and calcium ions may be related to hypertension [14], alkalosis [15],
cancers [16], and multiple sclerosis [17]. The serum level of albumin can be considered the
sum of synthesis, degradation, and distribution [18]. In addition, albumin in the blood
exhibits many biological functions, including transport of endogenous and exogenous
compounds, modulation of capillary permeability, neutrophil homeostasis, and free radical
scavenging [19]. The alteration of serum albumin level has been found to be correlated with
coronary heart disease [20], bowel disease [21], and liver disease [19]. Whereas the urine
albumin has been reported to be associated with chronic kidney disease [22] and heart
disease [23]. Creatinine is the amino acid compound from creatine and is released into the
blood mainly from muscles; meanwhile, the creatinine in the blood is released constantly
and filtered by glomerulus in the kidney [24]. Furthermore, the creatinine in blood can be
used to calculate the glomerular filtration rate, to evaluate the function of the kidney [25].
Therefore, the alteration of creatinine in the blood may be related to muscle disease and
kidney disease [26]. A complete urinalysis consists of color, clarity, specific gravity, and
chemical analyses, as well as examination of urine sediment [27]. A chemical analysis is
usually conducted to examine pH, glucose, ketones, occult blood, bilirubin, and protein
with dipstrip systems [28]. Aberrant results in chemical analysis can occur in certain dis-
eases; for instance, ketonuria can be found in the urine from patients with diabetes; while,
hematuria indicates bleeding within the urinary tract [29]. Moreover, the examination of
urine sediment may be found with crystal, erythrocytes, leukocytes, bacteria, and casts,
which provide information about the urinary tract system [30]. However, interpreting
clinical tests individually may cause a misleading diagnosis [31]. The laboratory test results
can be interpreted with experienced clinicians, but it can also be integrated and interpreted
with artificial intelligence (AI), such as machine learning algorithms [32].

Machine learning is a type of AI whereby computers independently learn from data,
without human intervention [33]. Furthermore, machine learning has different methods
to approach the learning process [34]. Various machine learning algorithms have been
frequently used in medical studies. Tree based models, such as decision tree, random
forest, extreme gradient boosting (XGBoost), and light gradient boosting machine (GBM)
have been frequently used in medical studies [35–37]. Moreover, support vector machine
has been considered an alternative approach for managing clinical data [38]. Recently,
many studies in machine learning applications have been introduced into clinical practice.
Machine learning has become a powerful tool for improving diagnostic and prognostic
accuracy in cancer, with various kinds of data; for instance, Cai et al. exploited genomic
data to create a panel of 16 DNA methylation markers and combined them with random
forest to provide a classification power with an accuracy of 86.54% in classifying lung
cancer [39]. Routine clinical and laboratory data were used to establish machine learning
models to identify lung cancer in an early stage [40]. An elegant study from Obaid et al.
demonstrated the potential of integrating image data with machine learning to diagnose
breast cancer and received an accuracy of 98.1% [41]. As for bladder cancer, Garapati
et al. built an objective computer-aided system to identify the stage of bladder cancer with
CT urography [42]. Additionally, machine learning was also applied to metabolomics to
recognize early and late stages of bladder cancer [43]. However, we found that no study
has applied machine learning with clinical laboratory data for improving the diagnostic
accuracy of patients with bladder cancer.
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Herein, we collected clinical laboratory data, including biochemistry tests and urinaly-
sis from 1336 patients with cystitis, bladder cancer, and other types of cancer in Mackay
Memorial Hospital. We combined sampling techniques and two-step feature selection to
exploit the clinical laboratory dataset. Furthermore, five different machine learning models
were trained and validated with the selected dataset. Moreover, the accuracy, precision, f1
score, sensitivity, specificity, and area under the area of receiving operating characteristic
curve (AUC) were calculated to evaluate the model performance.

2. Materials and Methods
2.1. Patient Cohort

We collected clinical laboratory test data from 144 patients with cystitis (56 female
and 88 male patients, aged 60.12 ± 11.99), 200 patients with kidney cancer (62 female and
138 male patients, aged 63.41 ± 10.45), 201 patients with prostate cancer (201 male patients,
aged 71.83 ± 6.42), 591 patients with bladder cancer (205 female and 386 male patients, aged
66.73 ± 9.4), and 200 patients with uterus cancer (200 female patients, aged 60.86 ± 10.26) in
Mackay Memorial Hospital from January 2017 to February 2020. Patients with cancers were
diagnosed by clinician and confirmed via pathological report. MacKay Memorial Hospital
Institutional Review Board approved the study protocol (20MMHIS200e (8 July 2020)).

2.2. Statistical Analysis

Description analyses were performed with SPSS 19.0 (IBM, Chicago, IL, USA). Con-
tinuous variables are presented as mean ± SD or median (25th and 75th percentile). The
categorical variables are presented as number and percentage. The clinical laboratory test
and characteristics were compared with a t-test or Mann–Whitney U test for continuous
variables and chi-square test for categorical variables.

2.3. Data Processing

We collected clinical laboratory data with 56 laboratory tests results. The laboratory
test results with more than 50% of missing data were removed. After that, we received
31 laboratory test results with missing rate, varying between 0 to 44.1% (Table 1). The
missing data was filled with the mean value for continuous value and median value for
categorical value from each feature in the whole data. Features that were missing in the
data in certain classifications were avoided in the feature selecting, model training, and
validating. For instance, A/G ratio and urine epithelium was not included while discrimi-
nating cystitis from other cancers. The oversampling and undersampling techniques from
imblearn v0.0 package were used for the problem of imbalanced data [44].

2.4. Feature Selection and Machine Learning

We used an InfoGainAttributeEval (InfoGain) + Ranker method with default parame-
ters to perform feature selection with WEKA (vers. 3.8.3) (Table 2). Furthermore, optimized
models were used to conduct a forward selection, as mentioned in a previous study [45].
The models we built in this study were based on decision tree (DT), random forest (RF),
support vector machine (SVM), XGBoost, and lightGBM, with 10-fold cross validation
with scikit-learn (vers. 0.21.3). The parameters were tuned before the experiments. For
DT, the initial value of tree depth was set from 1–10, with a step of 1. The kernel of the
model was set to entropy or gini. For RF, the initial value of the tree number was set at
100 and increased by 100 until 500. The kernel of model was set to gini or entropy. For
SVM, the initial value of gamma was set from 10-6 to 10-10, with a step of 0.1. The initial
value of C was set from 10-6 to 10-7 with a step of 10. The kernel of SVM was set to RBF.
For XGBoost, the initial value of eta was from 0.01 to 0.2, with a step of 0.05. The initial
value of depth was set from 1 to 10, with a step of 1. As for lightGBM, the initial value of
leaves was set from 50 to 400, with a step of 50. The initial value of depth was set from 1
to 10, with a step of 1. The parameters of the machine learning were tuned via training
and validating with the whole dataset. The parameters that obtained the highest accuracy
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were selected (Table 2). A confusion matrix was used in this study to calculate the accuracy,
precision, sensitivity, specificity, and f1 score (Table 3). The value of AUC was calculated
from scikit-learn (vers. 0.21.3).

Table 1. The missing data rate in the clinical laboratory data.

Feature Data Type Missing Data Missing Data (%)

A/G Ratio Continuous 0.441 44.1
Albumin Continuous 0.224 22.4

ALP Continuous 0.378 37.8
ALT Continuous 0.068 6.8
AST Continuous 0.046 4.6
BUN Continuous 0.018 1.8

Calcium Continuous 0.428 42.8
Chloride Continuous 0.084 8.4

Creatinine Continuous 0.005 0.5
Direct Bilirubin Continuous 0.303 30.3
Estimated GFR Continuous 0.008 0.8

Glucose AC Continuous 0.038 3.8
Nitrite Categorical 0.026 2.6

Urine occult Blood Categorical 0.026 2.6
pH Continuous 0.026 2.6

Potassium Continuous 0.035 3.5
Sodium Continuous 0.037 3.7

Specific Gravity Continuous 0.026 2.6
Strip WBC Continuous 0.16 16

Total Bilirubin Continuous 0.216 21.6
Total Cholesterol Continuous 0.19 19

Total Protein Continuous 0.285 28.5
Triglyceride Continuous 0.204 20.4

Urine epitheilum (UL) Continuous 0.43 43
Urine epithelium count Continuous 0.02 2

Uric acid Continuous 0.15 15
Urine Bilirubin Categorical 0.026 2.6
Urine Glucose Categorical 0.16 16
Urine Ketone Categorical 0.16 16
Urine Protein Categorical 0.026 2.6
Urobilinogen Categorical 0.026 2.6

A/G Ratio: albumin globulin ratio. BUN: blood urea nitrogen.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

FP + TN
(4)

f1 score =
2

1
precision + 1

sensitivity
(5)
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Table 2. The parameters of machine learning and feature selection.

Algorithm Name Parameter Name Parameter Value

InfoGainAttributeEval
binarizeNumericAttributes False

doNotCheckCapabilities False
missingMerge True

Ranker
generateRanking True

numToSelect −1

Decision tree
criterion of tree gini

depth of tree 4

Random forest
criterion of tree gini

estimators 300

SVM
kernel rbf

C value 1000
gamma 0.000001

XGBoost
eta 0.2

depth of tree 7

LightGBM number of leaf 100
depth of tree 1

Table 3. The confusion matrix for evaluation of model performance.

Patients

Bladder Cancer Cystitis

Prediction
bladder cancer true positive, TP false positive, FP

cystitis false negative, FN true negative, TN

3. Results
3.1. Clinical Characterisitcs and Clincal Laboratory Data from Patients

The differences in demographics, baseline characteristics, and laboratory data between
healthy groups and other cancers are summarized in Table 4. We found that albumin,
ALP, BUN, chloride, creatinine, direct bilirubin, eGFR, pH, potassium, total protein, nitrite,
strip WBC, and urine occult blood were significantly different in patients with kidney
cancer compared to patients with cystitis. Furthermore, we discovered that ALP, AST,
BUN, calcium, creatinine, sodium, urine epithelium counts, and urine occult blood had
significant differences in patients with prostate cancer compared to patients with cystitis.
As for bladder cancer, the statistical results shown that ALP, BUN, calcium, chloride,
creatinine, direct bilirubin, eGFR, glucose, specific gravity, total protein, and uric acid
were significantly different compared to patients with cystitis. Lastly, ALP, BUN, calcium,
chloride, creatinine, eGFR, glucose, potassium, sodium, urine epithelium count, urine
protein, urobilinogen, and urine occult blood were significantly different between patients
with uterus cancer and patients with cystitis.

Table 4. Comparison of clinical characteristics and clinical laboratory data between patients with
cystitis and patients with other cancers.

Cystitis Kidney Cancer Prostate Cancer Bladder Cancer Uterus Cancer
n = 144 n = 200 n = 201 n = 591 n = 200

age 60.12 ± 11.99 63.41 ± 10.45 ** 71.83 ± 6.42 ** 66.73 ± 9.4 ** 60.86 ± 10.26
sex 88 (61.1%) 138 (69%) 201 (100%) ** 386 (65.3%) 0 **

hypertension 34 (23.7%) 72 (36%) * 66 (32.8%) 173 (29.3%) 22 (11%) *
diabetes 20 (13.9%) 46 (23%) * 33 (16.4%) 93 (15.7%) 8 (4%) **
smoking 18 (12.5%) 51 (25.5%) * 47 (23.4%) * 138 (23.4%) * 9 (4.5%) *
drinking 23 (16%) 41 (20.5%) 64 (31.8%) ** 118 (20%) 17 (8.5%) **

beetle nuts 2 (1.4%) 3 (1.5%) 3 (1.5%) 20 (3.4%) 1 (0.5%)
family history 1 (0.7%) 7 (3.5%) 5 (2.5%) 12 (2%) 7 (3.5%)
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Table 4. Cont.

Cystitis Kidney Cancer Prostate Cancer Bladder Cancer Uterus Cancer
n = 144 n = 200 n = 201 n = 591 n = 200

A/G Ratio - 1.75 ± 0.4 1.07 ± 0.46 1.61 ± 0.47 1.64 ± 0.38
Albumin 3.96 ± 0.64 4.27 ± 0.57 ** 4 ± 0.68 4 ± 0.68 4.15 ± 0.58 *

ALP 71 (55, 91) 66 (52, 79) ** 66 (60, 72) ** 69 (55, 90) ** 65.5 (53, 79)
ALT 30.12 ± 42.66 31.46 ± 35.99 29.94 ± 32.49 27.45 ± 31.9 25.65 ± 28.02
AST 28.31 ± 32.07 30.56 ± 29.51 43.13 ± 74.83 * 40.65 ± 293.66 29.33 ± 53.46
BUN 14 (11, 21) 16 (12, 21) ** 17 (13, 22.9) * 16 (12, 26) ** 12 (9, 16.85) *

Calcium 9 (8.5, 9.4) 9.3 (8.85, 9.6) 8.895 (8.3, 9.4) ** 9 (8.5, 9.4) ** 9.2 (8.65, 9.65) **
Chloride 105.2 (103, 107.5) 105 (103, 107) * 105 (102.075, 107.225) 105 (102, 108) * 106 (104, 108) **

Creatinine 0.9 (0.7, 1.2) 1.1 (0.9, 1.5) ** 1 (0.9, 1.2) * 1.1 (0.8, 1.5) ** 0.7 (0.6, 0.8) **
Direct Bilirubin 0.11 (0.1, 0.2) 0.1 (0.1, 0.2) ** 0.2 (0.1, 0.2) 0.1 (0.1, 0.2) * 0.1 (0.1, 0.18)
Estimated GFR 75.38 ± 33.22 62.68 ± 32.54 ** 71.92 ± 27.16 64.13 ± 34 ** 91.57 ± 28.86 **

Glucose AC 120.65 ± 47.39 123.11 ± 41.14 129.36 ± 56.6 124.83 ± 93.83 109.57 ± 26.12 *
pH 6.24 ± 0.89 6.03 ± 0.74 * 6.09 ± 0.85 6.26 ± 0.86 6.12 ± 0.71

Potassium 3.92 ± 0.5 4.14 ± 0.52 ** 4.02 ± 0.48 4.12 ± 0.61 ** 4.06 ± 0.46 **
Sodium 139 (137, 141) 139 (137, 140.775) 138 (136, 140) * 139 (137, 140.8) 139 (138.5, 141) **

Specific Gravity 1.016 (1.012, 1.021) 1.017 (1.013, 1.021) 1.017 (1.011, 1.022) 1.014 (1.01, 1.0195) * 1.016 (1.011, 1.021)
Total Bilirubin 0.9 ± 0.49 0.84 ± 0.31 1.08 ± 1.25 1.04 ± 1.93 0.81 ± 0.68

Total Cholesterol 190.15 ± 49.57 182.2 ± 42.36 189.88 ± 45.34 183.76 ± 44.58 200.1 ± 50.31
Total Protein 6.6 (6.0625, 7) 6.9 (6.55, 7.2) ** 6.7 (6, 7.1) 6.7 (6.1, 7.1325) ** 6.9 (6.3, 7.3)
Triglyceride 143.47 ± 88.07 141.88 ± 170.99 142.3 ± 89.64 131.97 ± 91.15 133.65 ± 141.94

Uric acid 5.82 ± 1.83 6.1 ± 1.64 6.36 ± 2.61 6.22 ± 1.88 * 5.4 ± 1.76
Urine epitheilum (UL) - 0 (0, 6) 2.5 (0, 5.75) 3 (0, 9) -
Urine epithelium count 0 (0, 2) 0 (0, 2) 0 (0, 2) ** 1 (0, 3) 2 (0, 3) *

Nitrite p = 0.001

0 127 (88.2%) 194 (97%) 188 (93.5%) 493 (83.4%) 181 (90.5%)
1 17 (11.8%) 6 (3%) 13 (6.5%) 98 (16.6%) 19 (9.5%)

Strip WBC p = 0.001 p = 0.003

0 49 (34%) 140 (70%) 145 (72.1%) 298 (50.4%) 79 (39.5%)
1 24 (16.9%) 44 (22%) 34 (17%) 133 (62.1%) 79 (39.5%)
2 12 (8.3%) 12 (6%) 10 (5%) 73 (12.4%) 24 (12%)
3 13 (9%) 4 (2%) 12 (6%) 87 (14.7%) 18 (9%)

Urine Bilirubin

0 137 (95.1%) 190 (95%) 190 (94.5%) 549 (94.9%) 194 (97%)
1 4 (2.8%) 10 (5%) 11 (5.5%) 28 (4.7%) 4 (2%)
2 2 (1.4%) 0 0 7 (1.2%) 2 (1%)
3 1 (0.7%) 0 0 7 (1.2%) 0

Urine Glucose

0 86 (59.7%) 179 (89.5%) 183 (91%) 509 (86.1%) 185 (92.5%)
1 8 (5.6%) 12 (6%) 8 (4%) 52 (8.8%) 9 (4.5%)
2 1 (0.7%) 3 (1.5%) 2 (1%) 13 (2.2%) 3 (1.5%)
3 3 (2.1%) 6 (3%) 8 (4%) 17 (2.9%) 3 (1.5%)

Urine Ketone

0 86 (59.7%) 184 (92%) 176 (87.6%) 523 (88.5%) 156 (78%)
1 10 (7%) 14 (7%) 24 (12%) 58 (9.8%) 38 (19%)
2 0 0 0 6 (1%) 5 (2.5%)
3 2 (1.4%) 2 (1%) 1 (0.5%) 4 (0.7%) 1 (0.5%)

Urine Protein p < 0.0001

0 75 (52.1%) 124 (62%) 118 (58.7%) 279 (47.2%) 156 (78%)
Trace 16 (11.1%) 25 (12.5%) 25 (12.4%) 50 (8.5%) 15 (7.5%)

1 15 (10.4%) 19 (9.5%) 27 (13.4%) 91 (15.4%) 9 (4.5%)
2 24 (16.7%) 19 (9.5%) 23 (11.4%) 97 (16.4%) 12 (6%)
3 14 (9.7%) 13 (6.5%) 8 (4%) 74 (12.5%) 8 (4%)

Urobilinogen p = 0.001

0 2 (1.4%) 7 (3.5%) 6 (3%) 20 (3.4%) 1 (0.5%)
0.1 55 (38.2%) 62 (31%) 59 (29.4%) 200 (33.8%) 124 (62%)
0.2 55 (38.2%) 84 (42%) 83 (41.3%) 261 (44.2%) 53 (26.5%)
1 29 (20.1%) 47 (23.5%) 52 (25.9%) 106 (17.9%) 20 (10%)
2 3 (2.1%) 0 1 (0.5%) 2 (0.3%) 1 (0.5%)
4 0 0 0 2 (0.3%) 1 (0.5%)
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Table 4. Cont.

Cystitis Kidney Cancer Prostate Cancer Bladder Cancer Uterus Cancer
n = 144 n = 200 n = 201 n = 591 n = 200

Urine occult Blood p < 0.0001 p = 0.001 p = 0.016

0 52 (36.1%) 119 (59.5%) 112 (55.7%) 201 (34%) 85 (42.5%)
Trace 16 (11.1%) 23 (11.5%) 22 (10.9) 66 (11.2%) 26 (13%)

1 12 (8.3%) 25 (12.5%) 16 (8%) 53 (9%) 28 (14%)
2 19 (13.2%) 13 (6.5%) 21 (10.4%) 73 (12.4%) 29 (14.5%)
3 45 (31.3%) 20 (10%) 30 (14.9%) 198 (33.5%) 32 (16%)

* means p < 0.05, ** means p < 0.0001.

3.2. Feature Selection and Sampling Technique Experiment

To reduce the noise in the dataset, we used InfoGain + Ranker to rank the features
between groups (Figure 1). The top feature in each group was assembled as a set of selected
features, including calcium, alkaline phosphate, albumin, urine ketone, urine occult blood,
and creatinine (Table 5). We used the dataset to train and validate five models, including
decision tree, random forest, SVM, XGBoost, and lightGBM. However, the evaluation
parameter may not reflect the learning results, due to imbalanced data from bladder cancer
compared to other groups. We used the python package named imbalanced-learn to
solve the sample imbalance issue. Five models without any sampling techniques were
trained and validated with the dataset. In differentiating patients with bladder cancer from
patients with cystitis, the models received an accuracy 77.2–78.8%, precision 76.2–80.8%, f1
score 76.6–86.9%, sensitivity 77.7–95.8%, specificity 5–55.4%, and roc 0.592–0.729 (Table S1).
After the oversampling technique was applied in the training and validating, the accuracy
was adjusted to 73.4–78.8%, precision was adjusted to 74.9–81%, f1 score was adjusted to
75.6–81.4%, sensitivity was adjusted to 78–84.3%, and specificity was adjusted to 51.3–59.3%
(Table S1 and Figure 2). An undersampling technique was also tested in our study. The
accuracy was adjusted to 76.3–78.3%, precision was adjusted to 78.6–80.6%, f1 score was
adjusted to 77.8–80.3%, sensitivity was adjusted to 79.0–83.9%, specificity was adjusted to
42.9–57.4%, and the roc was adjusted to 0.69–0.74 (Table S1). To further optimize our models,
we conducted forward selection with the sampling technique in five different models.

Table 5. The top selected feature from each comparison group.

Comparison Group Top Selected Feature

cystitis

kidney cancer Calcium
prostate cancer ALP
bladder cancer Albumin
uterus cancer Urine Ketone

kidney cancer
bladder cancer Urine occult blood
prostate cancer ALP
uterus cancer Calcium

bladder cancer
prostate cancer ALP
uterus cancer Creatinine
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Figure 1. The feature selection results of (A) cystitis vs. kidney cancer, (B) cystitis vs. prostate cancer,
(C) cystitis vs. bladder cancer, (D) cystitis vs. uterus cancer, (E) kidney cancer vs. bladder cancer,
(F) kidney cancer vs. prostate cancer, (G) kidney cancer vs. uterus cancer, (H) bladder cancer vs.
prostate cancer, and (I) bladder cancer vs. uterus cancer.
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Figure 2. The specificity comparison of sampling techniques in five different models.

3.3. Model Evaluation and Comparison

The forward selection method is illustrated in Figure 3. The features from forward
selection may be different, due to the models and the classes in the dataset. In the forward
selection experiment, we focused on discriminating the patients with cystitis and patients
with bladder cancer. In the results of the decision tree classifier, the features including
ALT, AST, potassium, sodium, specific gravity, strip WBC, total protein, triglyceride, urine
epithelium count, and uric acid were further selected. The decision tree classifier was
trained and validated with features from WEKA and forward selection. The model received
an accuracy of 76.2%, a precision of 77.9%, a f1 score of 74.6%, a sensitivity of 73.2%, a
specificity of 78.1%, and an AUC of 0.77 in differentiating patients with bladder cancer
from patients with cystitis (Table 6). In the results of the random forest classifier, the feature
including ALT was selected. The random forest classifier was trained and validated with
features from WEKA and forward selection. The model received an accuracy of 83.1%, a
precision of 78.2%, a f1 score of 81.6%, a sensitivity of 85.5%, a specificity of 79.4%, and
an AUC of 0.88 in discriminating patients with bladder cancer from patients with cystitis
(Table 6). In the results of SVM, features including ALT, BUN, chloride, direct bilirubin,
nitrite, and pH were further selected. The SVM was trained and validated with features
from WEKA and forward selection. The model received an accuracy of 71.7%, a precision of
81.9%, a f1 score of 65.5%, a sensitivity of 55.7%, a specificity of 86.7%, and an AUC of 0.73
in identifying patients with bladder cancer and patients with cystitis (Table 6). In the results
of XGBoost, features including ALT, AST, BUN, chloride, direct bilirubin, pH, potassium,
sodium, total bilirubin, and total cholesterol were further selected (Table 6). The XGBoost
model was trained and validated with features from WEKA and forward selection. The
model received an accuracy of 82.8%, a precision of 84.7%, a f1 score of 82.7%, a sensitivity
of 81.4%, a specificity of 83.3%, and an AUC of 0.87 in discriminating patients with bladder
cancer from patients with cystitis (Table 6). In the results of lightGBM, features including
ALT, and diabetes were further selected. The lightGBM model was trained with features
from WEKA and forward selection. The model received an accuracy of 87.6%, a precision
of 86.3%, a f1 score of 87.7%, a sensitivity of 89.5%, a specificity of 85.5%, and an AUC of
0.93 in identifying patients with bladder cancer and patients with cystitis (Table 6).
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Figure 3. The block diagram of the forward selection method.

Table 6. Predictive performance of five models in discriminating patients with bladder cancer from
patients with cystitis.

Models Accuracy
(95%CI)

Precision
(95%CI)

f1 Score
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI) AUC (95%CI)

decision tree 76.2%
(71–81.5%)

77.9%
(69.1–86.6%)

74.6%
(69.8–79.5%)

73.2%
(62.5–83.9%)

78.1%
(64.9–91.3%)

0.775
(0.711–0.839)

random forest 83.1%
(78.7–87.5%)

78.2%
(71.5–85%)

81.6%
(74.3–88.9%)

85.5%
(76–94.9%)

79.4%
(72–86.8%)

0.887
(0.826–0.947)

SVM 71.7%
(63.5–80%)

81.9%
(71.3–92.4%)

65.5%
(51.9–79.1%)

55.7%
(40.6–70.8%)

86.7%
(78.9–94.5%)

0.736
(0.624–0.849)

XGBoost 82.8%
(76.7–88.8%)

84.7%
(74.5–94.9%)

82.7%
(76.2–89.2%)

81.4%
(75.1–87.7%)

83.3%
(71–95.7%)

0.879
(0.819–0.939)

lightGBM 87.6%
(81–94.1%)

86.3%
(77.9–94.6%)

87.7%
(81.8–93.5%)

89.5%
(84.2–94.9%)

85.5%
(75.2–95.7%)

0.932
(0.862–1.000)

The lightGBM with selected features received the highest score for accuracy, precision,
f1 score, sensitivity, and AUC. Therefore, we further evaluated the model performance in
differentiating bladder cancer from other cancers. The model received an accuracy of 84.8%
to 86.9%, a precision of 83% to 87.1%, a f1 score of 84.5% to 87.7%, a sensitivity of 84.4% to
87.8%, a specificity of 82.9% to 86.7%, and an AUC of 0.88 to 0.92 (Table 7 and Figure 4).
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Table 7. Predictive performance of the lightGBM model.

Groups Accuracy
(95%CI)

Precision
(95%CI)

f1 Score
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI) AUC (95%CI)

bladder cancer
uterus cancer

86.9%
(77.3–96.5%)

87.1%
(76.5–97.7%)

87.3%
(77.5–97%)

87.8%
(77.3–98.3%)

86.7%
(76.8–96.6%)

0.918
(0.849–0.988)

bladder cancer
prostate cancer

84.8%
(76–93.6%)

86.6%
(76.8–96.4%)

85.1%
(75.3–94.9%)

84.4%
(71.9–96.9%)

85.1%
(76.4–93.8%)

0.883
(0.823–0.942)

bladder cancer
cystitis

87.6%
(81–94.1%)

86.3%
(77.9–94.6%)

87.7%
(81.8–93.5%)

89.5%
(84.2–94.9%)

85.5%
(75.2–95.7%)

0.932
(0.862–1.001)

bladder cancer
kidney cancer

84.5%
(78.3–90.6%)

83%
(73.2–92.9%)

84.5%
(78.3–90.7%)

86.8%
(79.9–93.7%)

82.9%
(72.7–93.2%)

0.928
(0.88–0.977)

kidney cancer
cystitis

86.2%
(78.2–94.2%)

86.8%
(78–95.6%)

86.9%
(79–94.9%)

88%
(76.5–99.6%)

84.2%
(73–95.5%)

0.903
(0.854–0.952)

uterus cancer
cystitis

83.8%
(77.1–90.5%)

87%
(76.8–97.3%)

83.7%
(76.7–90.7%)

81.8%
(71.2–92.5%)

86.5%
(76.9–96.1%)

0.915
(0.834–0.995)

prostate cancer
cystitis

87.6%
(82.9–92.2%)

88.5%
(80.3–96.6%)

87%
(81.7–92.4%)

86.7%
(77.5–95.8%)

88.4%
(77.9–98.9%)

0.944
(0.903–0.986)

prostate cancer
uterus cancer

84.1%
(77–91.3%)

82.5%
(68.2–96.7%)

82.3%
(70.1–94.5%)

82.7%
(70.5–94.9%)

84.7%
(76.4–93.1%)

0.897
(0.837–0.957)

kidney cancer
uterus cancer

86.2%
(78.4–94%)

87.1%
(76.5–97.7%)

86.8%
(79–94.5%)

87.1%
(79.5–94.6%)

86.2%
(75.6–96.9%)

0.923
(0.858–0.988)

kidney cancer
prostate cancer

84.5%
(77.7–91.2%)

82.1%
(72.7–91.6%)

84.9%
(79.1–90.7%)

88.6%
(82.5–94.6%)

81.3%
(69.1–93.5%)

0.91
(0.849–0.972)

Figure 4. The receiver operating characteristic curve (ROC) plot of separating bladder cancer from
cystitis or other cancers.

4. Discussion

Machine learning has been significantly developed in the past decade. Many machine
learning applications have been created with different types of data, including genomic
data, transcriptomic data, proteomic data, image data, electronic health records (EHR),
and clinical laboratory data [46–48]. However, the most intriguing question is whether
machine learning can be applied to medical diagnosis [49]. Obermeyer et al. suggested that
machine learning applied to clinical laboratory data can dramatically improve prognosis
and diagnostic accuracy [50]. Moreover, compared to novel biomarkers, a decision-making



Diagnostics 2022, 12, 203 12 of 17

assist program based on clinical laboratory data can be considered a fast and cheap solution
for improving the accuracy of diagnosis.

Herein, we utilized the clinical laboratory dataset coupled with machine learning
algorithms to discriminate patients with bladder cancer from patients with cystitis. Missing
values and imbalanced data were the two major challenges we encountered in this study.
Missing values can be categorized as missing complete at random (MCAR), missing at
random (MAR), and missing not at random (MNAR) [51]. Several methods can solve this
issue, such as collecting more samples, removing the subjects with missing values, filling
with mean or median, and imputing missing values [52,53]. Multiple imputation (MI) is
considered a good method to calculate missing values from existing data [54]. An elegant
study from Hong et al. performed MI with models such as random forest and received a
good accuracy [55]. However, in our experiment, MI did not receive applicable results (data
not shown). We speculated that MI needs a larger sample size or strongly correlated features
to obtain enough characteristics from the existing data. The skewed data distribution of
one class over another is considered imbalanced data [56]. The imbalanced data causes
classification problems during the training of machine learning algorithms [57]. Therefore,
we used sampling techniques, including oversampling and undersampling, to reduce
the error. The study performed by Mohammed et al. suggested that oversampling has a
better performance with certain classifiers and evaluation metrics [58]. The oversampling
method was applied to molecular description data by Chang et al., and reported that it
could be used to reduce the overfitting problem [59]. However, oversampling has some
disadvantages, such as sample overlapping, noise interference, and blindness of neighbor
selection [60]. The main disadvantage of oversampling is that by making copies from
existing data, overfitting is likely; in contrast, the main disadvantage of undersampling is
the discarding of potentially useful data [61]. Instead of acquiring the highest performance
from the models, our goal was to achieve an authentic performance from the models
with our dataset. Furthermore, when faced with imbalanced data, it requires more than a
one-step solution to improve the accuracy of the model [62]. Thus, in our experiment, we
applied tools including undersampling techniques, feature selection, and improved models
to increase the diagnostic accuracy in bladder cancer.

From our two-step feature selection, calcium, ALP, albumin, urine ketone, urine occult
blood, and ALT were selected from the clinical laboratory data. Michel et al. reported that
hypercalcemia was only observed in several patients with bladder cancer. Furthermore, the
data shown that the hypercalcemia was caused by increasing levels from the tumor [63].
Moreover, Rosa et al. reported that an increasing level of calcium is common in various
cancers, but rare in bladder cancer [64]. In addition, Huang et al. suggested that the eleva-
tion of calcium in blood may be considered as an indicator of bone metastasis in bladder
cancer [65]. These studies suggested that calcium is a good feature for discriminating blad-
der cancer from other cancers. ALP has been considered a prognostic biomarker in patients
with prostate cancer [66]. Therefore, ALP was selected as the top feature for prostate cancer
versus cystitis or other cancers in our study. Furthermore, Braendengen et al. reported that
an increased level of ALP in serum did not improve the accuracy of a bone scan used for
evaluation precystectomy, which suggested a low correlation between ALP and bladder
cancer [67]. These studies indicated that ALP can be used to identify prostate cancer from
other cancers without interfering with the classification of bladder cancer. Albumin and
globulin play an important role in immunity and inflammation; therefore, several studies
have been proposed the ratio of albumin to globulin ratio as a biomarker in gastric cancer
and lung cancer [68]. In addition, Quhal et al. reviewed the albumin to globulin ratio in
1096 patients with non-muscle-invasive bladder cancer and found that the ratios indepen-
dently predicted the progression of disease [69]. Moreover, Tan et al. proposed that the
ratio of albumin to ALP can be used as a prognostic biomarker in upper tract urothelial
carcinoma [70]. Urine ketone is one of the routine urinalysis. Only a few studies reported an
alteration of ketone in patients with bladder cancer in a metabolomics study [71]. However,
ketone body in urine has been considered as a high correlation to diabetes [72]. Further-
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more, the ketones in the blood and urine may indicate that the patients were suffering
from diabetic ketoacidosis [73]. Moreover, a comprehensive systemic review suggested that
diabetes mellitus was associated with bladder cancer [74]. These studies indicate that urine
ketone is related to bladder cancer. Urine occult blood has been considered a screening
indicator for bladder cancer [75]. Furthermore, a test for microhematuria found a strong
correlation with bladder cancer in 46,842 patients [76]. However, urine occult blood can
also be observed in other types of cancer, such as kidney cancer [77] or simply in a benign
disease [78]. The lightGBM model we built in this study can discriminate bladder cancer
from kidney cancer or cystitis with accuracies of 0.876 and 0.845. The ratio of AST and ALT
was proposed as an indicator of liver function [79]. Recently, the ratio of AST and ALT has
been discovered to have an association with bladder cancer [80]. Furthermore, Ha et al.
suggested that the ratio of AST and ALT may further serve as a prognosis indicator in
bladder cancer [81].

In this study, we trained and validated models with selected data from WEKA. Fur-
thermore, a forward selection was performed with five different models, to optimize the
model performance. Among the models, the lightGBM model had the highest performance,
including an accuracy of 0.87, a precision of 0.86, a f1 score of 0.87, a sensitivity of 0.89,
and an AUC of 0.93 in separating patients with bladder cancer from patients with cystitis
(Table 6). Many studies have aimed at improving the diagnostic accuracy in bladder cancer.
Wang et al. utilized machine learning algorithms to improve the tumor marker-based
screening for multiple cancers and yielded a sensitivity of 0.81 and a specificity of 0.64 [82].
Shao et al. applied ultra-performance liquid chromatography coupled with time-of-flight
mass spectrometry to acquire metabolites profiles in 152 samples from patients with bladder
cancer and hernia; furthermore, the decision tree model embedded in this study obtained
an accuracy of 76.6%, a sensitivity of 71.88%, and a specificity of 86.67% [83]. Wittmann et al.
developed a random forest model with a set of metabolites selected based on statistical
significance, metabolic pathway coverage, and fold difference from global metabolomics
profiling of urine. Moreover, the model was tested in two independent cohorts and received
an AUC of 0.81 to 0.78 [84]. Belugina et al. developed a non-invasive potentiometric multi-
sensory system to perform urine analysis. In addition, various models were used in this
study and received an accuracy of 76%, a sensitivity of 80%, and a specificity of 75% [85].
Kouznetsova et al. used two modeling methods, including multilayer perceptron (MLP)
and stochastic gradient descent (SGD) with logistic regression loss function to discriminate
bladder cancer patients with metabolite profiling. The best performing model was able
to identify bladder cancer patients with an accuracy of 82.54% [43]. Compared to those
studies, the model we performed in this study provided a better sensitivity and specificity.
For future work, we aim to collect data from different cohorts. Moreover, we are eager to
build a model that can differentiate bladder cancer from cystitis and other cancers in our
next work.

5. Conclusions

In summary, we used two-step feature selection to select eight clinical laboratory
tests and established a prediction model for bladder cancer with lightGBM. Furthermore,
sample techniques were also used in our study and adjusted the imbalanced data. Our
study indicated the potential of utilizing clinical laboratory data to detect cancer.
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