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Abstract: This study aims to determine the feasibility of machine learning (ML) and patient registra-
tion record to be utilised to develop an over-the-counter (OTC) screening model for breast cancer risk
estimation. Data were retrospectively collected from women who came to the Hospital Universiti
Sains Malaysia, Malaysia for breast-related problems. Eight ML models were used: k-nearest neigh-
bour (kNN), elastic-net logistic regression, multivariate adaptive regression splines, artificial neural
network, partial least square, random forest, support vector machine (SVM), and extreme gradient
boosting. Features utilised for the development of the screening models were limited to information
in the patient registration form. The final model was evaluated in terms of performance across a
mammographic density. Additionally, the feature importance of the final model was assessed using
the model agnostic approach. kNN had the highest Youden J index, precision, and PR-AUC, while
SVM had the highest F2 score. The kNN model was selected as the final model. The model had a
balanced performance in terms of sensitivity, specificity, and PR-AUC across the mammographic
density groups. The most important feature was the age at examination. In conclusion, this study
showed that ML and patient registration information are feasible to be used as the OTC screening
model for breast cancer.

Keywords: Asian women; breast cancer; explainable artificial intelligence; machine learning; medical
consultation delays; screening model; clinical decision support systems

1. Introduction

Breast cancer is the most common cancer among women in at least 140 countries [1].
The WHO aims to reduce global breast cancer mortality by 25% annually between 2020
and 2040, which is equivalent to 2.5 million breast cancer death worldwide [2]. Generally,
breast cancer affects women above the age of 50 and the risk of having the disease increases
with increased age [3–5]. The risk factors for breast cancer are mainly divided into two
groups [6]. The inherent risk factors include a family history of breast cancer, age, and
gender, while the extrinsic risk factors include diet and lifestyle. The risk factors differ
according to the individual and population. One of the important risk factors for breast
cancer is mammographic density which reflects the amount of dense and fatty tissue in the
breast [7,8]. Women with denser breasts had four to six times higher chances of developing
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breast cancer than those with less dense breasts [9]. Asian women or women with Asian
ancestry had denser breasts compared to other populations [10].

Early detection of breast cancer is crucial in reducing the severity of the disease.
Any delay in the diagnosis and prognosis may worsen the presentation of the disease.
Generally, delay in the management of cancer is divided into two: patient delay and
provider delay [11]. Patient delay is the delay during the period between the first discovery
of the symptom and medical consultation. Provider delay is the delay between medical
consultation and the beginning of the cancer treatment. Additionally, the combination of
both types of delay is known as a total delay. However, a more complicated model of the
total delay had also been proposed. For example, the total patient delay model detailed the
total delay into five stages [12] while the total breast cancer delay model detailed it into
eight stages [13]. Nonetheless, a total delay of more than 1 to 3 months has been observed to
be associated with advanced stages of cancer and reduced survival of the patients [11,14,15].
Thus, there is a need to improve the efficiency of the medical workflow for breast cancer
patients in arranging a medical consultation.

Artificial intelligence (AI) is a subfield of computer science that aims to develop a
system capable of performing a task that usually requires human intelligence. The rise
of AI is expected to improve many areas including the fields of healthcare and medicine.
AI had been studied to be used as a medical analytic tool including for drug discovery,
genomic medicine, disease prognosis and diagnosis, and personalised healthcare [16,17].
For example, AI has been shown to aid the diagnosis of fibrotic lung diseases, tubercu-
losis, and diabetes in research studies [18–20]. AI also had been shown to track disease
progression in diseases such as systemic sclerosis [21], osteoarthritis [22], and mild cogni-
tive impairment [23], and predict disease complications in diseases such as diabetes [24],
Crohn’s disease [25], and atrial fibrillation [26]. However, the adoption of AI in healthcare
and medicine is slower than in other fields [27]. Explainable AI (XAI) aims to make the
AI more interpretable and understandable to the end-users. Thus, the use of XAI will
further help in the successful implementation of AI in healthcare. Generally, the approaches
used in the XAI can be divided into model-specific and model-agnostic approaches [28].
Model-specific approaches are limited to specific machine learning (ML) models. One of the
main limitations of this approach is that a comparison between models is not appropriate.
Model-agnostic approaches overcome this limitation and are applicable to any ML model.
XAI had been researched for diagnosis and prediction of glioblastoma [28], colorectal can-
cer [29], thoracic cancer [30], renal cell carcinoma [31], COVID-19 [32], chronic wounds [33],
and Alzheimer’s disease [34]. The use of XAI in medicine is expected to provide insights
and transparency into the AI models. Thus, XAI can further help in establishing trust and
confidence among medical professionals in the utilisation and implementation of AI in
clinical settings [35].

This study aims to develop an over-the-counter (OTC) ML model for breast cancer
screening to be deployed in a breast clinic using patient registration records. The model
can accelerate the medical workflow for breast cancer management and provide women
with a high probability of breast cancer with a timely medical consultation. In other words,
women predicted by the model to have a suspicious breast case can be given a high priority
for medical consultation with clinicians. Additionally, the performance of the model will be
evaluated across dense and non-dense cases. Lastly, we aim to determine the top influential
features of the OTC screening model.

2. Materials and Methods
2.1. Data

Breast cancer data were collected retrospectively from the Breast Cancer Awareness
and Research Unit (BestARi), Department of Radiology, and Department of Pathology at
Hospital Universiti Sains Malaysia (HUSM). BestARi is a breast cancer resource centre in
HUSM. BestARi receives women with breast-related problems from the northeast coast
region of Malaysia, especially from the state of Kelantan. The breast cancer data records
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in BestARi were limited to 1 January 2014 and 30 June 2021. Twenty-seven variables were
collected in this study. Twenty-four features were collected from the BestARi including
(1) date of examination; eight features related to sociodemographic and personal informa-
tion: (1) age at examination, (2) race, (3) marital status, (4) number of children, (5) age at
menarche, (6) weight, (7) height, (8) handedness; six features regarding the symptoms or
patient complaints: (1) lump, (2) nipple discharge, (3) nipple retraction, (4) axillary mass,
(5) pain, and (6) skin changes; and nine features regarding the medical history: (1) history
of breast surgery or implant, (2) history of breast trauma, (3) history of birth control or
hormone replacement therapy, (4) history of the previous mammography, (5) history of
breast self-examination, (6) breastfeeding history, (7) history of total abdominal hysterec-
tomy bilateral salpingo-oophorectomy (TAHBSO), (8) family history of breast cancer, and
(9) menopausal status. All features were used in the ML model development except for the
date of examination as the feature provided no information for the model development.
Another two variables collected from the Department of Radiology, HUSM, were breast
imaging-reporting and data system (BIRADS) classification information and BIRADS den-
sity (or mammographic density). Both variables were used to classify the cases into dense
vs. non-dense groups and normal vs. suspicious groups. Finally, the last information
collected from the Department of Pathology, HUSM, was histopathological examination
(HPE) results. The latter three variables were used to determine the outcome variable.

The data from the Department of Radiology and Department of Pathology were
combined with BestARi’s data if both data were dated within a year after the date of
BestARi’s data for each patient. The latest medical record was taken if patients had
several records in the BestARi and a single record from the Department of Radiology or
Department of Pathology. Afterwards, a body mass index (BMI) was further calculated
from the individual weight and height and was added to the existing list of features. Each
patient was classified as a normal or suspicious class. The normal class was patients with
a BIRADS classification of 1 or who had a diagnosis of normal from the HPE result. The
suspicious class was patients with a BIRADS classification of 2, 3, 4, 5, and 6 or who had a
diagnosis of benign or malignant subtype of breast cancer from the HPE result. Patients
with a BIRADS classification of 0 and missing BIRADS classification or mammographic
density were excluded from the study. Additionally, non-dense breast women were those
with BIRADS density of A and B, while dense breast women were those with BIRADS
density of C and D. Table 1 presents the characteristics of the collected data.

Table 1. Characteristics of the features collected from Hospital Universiti Sains Malaysia.

Characteristic Normal, n = 230
n (%)

Suspicious, n = 861
n (%)

Missing Values
n (%) Overall, n = 1091

Age at examination 1, 2 50.0 (8.1) 53.7 (9.6) 3 (0.3%) 52.9 (9.4)
Age at menarche 1, 2 13.0 (1.5) 13.1 (1.5) 97 (8.9%) 13.1 (1.5)

No of children 1, 2 3.8 (2.7) 3.6 (2.4) 85 (7.8%) 3.7 (2.5)
Weight (kg) 1, 2 64.2 (12.9) 63.5 (12.8) 263 (24.0%) 63.7 (12.8)
Height (cm) 1 156.4 (5.5) 155.0 (6.4) 692 (63.0%) 155.2 (6.3)

BMI 1, 2 27.1 (5.7) 26.7 (5.6) 696 (64.0%) 26.8 (5.6)
Race 2 34 (3.1%)

Chinese 21 (9.4%) 112 (13.4%) 133 (12.6%)
Indian 0 (0.0%) 4 (0.5%) 4 (0.4%)
Malay 201 (89.7%) 706 (84.8%) 907 (85.8%)
Others 0 (0.0%) 3 (0.4%) 3 (0.3%)

Siamese 2 (0.9%) 8 (1.0%) 10 (0.9%)
Marriage status 2 59 (5.4%)

Divorced 0 (0.0%) 4 (0.5%) 4 (0.4%)
Married 208 (95.9%) 759 (93.1%) 967 (93.7%)
Single 8 (3.7%) 46 (5.6%) 54 (5.2%)

Widowed 1 (0.5%) 6 (0.7%) 7 (0.7%)
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Table 1. Cont.

Characteristic Normal, n = 230
n (%)

Suspicious, n = 861
n (%)

Missing Values
n (%) Overall, n = 1091

Breastfeeding 2 541 (50.0%)
No 30 (24.4%) 131 (30.7%) 161 (29.3%)
Yes 93 (75.6%) 296 (69.3%) 389 (70.7%)

Lump2 41 (3.8%)
No 148 (67.0%) 588 (70.9%) 736 (70.1%)
Yes 73 (33.0%) 241 (29.1%) 314 (29.9%)

Nipple discharge 2 52 (4.8%)
No 205 (94.9%) 793 (96.4%) 998 (96.1%)
Yes 11 (5.1%) 30 (3.6%) 41 (3.9%)

Nipple retraction 2 45 (4.1%)
No 213 (97.3%) 784 (94.8%) 997 (95.3%)
Yes 6 (2.7%) 43 (5.2%) 49 (4.7%)

Axillary mass 2 55 (5.0%)
No 203 (94.0%) 764 (93.2%) 967 (93.3%)
Yes 13 (6.0%) 56 (6.8%) 69 (6.7%)

Pain2 54 (4.9%)
No 172 (80.0%) 691 (84.1%) 863 (83.2%)
Yes 43 (20.0%) 131 (15.9%) 174 (16.8%)

Skin changes 2 55 (5.0%)
No 204 (94.0%) 772 (94.3%) 976 (94.2%)
Yes 13 (6.0%) 47 (5.7%) 60 (5.8%)

Breast surgery/implant 2 76 (7.0%)
No 143 (69.1%) 531 (65.7%) 674 (66.4%)
Yes 64 (30.9%) 277 (34.3%) 341 (33.6%)

Trauma 2 108 (9.9%)
No 191 (94.6%) 754 (96.5%) 945 (96.1%)
Yes 11 (5.4%) 27 (3.5%) 38 (3.9%)

BC-HR2 51 (4.7%)
No 130 (59.1%) 554 (67.6%) 684 (65.8%)
Yes 90 (40.9%) 266 (32.4%) 356 (34.2%)

Previous mammogram 2 40 (3.7%)
No 116 (52.5%) 348 (41.9%) 464 (44.1%)
Yes 105 (47.5%) 482 (58.1%) 587 (55.9%)

Breast self-examination 2 106 (9.7%)
No 44 (20.9%) 149 (19.3%) 193 (19.6%)
Yes 167 (79.1%) 625 (80.7%) 792 (80.4%)

Handedness 2 667 (61.0%)
Left 6 (7.4%) 20 (5.8%) 26 (6.1%)

Right 75 (92.6%) 323 (94.2%) 398 (93.9%)
TAHBSO 2 70 (6.4%)

No 187 (86.6%) 720 (89.4%) 907 (88.8%)
Yes 29 (13.4%) 85 (10.6%) 114 (11.2%)

Family history 2 520 (48.0%)
No 101 (80.2%) 352 (79.1%) 453 (79.3%)
Yes 25 (19.8%) 93 (20.9%) 118 (20.7%)

Menopause status 2 0 (0.0%)
No 139 (60.4%) 385 (44.7%) 524 (48.0%)
Yes 91 (39.6%) 476 (55.3%) 567 (52.0%)

Mammographic density 0 (0.0%)
Non-dense 124 (53.9%) 468 (54.4%) 592 (54.3%)

Dense 106 (46.1%) 393 (45.6%) 499 (45.7%)

Notes: BestARi = breast cancer awareness and research unit; Family history = family history of breast cancer;
BC-HR = history of birth control or hormone replacement; TAHBSO = history of total abdominal hysterectomy
bilateral salpingo-oophorectomy; 1 mean (SD); 2 Features included in the model development.

2.2. Pre-Processing Steps

Initially, all 24 features including the additional variable of BMI were included in the
model development. Next, missing values in the data were imputed using a bagged tree
model. Subsequently, numerical variables with absolute correlations above 0.8 with other
numerical variables were removed. Then, the training dataset was balanced using a random
over-sampling examples (ROSE) algorithm [36]. All numerical features were normalised
and transformed using a Yeo-Johnson transformation [37]. A dummy coding variable was
created for all categorical features for all ML models except for the random forest model.
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The random forest model had been shown to have at least similar performance if not better
when categorical features were used as factor variables as opposed to when the dummy
variables were used in the model [38]. The ROSE algorithm was implemented using a
themis package version 1.0.0 [39]. The remaining pre-processing steps were implemented
using a recipes package 1.0.1 [40].

2.3. Machine Learning Models

Eight OTC screening models were developed from ML methods including k-nearest
neighbour (kNN), elastic-net logistic regression, multivariate adaptive regression splines
(MARS), artificial neural network (ANN), partial least square (PLS), random forest, support
vector machine (SVM), and extreme gradient boosting (XGBoost). SVM was implemented
using a radial basis function kernel which used a nonlinear class boundary to maximize the
width margin between the class. All ML algorithms were implemented using the parsnip
package version 1.0.1 [41] with the kknn package version 1.3.1 [42] as a backend for kNN,
glmnet package version 4.1-4 [43] for elastic-net logistic regression, earth package version
5.3.1 [44] for MARS, nnet package version 7.3-17 [45] for ANN, mixOmics package version
6.16.3 [46] for PLS, ranger package version 0.14.1 [47] for random forest, kernlab package
version 0.9-31 [48] as a backend for SVM, and xgboost package 1.6.0.1 [49] for XGBoost. R
version 4.1.3 was used to develop all the screening models [50].

2.4. Model Comparison and Hyperparameter Tuning

The data were split into 80% development dataset and 20% validation dataset. The
development dataset was further split into nested cross-validation groups for model com-
parison and hyperparameter tuning. The outer folds were split into 10-fold cross-validation
groups of 80% training and 20% testing datasets. Each training dataset of each fold was
further split into 25 bootstrap samples (inner folds). The validation dataset was further
split into a dense breast dataset and a non-dense breast dataset. Thus, there were three
validation datasets available: (4.1-41) the whole validation dataset, (2) the dense breast
validation dataset, and (4.1-43) the non-dense breast validation dataset.

A random search with a Latin hypercube grid design of 500 combinations of hyper-
parameters was used for model comparison and hyperparameter tuning. Firstly, all the
performance metrics from the results of the bootstrapped samples were summarised by the
mean and standard deviation to obtain the descriptive result for each model. The perfor-
mance metrics of each model were compared using a one-way ANOVA and subsequently
pairwise independent t-test if the former test was significant. A p-value below 0.05 was
considered significant. Additionally, the p-values for the post hoc pairwise independent
t-test were adjusted using Bonferroni corrections. Once the best model was identified,
the hyperparameters were chosen based on the highest performance metrics from the
bootstrapped sample. Figure 1 elucidates the flow of the analysis for this study. Finally, the
best model was re-fit using the chosen hyperparameters on the whole development dataset
to obtain the final model.

2.5. Performance Metrics

Four performance metrics used for model comparison were precision, precision recall-
area under the curve (PR-AUC), F2 score, and Youden J index. Once the final model was
identified, four hyperparameter tuning results with the highest mean of the aforementioned
performance metrics were determined. The best hyperparameters result was selected from
the four tuning results based on the highest sensitivity value. The performance metrics
were defined below:

Precision =
TP

TP + FP

Recall/sensitivity =
TP

TP + FN
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F2 score =
(

1 + 22
) precision × recall

22 × precision + recall

Speci f icity =
TN

TN + FP
Youden J index = sensitivity + speci f icity − 1

A true positive (TP) case was defined as a suspicious case and predicted suspicious by
the model, while a true negative (TN) case was a normal case and predicted normal by the
model. A false negative (FN) case was a suspicious case but predicted normal by the model,
while a false positive (FP) case was a normal case but predicted suspicious by the model.
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2.6. Explainable Approach

The model agnostic approach was used to estimate the variable importance for the
final ML model. The variable importance was estimated as a mean change in the value of
the loss function after variable permutations. The number of permutations was set to 50.
The loss function was defined as 1—PR-AUC. The PR-AUC in the loss function reflected the
performance of the ML model. Thus, if the feature was important, the performance of the
ML model would worsen after permutating the feature. The worse performance of the ML
model would in turn result in a high value of the loss function. Hence, the most important
feature was the feature with the highest value of 1—PR-AUC. Only the top fifteen important
variables were displayed in the variable importance plot. The explainable approach was
applied using DALEX and DALEXtra packages versions 2.4.2 and 2.2.1 [51,52].
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3. Related Works

Numerous research had been conducted related to breast cancer and ML. Previous
studies had used different types of data including imaging modalities, genomic data,
and clinical data. Most studies involving ML and breast cancer utilised imaging data
especially mammograms and ultrasound [53], while only several studies utilised tabular
data. Additionally, a public dataset such as Wisconsin diagnostic breast cancer (WDBC)
dataset, despite the tabular nature of the data, the features were derived from the fine needle
aspirate imaging of breast mass [54]. Other types of tabular data used for ML classification
of breast cancer were sociodemographic, clinical, histological, and pathological data. These
types of tabular data were used to predict breast cancer recurrence [55] and survival [56].
Additionally, for breast cancer risk estimation such as screening and diagnosis, imaging
data and imaging-derived features were commonly utilised [53]. The use of imaging data in
previous studies limited the utilisation of the ML model in the early phase of the screening
stage prior to medical consultation.

Several ML algorithms had been used in previous studies that utilised tabular data
for the prediction of breast cancer, breast cancer recurrence, and survival of breast cancer
patients. Table 2 presents the summary of the previous research related to machine learning
classification and breast cancer that utilised tabular data such as sociodemographic, medical
history, clinical, pathological, histological, molecular, and genomic data. SVM had been
shown to outperform other ML models in several studies involving the prediction of
breast cancer recurrence and distant recurrence with the best accuracy at 0.96 [57–59].
However, other studies found ANN and random forest had the best performance in
predicting breast cancer recurrence [60,61]. Moreover, for the prediction of the survival of
breast cancer patients, naïve Bayes, deep learning, and multilayer perceptron (MLP) had
the best accuracy at 0.80, 0.83, and 0.88, respectively [60,62,63]. All the aforementioned
studies utilised different datasets which may contribute to the difference in the model
performance. Additionally, for breast cancer prediction, random forest showed a promising
result with accuracy and an area under the curve (AUC) of 0.98 [64]. Other studies showed
that XGBoost and MLP had better performance and outperformed random forest in their
respective studies [65,66]. However, all three studies except for Hout et al. [66] used clinical
data such as the level of glucose, insulin, leptin, and adiponectin which was beyond the
initial screening stage of breast cancer. Additionally, a meta-analysis study had shown
that SVM outperformed the other classifier such as ANN, decision tree, naive Bayes, and
kNN in breast cancer risk estimation [67]. This meta-analysis was limited to ML models
performed on imaging data, thus, the performance of the aforementioned ML models as an
initial breast cancer screening model utilising a tabular dataset have yet to be explored.

Table 2. Summary of the previous works related to machine learning classification and breast cancer
that utilised tabular data.

Study Dataset ML Classifier Purpose Performance Metrics 1

Kim 2012
[57]

Clinical, histological,
and pathological data

SVM 2, ANN, Cox
regression

Breast cancer
recurrence

Accuracy = 0.85
AUC = 0.85

Sensitivity = 0.89
Specificity = 0.73

Ahmad 2013 [58]
Sociodemographic,

clinical, and
pathological data

DT, SVM 2, ANN
Breast cancer

recurrence

Accuracy = 0.96
Sensitivity = 0.97
Specificity = 0.95

Cirkovic 2015 [60] Clinical, histological,
and molecular data

ANN 2, SVM, LR, DT,
NB

Breast cancer
recurrence

Accuracy = 0.93
AUC = 0.95

Sensitivity = 0.96
Specificity = 0.83
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Table 2. Cont.

Study Dataset ML Classifier Purpose Performance Metrics 1

ANN, SVM, LR, DT, NB 2 Breast cancer survival

Accuracy = 0.80
AUC = 0.83

Sensitivity = 0.65
Specificity = 0.85

Sun 2018
[62] Clinical and genomic data DL 2, SVM, RF, LR Breast cancer survival

Accuracy = 0.83
Sensitivity = 0.20
Specificity = 0.95
Precision = 0.75

Kalafi 2019
[63]

Sociodemographic,
clinical, and pathological

data
MLP 2, DT, RF, SVM Breast cancer survival

Accuracy = 0.88
Sensitivity = 0.96
Specificity = 0.83
Precision = 0.79
F1 score = 0.87

Zeng 2019
[59]

Sociodemographic,
clinical, histological, and

pathological data
SVM 2 Breast cancer distant

recurrence

AUC = 0.87
Sensitivity = 0.47
Precision = 0.68
F1 score = 0.56

Hou 2020
[66]

Sociodemographic and
medical history XGBoost 2, RF, DL, LR Breast cancer prediction

Accuracy = 0.67
AUC = 0.74

Sensitivity = 0.66
Specificity = 0.69

Kabiraj 2020 [61] Sociodemographic and
clinical data RF 2, XGBoost Breast cancer recurrence

Accuracy = 0.75
Sensitivity = 0.94
Specificity = 0.32
Precision = 0.72
F1 score = 0.64

Khatun 2021
[65]

Sociodemographic and
clinical data NB, RF, MLP 2, LR Breast cancer prediction

AUC = 0.89
Sensitivity = 0.85
Precision = 0.85
F1 score = 0.84

Anisha 2021 [64] Sociodemographic and
clinical data RF 2 Breast cancer prediction Accuracy = 0.98

AUC = 0.98

AUC = area under the curve, SVM = support vector machine, ANN = artificial neural network, DT = decision tree,
LR = logistic regression, NB = naive Bayes, DL = deep learning, RF = random forest, MLP = multilayer perceptron.
1 Performance metrics of the best or final model in the study. 2 Model with best performance metrics/selected as
the final model in the study.

4. Results
4.1. Model Comparison

Eight OTC screening models were developed from ML. kNN had the highest Youden
J index, precision, and PR-AUC, while the ML model with the highest F2 score was SVM.
Table 3 presents the descriptive performance of all ML models, while Figure 2 further
illustrates the performance comparison of all models.

Table 3. Descriptive performance of all machine learning models.

Models Youden J Index
Mean (SD)

F2 Score
Mean (SD)

Precision
Mean (SD)

PR-AUC
Mean (SD)

k-nearest neighbour 0.58 (0.06) 0.75 (0.03) 0.83 (0.04) 0.86 (0.02)
Elastic-net logistic regression 0.17 (0.05) 0.62 (0.06) 0.59 (0.03) 0.63 (0.03)

MARS 0.21 (0.05) 0.60 (0.04) 0.62 (0.02) 0.65 (0.03)
Artificial neural network 0.25 (0.05) 0.62 (0.04) 0.64 (0.03) 0.67 (0.03)

Partial least square 0.19 (0.01) 0.59 (0.01) 0.61 (0.01) 0.62 (0.01)
Random forest 0.35 (0.04) 0.66 (0.03) 0.69 (0.02) 0.74 (0.03)

Support vector machine 0.08 (0.16) 0.79 (0.09) 0.55 (0.08) 0.64 (0.06)
XGBoost 0.17 (0.07) 0.62 (0.09) 0.60 (0.04) 0.65 (0.03)

MARS = multivariate adaptive regression splines, XGBoost = extreme gradient boosting, PR-AUC = precision
recall-area under the curve.
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Figure 2. Model comparison across four performance metrics.

One-way ANOVA showed that there was a significant difference between the mean
of Youden J index, F2 score, precision, and PR-AUC among all ML models (Table 4).
Further post hoc pairwise comparison using t-test indicated all pairwise comparisons were
significant after Bonferroni correction except for XGBoost vs. elastic-net logistic regression
for Youden J index and XGBoost vs. elastic-net logistic regression, ANN vs. elastic-net
logistic regression, and XGBoost vs. ANN for F2 score (Figure 3). Thus, kNN was identified
to be the best ML model for the purpose of OTC breast cancer screening in this study.

Table 4. Model comparison using one-way ANOVA test.

Models n
Youden J Index F2 Score Precision PR-AUC

F-Statistics
(df1, df2) p-Value F-Statistics

(df1, df2) p-Value F-Statistics
(df1, df2) p-Value F-Statistics

(df1, df2) p-Value

kNN 5000

21,471
(7, 38,132)

p < 0.01 8511
(7, 38,132)

p < 0.01 24,768
(7, 38,132)

p < 0.01 27,694
(7, 38,132)

p < 0.01

EN-LR 5000
MARS 3140
ANN 5000
PLS 5000
RF 5000

SVM 5000
XGBoost 5000

kNN = k-nearest neighbour, EN-LR = elastic-net logistic regression, MARS= multivariate adaptive regression
splines, ANN = artificial neural network, PLS = partial least square, RF = random forest, SVM = support vector
machine, XGBoost = extreme gradient boosting, PR-AUC = precision recall-area under the curve.
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4.2. Hyperparameter Tuning

Table 5 presents the four results of hyperparameter tuning with the highest Youden
J index, F2 score, precision, and PR-AUC. Models 1, 2, and 4 had lower specificity than
sensitivity, while model 3 had it otherwise. kNN model 3 was selected as the best hyperpa-
rameters tuning result as it had the highest sensitivity.

Table 5. Top four hyperparameter tuning results of k-nearest neighbour with the highest Youden J
index, F2 score, precision, and precision recall-area under the curve.

Model Fold Neighbours
Distance

Weighting
Function

Minkowski
Distance

Sensitivity
Mean (SD)

Specificity
Mean (SD)

Youden J
Index

Mean (SD)

F2 Score
Mean (SD)

Precision
Mean (SD)

PR-AUC
Mean (SD)

1 1 1 Inversion 1.24 0.77 (0.03) 0.88 (0.03) 0.65 (0.04) 0.78 (0.03) 0.87 (0.03) 0.88 (0.02)
2 3 10 Triweight 1.92 0.76 (0.03) 0.87 (0.03) 0.63 (0.03) 0.78 (0.02) 0.86 (0.02) 0.89 (0.02)
3 10 3 Rank 1.99 0.82 (0.02) 0.79 (0.03) 0.62 (0.03) 0.82 (0.02) 0.81 (0.03) 0.88 (0.02)
4 10 4 Triweight 1.97 0.79 (0.02) 0.87 (0.03) 0.66 (0.03) 0.80 (0.02) 0.87 (0.03) 0.88 (0.02)

PR-AUC = precision recall-area under the curve.

4.3. Explainable Approach

Table 6 displays the performance of the final kNN model on the validation dataset
across mammographic density. The model had a higher sensitivity on the non-dense cases
and a higher specificity on the dense cases. Additionally, the performance differences
across the mammographic density were very minimal as shown in Table 5. Furthermore,
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Figure 4 indicated that there was no difference between PR-AUC of non-dense and dense
breast women for the final kNN model as both lines were overlapped.

Table 6. Performance metrics across mammographic density on the validation dataset.

Performance Metrics
Validation Dataset

Overall Non-Dense Dense

Sensitivity 0.74 0.76 0.71
Specificity 0.34 0.25 0.43

Youden J index 0.08 0.01 0.15
F2 score 0.75 0.77 0.73
Precision 0.80 0.80 0.81
PR-AUC 0.82 0.83 0.82
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Figure 5 illustrates the top fifteen influential features of the final ML model. The top
three most influential variables were age at examination, birth control/hormone replace-
ment, and race. In terms of patient complaints, breast pain, breast lump, and breast trauma
were the most important factors that influence the model’s prediction as opposed to the
other complaints.
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5. Discussion

In this study, we evaluated the feasibility of OTC breast cancer screening models devel-
oped from ML. The model was aimed to predict women with suspicious breast problems or
women with a high probability of developing breast cancer. The screening model used the
information obtained during patient registration prior to a medical consultation with the
clinician. Thus, patients with a suspicious breast issue would be prioritised at the screening
stage and referred to a breast cancer specialist for timely consultation. Previous studies
showed that early detection of breast cancer reduces its mortality [68,69]. Additionally, one
of the factors of severe breast cancer presentation and poor survival among breast cancer
patients was a delay in seeking medical treatment [70–73]. The development of the OTC
screening model would be beneficial in minimising the time between a woman first noticing
a symptom and arranging a medical consultation. At least about 17% of women with breast
cancer symptoms in European countries had a delayed medical consultation of at least 3
months or more [74]. In southeast Asian countries such as Malaysia, a delay in medical
consultation was estimated at 2 months [75]. In general, shortening the delay in arranging
medical consultations would be helpful for the prognosis of breast cancer women.

OTC models were developed from eight ML models in this study. The kNN models
were significantly better than the other seven models in terms of the Youden J index,
precision, and PR-AUC. Additionally, in terms of F2 score SVM had the highest performance
value. Thus, the best model based on the four-performance metrics was kNN followed by
random forest and ANN. The SVM model had the lowest Youden J index and precision
and one of the lowest PR-AUC, despite having the highest F2 score. SVM was believed
to work well with imbalanced datasets compared to other ML models, however, this
was not the case in our study [76]. Additionally, the final kNN model had a balanced
performance between sensitivity and specificity (Table 4). In the hyperparameters tuning
stage, we prioritised ML models with a higher sensitivity value. The OTC model aimed to
be deployed in the breast clinic during the registration prior to the medical consultation.
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The model with high sensitivity would prioritise women with a suspicious breast issue
which in turn accelerates the needed process for those with medical urgency.

The features used for the development of ML screening models were sociodemo-
graphic information, medical history, and patient complaints. A study conducted to
develop ML models to predict breast cancer in Chinese women included ten risk factors
that achieved the best sensitivity and specificity of 0.66 and 0.69 using XGBoost [66]. This
study achieved the sensitivity and specificity of 0.82 and 0.79, respectively, using kNN.
Therefore, our study showed that adding patient symptoms or complaints to the features
used in the development of the screening model improved the predictive performance of
the screening model. Another study conducted to predict breast cancer using laboratory
data showed the best precision performance at 0.85 using ANN [65] while the precision
for our final kNN model was at 0.81. Although the performance of our model was slightly
lower, however, obtaining laboratory data before medical consultation was unfeasible and
impractical in our study.

Mammographic density is a known risk factor for developing breast cancer [77]. Asian
women had a higher mammographic density than non-Asian women [78,79], thus, having
a higher risk of getting breast cancer. For example, in Malaysia, Chinese women had been
shown to have denser breasts than the other races [80,81]. A few studies denoted that the
proportion of women who attended mammogram procedures in Malaysia was at least
half of them were women with dense breasts [82,83]. An ML screening model aimed to
be applied to this population should take this information into account. However, it was
inappropriate to include the mammographic density as one of the features in the screening
model as the density was known at a later stage after medical examination. The final kNN
model had a slightly higher sensitivity and specificity in a non-dense and dense group,
respectively (Table 6). However, the comparison of the PR-AUC of the model indicated that
there was no performance difference between the two groups. Additionally, the explainable
ML revealed the most significant feature in the final model was the age at examination.
The incidence of breast cancer had been shown to increase with age [84]. However, breast
cancer presented at a younger age tended to be more aggressive and at a higher stage of
cancer [84–86]. Thus, in developing the ML screening model, misclassification of suspicious
cases as normal cases especially in younger women could be a catastrophic error. Moreover,
there were two modifiable features which were weight and breast self-examination (BSE).
Weight control had been suggested to reduce breast cancer risk [87,88]. Although BSE
did not relate to breast cancer risk, frequent BSE led to an increased incidence of breast
cancer [87]. Additionally, there were three influential features related to patient complaints
including breast pain, breast lump and breast trauma.

This study used secondary data collected from a university- and research-based
hospital in Kelantan, Malaysia. The data was further validated by a radiologist and
pathologist to ensure the good quality of the data. However, our study still had a few
limitations. One of the main limitations of this study was the size of the data to develop
our screening models. The lack of data was a prevalent issue in the application of ML in
healthcare [89]. However, this issue was worsened in our study as the dataset had missing
values and imbalanced outcome classification. Subsequently, we used a bagged tree model
and ROSE algorithm to overcome these issues, and undeniably larger data will further
improve our model. Additionally, we only included one hospital in our study as we utilised
information from patient registration records which were specific to the BestARi, HUSM at
the time this study was conducted. Including more hospitals in the study was not feasible
due to the lack of standardisation in the patient registration record among the hospitals.
However, future studies should aim to include more hospitals, if possible, thus increasing
the size of the data. Nonetheless, the challenges and approaches presented in the study
reflected a real workflow in the development and application of the OTC ML model for
breast cancer screening.
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6. Conclusions

We evaluated eight ML to be developed as an OTC screening model for breast cancer.
We used patient registration records including sociodemographic, medical history, and
patient complaints as features for the development of the screening models. This study
found that the OTC screening models developed from the ML and patient registration
records show promising performance. The screening models can be deployed in a breast
clinic and improve the workflow of breast cancer management. Thus, the deployment of
the model will reduce patient delays in arranging investigations and consultations from
the breast cancer team.
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