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Abstract: Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental condi-
tion worldwide. In this research, we used an ADHD electroencephalography (EEG) dataset containing
more than 4000 EEG signals. Moreover, these EEGs are noisy signals. A new hand-modeled EEG
classification model has been proposed to separate healthy versus ADHD individuals using the EEG
signals. In this model, a new ternary motif pattern (TMP) has been incorporated. We have mimicked
deep learning networks to create this hand-modeled classification method. The Tunable Q Wavelet
Transform (TQWT) has been utilized to generate wavelet subbands. We applied the proposed TMP
and statistics to construct informative features from both raw EEG signals and wavelet bands by
generating TQWT. Herein, features have been generated by 18 subbands and the original EEG signal.
Thus, this model is named TMP19. The most informative features have been chosen by deploying
neighborhood component analysis (NCA), and the selected features have been classified using the
k-nearest neighbor (kNN) classifier. The used ADHD EEG dataset has 14 channels. Thus, these three
phases—(i) feature extraction with TQWT, TMP, and statistics; (ii) feature selection by deploying
NCA; and (iii) classification with kNN—have been applied to each channel. Iterative hard majority
voting (IHMV) has been applied to obtain a higher and more general classification response. Our
model attained 95.57% and 77.93% classification accuracies by deploying 10-fold and leave one subject
out (LOSO) cross-validations, respectively.

Keywords: ternary motif pattern; ADHD detection; EEG signal classification; signal processing

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a persistent neurodevelopmental
disorder [1–3]. It can increase the risk of poor educational and occupational outcomes,
social disability, and other psychiatric conditions [4]. ADHD is often diagnosed between
the ages of 3 and 7 years, but may not be recognized until adulthood [5,6]. ADHD symp-
toms include inattentiveness and hyperactivity-impulsivity [7]. People with ADHD often
have additional features such as impairments in their executive function and emotional
regulation [8–10]. Systematic reviews show that ADHD affects 5% of children and adoles-
cents and 2.5% of adults globally [11]. Boys are more likely to be diagnosed with ADHD
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than girls [12,13]. Early diagnosis is very important for this condition to optimize manage-
ment and reduce the long-term negative sequalae in psychosocial wellbeing and integration
into the community [14]. Management usually combines patient and family education and
pharmacological and non-pharmacological interventions such as a range of behavioral and
neurocognitive therapies [15]. The aim is to eliminate disease symptoms. Psychologists
diagnose ADHD, and the professionals have responsibility for assessment and diagnosis.
This assessment typically involves a combination of standardized evaluation scales plus a
clinical interview, compared to the DSM-5 or ICD (International Statistical Classification
of Diseases and Related Health Problems) diagnostic criteria [16]. Diagnosing ADHD
can be challenging, particularly in regions with limited access to suitably trained health
professionals.

There is, therefore, interest in the ability of other diagnostic tools to improve equitable
access to an early diagnosis [17]. One suggested diagnostic data type is the EEG [18]. The
FDA has stated that the EEG may be a helpful diagnostic tool in ADHD diagnoses [19].
An increasing number of studies on the potential diagnostic utility of EEG have now been
reported in the literature. This paper proposes a new hand-modeled EEG classification for
the automatic interpretation of EEG signals for diagnosing ADHD in children. The model
developed in this study has high classification success and low computational complexity.

The diagnosis of ADHD using EEG signals remains a hot topic with as yet no univer-
sally agreed upon guideline for the diagnostic use and interpretation of the EEG. Moghad-
dari et al. [20] used the Convolutional Neural Network (CNN) for ADHD diagnosis in
children. Their study utilized EEG signals from 31 ADHD and 30 healthy children, which
were preprocessed and free of noise and artifacts. Thereafter, the EEG signals were con-
verted to RGB images and provided as input to a 13-layer CNN. The developed model
was evaluated with the 5-fold cross-validation technique, and an average accuracy of
99.06% was achieved. An ADHD classification method using power spectral density (PSD),
spectral entropy (SE), and long short-term memory (LSTM) methods has been proposed by
Tosun [21]. Their study applied an 80:20 hold-out validation strategy, and the proposed
method yielded a 92.15% accuracy. Khoshnoud et al. [22] performed a nonlinear EEG
analysis in children with ADHD. The largest Lyapunov exponent (LLE) and approximate
entropy (ApEn) methods were used to obtain the nonlinear characteristics of the signal.
These features were evaluated with a Probabilistic Neural Network (PNN), and an 87.5%
classification accuracy was obtained. Chen et al. [23] proposed a deep learning framework
to identify children with ADHD. In their proposed method, EEG signals are converted
into image data and given as input to the CNN developed in the study. EEG signals from
50 children with ADHD and 51 healthy children were utilized. The developed model
provided a 94.67% accuracy performance on the test data. Tenev et al. [24] proposed a
learning approach for classifying adult ADHD individuals automatically. Their study
analyzed EEG signals from 117 adults (67 ADHD and 50 controls) using a Support Vector
Machine (SVM) and voting method. The proposed method achieved an 82.3% success rate
in separating ADHD versus control groups. Saini et al. [25] developed an EEG signal-based
machine learning model for ADHD diagnosis. The developed model uses principal compo-
nent analysis (PCA) for feature selection and k-nearest neighbor (kNN) for classification.
In this study, EEG signals from 77 ADHD and 80 healthy children were classified, and
an accuracy of 86% was achieved. Dubreuil-Vall et al. [26] collected EEG signals from
40 subjects (20 ADHD and 20 controls) for ADHD classification. In their study, firstly, the
signal was preprocessed and then the spectrogram of the signal was extracted. Thereafter,
the spectrogram images of the EEG signal were fed as input to the custom designed CNN,
and classification was made. The developed model reached an 88% classification accuracy.
Tor et al. [27] used empirical mode decomposition (EMD) and discrete wavelet transform
(DWT) decomposition methods and nonlinear features for ADHD, conduct disorder (CD),
and ADHD+CD detection. They analyzed EEG data of 123 children (45 ADHD, 62 conduct
disorder + ADHD, and 16 conduct disorder subjects) with a kNN classifier and obtained
an accuracy of 97.88%. Loh et al. [28] reviewed the automated ADHD detection methods
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published in the last decade. They reviewed all the machine learning and deep learning
techniques employed for the automated detection of ADHD using both physiological
signals and images.

The essential motivations of the presented model are:

• Presenting a new motif pattern to generate textural features;
• Proposing a hand-modeled one-dimensional signal classification architecture;
• Attaining robust and high classification performance with low time complexity.

Thus, this study has three main motivations. First, motifs of signals are very useful for
extracting features. A new feature generation model has been proposed to use motifs as a
feature vector, and this feature extraction function is named TMP. We aimed to present a
highly accurate feature engineering model. Hence, we used both hand-crafted features and
an architecture miming a deep learning architecture to attain high classification accuracy.
Deep learning models have multiple levels/layers to generate distinctive features. Thus, we
have used a multileveled feature extraction model. By using this model, an accurate EEG
signal classification method has been proposed. To demonstrate its robustness, we used
two validation techniques (10-fold CV and LOSO CV). These validations yielded 95.57%
and 77.93% classification accuracies by deploying 10-fold CV and LOSO CV, respectively.

The novelties and contributions are:

• A new ternary motif pattern has been proposed in this research. The main objective of
the proposed TMP is to extract hidden and informative features from EEG signals.

• A new generation multilevel feature engineering model has been proposed in this
research to attain high classification accuracy on the EEG dataset. The presented
feature engineering model uses 19 levels and TMP to extract features. Thus, this model
is named TMP19.

• In the feature selection phase, the main feature extraction function is NCA. At the same
time, we employed threshold-based elimination to obtain more distinctive features.
Thus, the model is named threshold–based NCA.

• We integrated a noisy EEG dataset containing 4173 EEG signals, each of four seconds
in length. We believe this is the first proposal of a classification model for this dataset
in the literature.

• Our proposal—TMP19—was tested using two validation techniques and showed
robust results. The TMP19 attained 95.57% and 77.93% classification accuracies by
deploying 10-fold CV and LOSO CV, respectively.

2. Material and Method
2.1. Material

We utilized a noisy EEG dataset in this work [29,30]. The dataset contains 2330 healthy
EEG signals and 1843 ADHD EEG signals. The lengths of these EEG signals are equal and
four seconds in length. In this EEG dataset, there are 14 channels. The frequency sampling
of these EEG signals is 128 Hz.

2.2. Method

In this paper, a new local feature extraction function has been proposed, named the
ternary motif pattern. Herein, we integrated five-sized overlapping blocks to obtain motifs,
and we applied the ternary function to find upper, equal, and lower values. Two feature
maps have been generated using these values, and histograms of these feature maps have
been utilized as feature vectors. The model overview of the presented TMP is demonstrated
in Figure 1.
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Figure 1. Model overview of the proposed TMP feature extraction function.

To better explain this model, detailed descriptions have been given below.

Step 1: Create overlapping blocks with a length of five.

blt = S(t : t + 4), t ∈ {1, 2, . . . , len− 4} (1)

Herein, blt is the overlapping block with a length of five, and len defines the length of
the signal.

Step 2: Generate ternary motifs.

valk = t f
(

blt
i , blt

j

)
, i ∈ {1, 2, 3, 4}, j ∈ {i + 1, i + 2, . . . , 5}, k ∈ {1, 2, . . . , 10} (2)

t f
(

blt
i , blt

j

)
=


0, blt

i < blt
j

1, blt
i = blt

j
2, blt

i > blt
j

(3)

where val represents ternary motif values, and t f () defines ternary function.

Step 3: Calculate map values using ternary motif values.

m1
t =

5

∑
j=1

valj × 3j−1 (4)

m2
t =

5

∑
j=1

valj+5 × 3j−1 (5)
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The symbols m1 and m2 represent the first and second map signals, respectively.

Step 4: Extract histograms of map signals.

h1 = ϑ
(

m1
)

(6)

h2 = ϑ
(

m2
)

(7)

where h1 and h2 are histograms of first and second maps. The length of each map signal is
243 (=35).

Step 5: Merge the generated histograms and obtain a feature vector.

f v(q) = hc(q + 243× (c− 1)), c ∈ {1, 2}, q ∈ {1, 2, . . . , 243} (8)

The symbol f v defines the generated feature vector with a length of 486 (=243 × 2).
These five steps above define the proposed TMP.
We suggested a new hand-modeled signal classification method in this paper, and our

proposal is named TMP19. TMP19 contains four main phases, and these phases are:

• Feature extraction;
• Feature selection;
• Classification;
• Majority voting.

In Figure 2, a graphical overview of the proposed TMP19 is demonstrated.
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Figure 2 depicts our proposed TMP19 architecture. In Figure 3, C represents the
number of channels. Phases of this model are defined below, briefly describing the TMP19
EEG signal classification model.
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Figure 3. Generated confusion matrices by TMP19 on the ADHD EEG dataset by deploying (a) 10-fold
CV, (b) LOSO CV. Herein, the used classes are enumerated as 1 and 2. These numbers are defined as
healthy and ADHD classes. 1: Healthy, 2: ADHD.

2.2.1. Feature Extraction

In the feature extraction phase, we utilized three methods: (i) TQWT [31], (ii) the
proposed TMP feature extraction function, and (iii) statistical feature generator. First, we
generated wavelet bands using TQWT transformation. TQWT is a parametric and third-
generation wavelet transform. By using redundancy (r), oscillation (Q), and the number
of level (J) parameters, a variable multileveled wavelet transform was created. The high
oscillatory wavelet transform was assigned 4 and 3 for the Q and r parameters.

The system’s main aim was to propose a new feature engineering model as in Dark-
Net19. Thus, we generated 18 wavelet coefficient bands to use 19 inputs. These 19 signals
(raw EEG signal + 18 wavelet bands) have been utilized as inputs to the feature extraction
functions. The system contains two feature extraction functions: the TMP and the statistical
feature generator. Both statistical parameters and motifs have been extracted using these
feature extractors in the space and frequency domains. The steps of the proposed feature
extraction method are given below.

Step 1: Apply TQWT to the EEG signal for generating wavelet bands.

R = τ(S, 4, 3, 17) (9)

where R defines TQWT bands, S is the EEG signal, 4, 3, and 18 are the Q, r, and J parameters
of the TQWT function (τ()).

Step 2: Generate features using TMP and statistical feature generation function.

f1 = concat(TMP(S), SG(S)) (10)

fl+1 = concat(TMP(Rl), SG(Rl)), l ∈ {1, 2, . . . , 18} (11)

In this step (Step 2), 19 feature vectors have been generated by deploying the TMP
feature generator (TMP()), and statistical generator (SG()). TMP() function generates
486 features from a one-dimensional signal, and SG() extracts 14 features from a signal
since 14 statistical moments [32] have been used in this function. These moments are
(i) maximum, (ii) minimum, (iii) average, (iv) variance, (v) standard deviation, (vi) median,
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(vii) range, (viii) root mean square, (ix) energy, (x) Shannon entropy, (xi) sure entropy,
(xii) log energy entropy, (xiii) threshold entropy, and (xiv) mean absolute deviation. concat()
is concatenation function and it is feature merging function. By using Step 2, 19 feature
vectors have been created and the length of each feature vector is 500 (=486 + 14).

Step 3: Concatenate the 19 generated feature vectors to create the final feature vectors.

fg(p) = X(p + 500× (g− 1)), p ∈ {1, 2, . . . , 500}, g ∈ {1, 2, . . . , 19} (12)

Herein, X defines the merged feature vector with a length of 9500 (=500 × 19).

2.2.2. Feature Selection

In this research, we proposed an improved NCA-based protocol [33], with the feature
selection method being named the threshold-based NCA. The selector has two layers:
(i) threshold-based redundant feature elimination and (ii) NCA-based feature selection. In
this phase, we selected the most informative and valuable 250 features from the generated
9500 features. The steps of this phase are:

Step 4: Normalize the final feature vector by deploying a min-max normalization.

XN =
X−min(X)

max(X)−min(X)
(13)

where XN defines the normalized final features, and min() and max() are the minima and
maximum value finding functions, respectively.

Step 5: Eliminate the redundant features using a threshold value.

agd =
n

∑
i=1

XN(d, i), d ∈ {1, 2, . . . , dim} (14)

nX(:, ct) = X(:, i), i f agd > th (15)

Herein, the summarization value of each vector (agd) has been calculated in Equation
(14), where dim is the number of EEG signals. In Equation (15), features are eliminated,
and a new final feature vector (nX) has been generated using a threshold value (th). In this
research, th is selected as zero.

Step 6: Calculate qualified/sorted indexes by deploying the NCA feature selection function.

id = ξ(nX, y) (16)

where id is a sorted index vector with a length of 9500, y defines real outputs/labels, and
ξ() is the NCA feature selection function.

Step 7: Select the most meaningful 250 features from the nX.

sX(d, i) = nX(d, id(i)), i ∈ {1, 2, . . . , 250} (17)

Herein, sX is a selected feature vector with a length of 250.

2.2.3. Classification

To obtain classification accuracy and the predicted vector of each channel, we used
a simple/shallow classifier. The kNN [34] classifier has been used, which is named the
Weighted kNN. The hyperparameters of the Weighted kNN are:

k:10;
Distance weight: squared inverse;
Distance: L1-norm (Manhattan);
Validation: 10-fold CV/LOSO CV.
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As is evident from the above description, we used two validation techniques (10-fold
CV and LOSO CV) to calculate the robust results obtained with this classifier. The classifi-
cation step is given below.

Step 8: Calculate the predicted vector of each channel by applying the kNN classifier.

pc = κ(sX, y), c ∈ {1, 2, . . . , 14} (18)

where pc represented predicted vectors of the cth channel, and κ() is the defined kNN
classifier.

Step 9: Repeat Steps 1–8 by the number of channels. We used an ADHD dataset containing
14 channels. Thus, we repeated these steps 14 times.

2.2.4. Majority Voting

In the majority voting phase, the iterative hard majority voting (IHMV) algorithm was
used to obtain the best classification result. IHMV was proposed by Dogan et al. [35] in 2021.
We calculated 14 predicted vectors from the EEG channels individually. By incorporating
the 14 predicted vectors, 12 (=14 − 2) new voted predicted vectors were created for each
validation technique. The steps of this phase are listed below.

Step 10: Calculate the classification accuracy of each channel.
Step 11: Qualify/sort the predicted vectors using the predicted vectors and obtain quali-

fied/sorted indexes.

ix = sort(p) (19)

where ix defines indexes of the sorted predicted vectors.

Step 12: Calculate voted predicted vectors by deploying the mode function.

vr−2 = ω
(

pix1 , pix2 , . . . , pixr

)
, r ∈ {3, 4, . . . , C} (20)

Herein, v represents the voted vector, C represents the number of channels, and ω()
defines the mode function. In these steps, 12 voted vectors have been generated.

Step 13: Calculate classification accuracies of the voted vectors.
Step 14: Choose the most accurate voted vector as the final predicted vector.

The given 14 steps above define the proposed TMP19 feature engineering model.

3. Results

We have proposed a new feature engineering model that uses four phases in this re-
search. These phases use lightweight methods. Thus, the proposed TMP19 is a lightweight
signal classification model, and there is no need to use expensive hardware. We imple-
mented this model on a simply configured computer (main memory: 16 GB, processor:
Intel i7-7700, operating system: Windows 11, programming environment: MATLAB 2021a).
We used two validation techniques. Moreover, channel-wise voted results have been given
in this section.

3.1. Performance Metrics

The used ADHD EEG dataset contains two classes, ADHD and normal. Thus, this
is a binary classification problem. We built in two common classification performance
measures: classification accuracy and geometric mean. To assess these metrics, the number
of true positives (tp), false positives (fp), true negatives (tn), and false negatives (fn) are
deployed. The mathematical notations of the accuracy (acc) and geometric mean (gm) are
given below.

acc =
tp + tn

tp + f p + tn + f n
(21)
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gm =

√
tp

tp + f n
× tn

tn + f p
(22)

3.2. Channel-Wise Results

The used EEG dataset contains 14 channels. To comprehensively depict the proposed
model’s classification performance, we applied our proposal to each channel, and the
classification performances of each channel were calculated. Furthermore, two validations
were used in the classification phase. The channel-wise results are tabulated in Table 1.

Table 1. Channel-wise results (%) by deploying 10-fold CV and LOSO CV.

Channel
10-fold CV LOSO CV

Accuracy Geometric Mean Accuracy Geometric Mean

1 87.75 87.21 72.25 71.16

2 86.65 85.69 71.41 70.19

3 89.70 89.17 68.56 67.88

4 87.08 86.38 67.77 67.29

5 91.47 91.13 74.31 73.73

6 88.43 87.74 65.49 64.83

7 88.35 87.22 74.84 73.55

8 86.17 85.29 61.80 59.37

9 87.90 87.52 66.59 66.12

10 86.10 85.65 58.59 58.10

11 86.56 85.78 71 70.09

12 84.14 83.27 72.68 71.79

13 92.16 91.91 74.57 74.35

14 83.30 81.85 66.81 65.10

General
(mean ± SD) 87.55 ± 2.45 86.36 ± 2.70 69.05 ± 4.89 68.11 ± 5.05

Table 1 highlights the best results using a bold font face. By applying a 10-fold CV,
the most accurate channel is the 13th since our TMP19 model yielded 92.16% classification
accuracy and 91.91% geometric mean. According to LOSO CV results, the best classification
accuracy is 74.84% on the 7th channel, and the best geometric mean attained on the 13th
channel by employing LOSO CV.

3.3. Voted Results

In the last phase of the TMP19, the majority voting component is availed of. We
applied the IHMV algorithm in this phase to create C-2-voted vectors. Twelve voted vectors
were generated by deploying the IHMV algorithm. The results of the voted vectors are
listed in Table 2.

Table 2 shows that the best classification accuracies were obtained by using 11th and
1st voted vectors when deploying 10-fold CV and LOSO CV, respectively. Per Table 2,
IHMV increased the classification accuracies from 92.16% and 74.84% to 95.57% and 77.93%
by deploying 10-fold CV and LOSO CV, respectively. These results are the final results of
the proposed TMP19.
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Table 2. Voted results (%) by deploying 10-fold CV and LOSO CV.

Voted Vector
10-fold CV LOSO CV

Accuracy Geometric Mean Accuracy Geometric Mean

1 94.49 94.25 77.93 77.23

2 93.24 92.45 75.39 73.46

3 94.49 94.11 77.45 76.89

4 93.96 93.30 75.17 73.28

5 95.21 94.89 77.38 76.74

6 94.20 93.57 75.41 73.81

7 95.16 94.77 76.95 76.35

8 94.49 93.88 75.58 74.13

9 95.40 95.03 76.56 75.86

10 94.94 94.40 74.89 73.62

11 95.57 95.18 75.99 75.23

12 94.90 94.32 74.84 73.41

General
(mean ± SD) 94.67 ± 0.66 94.17 ± 0.79 76.12 ± 1.08 75 ± 1.54

3.4. Final Results

Our proposed TMP19-based model generates 26 (=14 results from 14 channels + 12 voted
results) results, and this model selects the best results among the 26 generated results. Thus,
the suggested TMP19 is a self-organized feature engineering model. Moreover, two validations
were applied in the classification phase. The calculated confusion matrices of the presented
TMP19 by deploying LOSO CV and 10-fold CV are given in Figure 3.

As can be seen from Figure 3, our proposed TMP19 attained 95.57% and 77.93%
classification accuracies on the ADHD dataset with a 10-fold CV and LOSO CV, respectively.

4. Discussion

A new feature engineering model has been proposed in this research by mimicking a
deep learning structure. The main motivation of the proposed TMP19 is to extract hidden
motifs to obtain high classification performances. The TMP19 generates features at both
high levels and low levels. High-level features have been generated using wavelet bands.
Moreover, features at the frequency domain have been extracted. The threshold-based NCA
method has been used to obtain distinctive features. kNN has been employed to show
the classification capability of the generated features. The best classification results were
generated and selected from the model by applying a majority voting technique. Then the
channel-wise and voted results were given. Per the results, the most appropriate channels
are the 7th and 13th for ADHD detection. Our model attained a 95.57% classification
accuracy by deploying a 10-fold CV and a 77.93% classification accuracy using LOSO
CV. These results showed that the presented TMP19 is a successful EEG classification
model. Furthermore, we believe that we are the first team to use this dataset to develop a
machine-learning model.

The results of other state-of-art classification models and our TMP19 were compared
to highlight the classification ability of our model. These results are listed in Table 3.
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Table 3. Summary of comparison of our results with other methods developed using EEG signals.

Author Year Method Key Point(s) Result(s) (%)

Mohammadi et al. [36] 2016

Preprocessing, nonlinear feature
extraction (fractal dimension,
LLE, ApEn), mRMR, and neural
networks

- 60 subjects (30 ADHD,
30 control)
- 70:10:20 hold-out validation

Acc. = 93.65

Tenev et al. [24] 2014 SVM and voting
-117 subjects (67 ADHD,
50 control)
-10-fold CV

Acc. = 82.3

Tosun [21] 2021 Data augmentation, PSD, SE,
and LSTM

- 16 subject
- 80:20 hold-out validation Acc. = 92.15

Khoshnoud et al. [22] 2015 Preprocessing, LLE, ApEn, PNN
- 22 subject (12 ADHD,
10 control)
- 75:25 hold-out validation

Acc. = 87.5

Chen et al. [23] 2019 EEG signal to image conversion,
CNN

- 101 subject (50 ADHD,
51 control)
- 10-fold CV

Acc. = 94.67

Saini et al. [25] 2022 PCA and kNN - 157 subject (77 ADHD,
80 control) Acc. = 86.0

Tor et al. [27] 2021 Empirical mode decomposition,
Discrete wavelet transform, kNN

- 123 subjects (45 ADHD,
62 conduct disorder + ADHD,
16 conduct disorder)
- 10-fold CV

Acc.= 97.88

Dubreuil-Vall et al. [26] 2020 Preprocessing, spectrogram
conversion and CNN

- 40 subject (20 ADHD,
20 control)
- Leave pair out CV

Acc. = 88.0

Our method TQWT, TMP19, NCA, kNN, and
majority voting

- 121 subjects (61 ADHD,
60 control)
- 10-fold CV and LOSO CV

10-fold CV

Acc. = 95.57
Gm. = 95.18

LOSO CV

Acc. = 77.93
Gm. = 77.23

As can be seen from Table 3, our model produced better accuracy than the results
of other state-of-the-art methods. Tor et al. [27] achieved better accuracy than our study.
They used 3 classes with 123 subjects in the study. Classes include 45 ADHD, 62 conduct
disorder + ADHD, and 16 conduct disorder subjects, and the amount of data for each class
is small. In addition, two different validation techniques were used in this study. These are
the 10-fold CV and the LOSO CV, respectively. Another advantage is that noisy EEG signals
were used in our study. A superior side of our study to other previously presented works
is to use LOSO CV. Since reliable results have been calculated using LOSO CV, we depicted
our model’s performances in real-world applications by helping LOSO CV. Although our
proposed method exhibits a low computational complexity, it outperforms. The results
obtained show the superiority of the proposed method.

The benefits of the presented TMP:

• A novel feature generation function was introduced. This function generates motifs.
Thus, this feature generator is named TMP.

• An accurate one-dimensional signal classification architecture has been proposed by
using TMP. This model contains 19 levels. Thus, it is named TMP19.

• Simple methods have been used to create the TMP19 model. Thus, the implementation
of this model is straightforward and of low complexity.
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• TMP19 is a parametric model. Therefore, next-generation TMP-based classification
models can be proposed by using different classification methods.

• TMP19 is a highly accurate model.
• The robustness of the presented TMP19 is demonstrated by deploying a 10-fold CV

and LOSO CV.

Drawbacks:

• Parameters should be optimized to gain higher classification performances.
• Recently, authors in [37] have developed an automated system to detect ADHD and

conduct disorder in children using empirical wavelet transform and entropy features
extracted from electrocardiogram (ECG) signals. They obtained an accuracy of 88% in
classifying ADHD, ADHD + CD, and CD patients for appropriate intervention using
accessible ECG signals. In the future, ECG and heart rate variability (HRV) signals can
be used for automated ADHD detection as they can be easily acquired using wearable
devices.

• More disorders can be used to evaluate the performance of the TMP19 model.

5. Conclusions

ADHD detection using EEG signals has great potential in improving the equitable early
diagnosis of ADHD, maximizing appropriate treatments, and minimizing the potential long-
term negative impacts of this globally common neurodevelopmental condition. However,
there is a lack of consensus on the best way to utilize EEG and how machine learning may
be beneficial in optimizing this as a diagnostic tool. To overcome this problem, we proposed
a new feature generator called TMP. The main goal of the TMP is to extract distinctive
features from EEG signals. A feature engineering model was proposed by applying the
proposed feature generator—TMP. This model has 19 levels in the feature extraction phase.
Hence, it is named TMP19. TMP19 was applied to a noisy EEG signal dataset for the
detection of ADHD. Moreover, we used two validation techniques to show the robustness
of the proposed TMP19. As can be seen from Section 5, our TMP19 reached 95.57% and
77.93% classification accuracies using 10-fold CV and LOSO CV techniques, respectively.

We plan to develop an intelligent EEG signal classification application in future work.
This application will extract information from EEG signals to detect ADHD and potentially
other neurodevelopmental and mental health conditions. Moreover, we plan to devise and
develop an intelligent brain cap that will detect changes automatically.
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