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Abstract: Substantial milestones have been attained in the field of heart failure (HF) diagnostics and
therapeutics in the past several years that have translated into decreased mortality but a paradoxical
increase in HF-related hospitalizations. With increasing data digitalization and access, remote
monitoring via wearables and implantables have the potential to transform ambulatory care workflow,
with a particular focus on reducing HF hospitalizations. Additionally, artificial intelligence and
machine learning (AI/ML) have been increasingly employed at multiple stages of healthcare due to
their power in assimilating and integrating multidimensional multimodal data and the creation of
accurate prediction models. With the ever-increasing troves of data, the implementation of AI/ML
algorithms could help improve workflow and outcomes of HF patients, especially time series data
collected via remote monitoring. In this review, we sought to describe the basics of AI/ML algorithms
with a focus on time series forecasting and the current state of AI/ML within the context of wearable
technology in HF, followed by a discussion of the present limitations, including data integration,
privacy, and challenges specific to AI/ML application within healthcare.

Keywords: machine learning; heart failure; remote monitoring; pressure sensors; time-series analysis

1. Introduction

Despite progress in understanding the pathophysiology of heart failure (HF), it re-
mains a significant contributor to global morbidity and mortality. While continuous efforts
to improve the understanding of HF over the past two decades have translated into a
reduction in mortality, HF-related hospitalizations have increased over time [1]. Moreover,
with increasing complexity of HF patients and an increasing proportion of these patients re-
ceiving implantable devices, the consequent costs incurred by the United States healthcare
system was $43 billion in 2020 alone and are projected to increase to $78 billion by 2030 [2,3].
Inpatient hospitalizations, contributing around 80 percent of the total medical costs for HF,
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have critical prognostic implications [4]. HF hospitalizations are also associated with a high
readmission rate, with nearly 1 in 5 patients getting readmitted within 30 days and every
other patient getting rehospitalized by 6 months [5,6]. Therefore, there is a pressing need
for novel approaches to reduce the incidence of HF-related hospitalizations [2,7]. While
guideline-directed medical therapy coupled with close follow-up can reduce the incidence
of HF hospitalizations, the paucity of widely available medical resources and workforce
limits the ability to tackle the issue of HF hospitalizations and readmissions [8].

The use of wearable device technology and implantable cardiac devices have ushered
in a new approach in the field of cardiovascular diagnostics in recent years, offering
healthcare providers with an opportunity to monitor disease dynamics remotely and
creating a window of opportunity to intervene in a timely and more effective manner—
thereby potentially avoiding hospitalizations secondary to hemodynamic decompensations
and adverse cardiac events [9,10]. This can translate into increased healthcare system
productivity in two ways (i) a higher proportion of individuals can be intervened upon
remotely, leading to better outcomes, and (ii) medical resources can be judiciously diverted
to individuals with advanced HF who are prone to frequent decompensations, thereby
improving overall outcomes.

While the current state of wearables aims to reduce adverse cardiac events, it can be
potentially utilized in a multitude of ways owing to the unique nature of the remotely
collected data. Clinical variables are transmitted longitudinally over time, and the massive
chunks of timestamped data can be analyzed to study disease trajectories and identify
impending cardiac events. Moreover, when assembled from multiple patients, these vari-
ables can be used to phenogroup similar individuals, identify high-risk patients, develop
risk and survival models, and discover new variables imparting worse prognoses. The
current statistical models are limited by their ability to include finite datasets and the
scientific assumptions inherent to the statistical model used. Conversely, artificial intel-
ligence and machine learning (AI/ML) approaches require minimal assumptions, can
illustrate complex, non-linear relationships as often observed in biologically derived data,
and incorporate multiple variables for data modeling.

Given the above advantages, AI/ML models have been tested widely and have shown
promising results when studied in conjunction with their statistical counterparts in the
field of cardiovascular medicine [11]. With the evolution of AI/ML and the dawn of digital
health in HF, AI/ML can be envisioned to play a significant role in improving the current
understanding and monitoring of HF. In this review, we sought to introduce the concepts
of AI/ML algorithms and time series analysis, the current state of wearable devices in
HF, and the potential applications of AI/ML in wearable technology. Finally, we describe
the limitations at present in adopting AI/ML technology, the challenges with digital data
sharing and integration in healthcare, and discuss potential solutions.

2. Introduction to AI/ML and Time-Series Forecasting

As described by Arthur Samuel, ML is a field of study that provides learning capa-
bility to computers without being explicitly programmed [12]. Learning happens when
computers are fed with large amounts of data and a known output (i.e., training data). It
often requires high computational power but can unravel non-linear, implicit relationships
between the fed variables and the outcome of interest. Once trained, these computational
algorithms can process unseen data to predict meaningful outcomes. ML has been applied
widely in cardiovascular medicine in the last few years and can broadly be classified into
unsupervised and supervised ML (Figure 1).
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cessed in an unsupervised fashion (i.e., without training data) to understand relationships between 
variables, clustering, etc. Supervised machine learning, on the other hand, requires a training da-
taset, which can be used to either infer quantitative relationships (regression models) or classify data 
into training outcomes (classification). Abbreviations: SVM: Support Vector machines; RF: Random 
Forest. Adapted from Gautam et al. [13]. 

Unsupervised ML is a branch of ML whereby structured data, without any data la-
bels, is fed into an algorithm to understand hidden relationships within data points. Data 
mining can be done to cluster similar data points into various groups, which can be used 
for phenogrouping (clustering algorithms such as k-means, hierarchical, etc.). Alterna-
tively, association algorithms can be employed to help find relationships between data 
points themselves (Apriori and Equivalence Class Clustering and bottom-up Lattice Tra-
versal (ECLAT) algorithms). Association algorithms have been applied vastly in market 
basket analysis to analyze customer purchasing patterns and have been recently em-
ployed in medicine. Moreover, unsupervised ML can also condense multiple data points 
into fewer dimensions (dimensionality reduction) via approaches such as principal com-
ponent analysis. Supervised ML, on the other hand, requires an initial data labeling of the 
structured data, which is then fed through training algorithms to compute relationships 
between variables and an outcome of choice. The algorithms can be trained to either clas-
sify an output to predefined discrete categories (classification algorithms) or quantify re-
lationships between variables (regression algorithms) [14]. The above-mentioned tech-
niques have been applied in the field of HF for initial diagnosis, modeling disease prog-
noses, goal-directed medical therapy (GDMT) optimization, predicting outcomes for de-
vice therapy interventions, etc. (Figure 2) [13]. 

Figure 1. An overview of unsupervised and supervised machine learning. Labeled data can be
processed in an unsupervised fashion (i.e., without training data) to understand relationships between
variables, clustering, etc. Supervised machine learning, on the other hand, requires a training dataset,
which can be used to either infer quantitative relationships (regression models) or classify data into
training outcomes (classification). Abbreviations: SVM: Support Vector machines; RF: Random Forest.
Adapted from Gautam et al. [13].

Unsupervised ML is a branch of ML whereby structured data, without any data labels,
is fed into an algorithm to understand hidden relationships within data points. Data
mining can be done to cluster similar data points into various groups, which can be used
for phenogrouping (clustering algorithms such as k-means, hierarchical, etc.). Alternatively,
association algorithms can be employed to help find relationships between data points
themselves (Apriori and Equivalence Class Clustering and bottom-up Lattice Traversal
(ECLAT) algorithms). Association algorithms have been applied vastly in market basket
analysis to analyze customer purchasing patterns and have been recently employed in
medicine. Moreover, unsupervised ML can also condense multiple data points into fewer
dimensions (dimensionality reduction) via approaches such as principal component analy-
sis. Supervised ML, on the other hand, requires an initial data labeling of the structured
data, which is then fed through training algorithms to compute relationships between vari-
ables and an outcome of choice. The algorithms can be trained to either classify an output to
predefined discrete categories (classification algorithms) or quantify relationships between
variables (regression algorithms) [14]. The above-mentioned techniques have been applied
in the field of HF for initial diagnosis, modeling disease prognoses, goal-directed medical
therapy (GDMT) optimization, predicting outcomes for device therapy interventions, etc.
(Figure 2) [13].



Diagnostics 2022, 12, 2964 4 of 19Diagnostics 2022, 12, x FOR PEER REVIEW 4 of 19 
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resynchronization therapy; DL: Deep learning; ECG: Electrocardiogram; GDMT: Guideline-directed 
medical therapy; ICD: Implantable cardiac defibrillator; LVAD: Left Ventricular Assist Device; RV: 
Right Ventricle. 

Deep learning (DL) is a branch of AI/ML that can process large complex data, such 
as those derived from medical images or videos [15]. DL usually takes the form of neural 
networks consisting of multiple nodes (i.e., neurons) arranged into an input, multiple hid-
den layers, as well as an output layer. When a trained neural network is fed with data, 
specific neurons in the input layer are activated, which pass the command to a chain of 
neurons in the hidden layers and then the output layer; the command becomes increas-
ingly complex as the information is passed along successive layers. Training of DL algo-
rithms can be done in both unsupervised and supervised fashion and has been used 
widely in cardiovascular medicine to automate medical images interpretation, create mul-
timodal prognostic models, as well as uncover unknown and undiscovered associations 
between phenotypes and a particular condition/outcome [15]. For example, a DL algo-
rithm has also been shown to be superior to sonographers for assessing left ventricular 
ejection fraction on 2-D echocardiography in the recently concluded EchoNet randomized 
controlled trial [16]. 

While these AI/ML techniques have been applied in the field of cardiovascular med-
icine, traditionally, data analysis via AI/ML usually has not taken into account the dimen-
sion of time. Continuously transmitted data via remote monitoring at regular intervals 
gives the opportunity to plot variables as a function of time and forecast future variables 
based on the prior trends, referred to as time series forecasting [17]. The concept of time 
series forecasting is not new and has been applied in fields outside of medicine. Modeling 
can be done to forecast the value of one variable independently (univariate) or as a func-

Figure 2. Current applications of machine learning in Heart Failure. Abbreviations: CRT: Cardiac
resynchronization therapy; DL: Deep learning; ECG: Electrocardiogram; GDMT: Guideline-directed
medical therapy; ICD: Implantable cardiac defibrillator; LVAD: Left Ventricular Assist Device; RV:
Right Ventricle.

Deep learning (DL) is a branch of AI/ML that can process large complex data, such
as those derived from medical images or videos [15]. DL usually takes the form of neural
networks consisting of multiple nodes (i.e., neurons) arranged into an input, multiple
hidden layers, as well as an output layer. When a trained neural network is fed with data,
specific neurons in the input layer are activated, which pass the command to a chain of
neurons in the hidden layers and then the output layer; the command becomes increasingly
complex as the information is passed along successive layers. Training of DL algorithms
can be done in both unsupervised and supervised fashion and has been used widely in
cardiovascular medicine to automate medical images interpretation, create multimodal
prognostic models, as well as uncover unknown and undiscovered associations between
phenotypes and a particular condition/outcome [15]. For example, a DL algorithm has also
been shown to be superior to sonographers for assessing left ventricular ejection fraction on
2-D echocardiography in the recently concluded EchoNet randomized controlled trial [16].

While these AI/ML techniques have been applied in the field of cardiovascular
medicine, traditionally, data analysis via AI/ML usually has not taken into account the di-
mension of time. Continuously transmitted data via remote monitoring at regular intervals
gives the opportunity to plot variables as a function of time and forecast future variables
based on the prior trends, referred to as time series forecasting [17]. The concept of time
series forecasting is not new and has been applied in fields outside of medicine. Modeling
can be done to forecast the value of one variable independently (univariate) or as a function
of multiple dependent variables (multivariate) with time. Statistical models developed
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for time-series analysis posit multiple assumptions about the data. Stationarity is a vital
concept in time-series analysis, which implies that the data’s statistical properties (e.g.,
mean, variance, etc.) do not change with time. Real-world data is usually non-stationary,
exhibiting trends, seasonality, or cyclical patterns when plotted chronologically [17].

While traditional statistical models such as Autoregressive moving average (ARMA)
necessitate the time-series data to be converted to stationary data before model construction
via approaches such as differencing and detrending, newer statistical and AI/ML models
can be employed with non-stationary time series [17,18]. Moreover, recurrent neural
network (RNN)-based approaches that can handle large amounts of non-linear data have
been described, which could prove ideal for the terabytes of data transmitted via remote
monitoring. In contrast to traditional neural networks, which are strictly feed-forward
neural networks, the output of the hidden layers of neurons can be fed back into neurons
in RNNs, which is used in time-series forecasting [19]. This hidden state output is then
successfully combined with new input to generate the final output. During the training
phase, the predicted output is then compared with the ground truth to calculate the error.
Backpropagation is then done to calculate the gradients and adjust the weights of the layers
for accurate prediction. RNNs might suffer from the ‘vanishing’ or ‘exploding’ gradient
problem due to an exponential decrease or increase during backpropagation, respectively,
leading to decreased performance of the model. Hence, RNNs can function well with a
limited set of sequential data, with decreasing accuracy with increasing data [19]. To solve
this problem, Long short-term memory (LSTM) and gated recurrent units (GRU) models
have been described, which can retain longer sequential data by the virtue of ‘gates’ [20].
Details about AI/ML algorithms used for time series forecasting are provided in Table 1.

Table 1. AI algorithms used in time-series forecasting.

Algorithms Description

Support Vector Regression Supervised ML algorithm based on support vector machines, whereby creation of
hyperplane is done in order to minimize the error and maximizes the margin.

k-Nearest Neighbors Supervised classifier or regression ML algorithm whereby the test variable is classified
based on its proximity to k number of data points.

Recurrent Neural network (RNN)

DL algorithm whereby data is passed via multiple layers of neurons (consisting of input,
hidden and output layers), with the output from one layer being looped back into the
hidden layer, in order to predict sequential data. Associated with the vanishing and

exploding gradient problem due to exponential decrease or increase of the gradient during
backpropagation, leading to minimal change in adjusted weights in the earlier layers,

thereby translating into a short-term memory which can limit its role in larger datasets.

Long short-term memory

Special form of RNN’s (DL algorithms) useful for larger datasets, consisting of a memory
unit, comprised of three gates. The forget gate is responsible for screening out irrelevant

data, and the output gate is responsible for generation of the new cell state and the hidden
state, and the process is repeated over again to yield the final model. Complex model,

requiring higher computational power.

Gated recurrent units

Another form of RNN’s (DL algorithms) consisting of two gates-update and the reset gate.
The update gate decides the information to be omitted and added and the reset gate is to

decide on how much past information can be omitted. Simpler model than LSTM, requiring
lesser computational power, while retaining the long-term memory.

Abbreviations: DL: Deep learning; LSTM: Long short-term memory; ML: Machine learning; RNN: Recurrent
Neural Network.

3. The Current State of Telemonitoring, Wearable, and Implantable Device Technology
in HF

Trials aimed at monitoring patients via telephonic interventions and wearables have
been attempted in the last decade, albeit with limited success [21–23]. The Telemedical
Interventional Management in Heart Failure (TIM-HF) trial enrolled 710 patients with a
left ventricular ejection fraction (LVEF) of ≤35%, NYHA class II-III symptoms, and a 2-year
history of HF decompensation and found no differences between telemonitoring (weight,
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blood pressure, and heart rhythm data transmission) and standard care in cardiovascular
and all-cause mortality or hospitalizations at a median follow-up of 26 months [22]. More
recently, the TIM-HF2 trial showed superior results for web-based remote patient manage-
ment than routine care in reducing HF hospitalizations and associated mortality [23]. In
contrast to TIM-HF, the TIM-HF2 study excluded patients with depression and recruited
patients who had been hospitalized in the last 12 months. Of note, the investigators also
broadened their selection criteria to include patients with LVEF ≤ 45% or LVEF ≥ 45% on
diuretics. Their structured remote intervention was associated with a smaller proportion
of days lost from unplanned HF-related hospital admissions (HR 0.80, 95% CI 0.65–1.00;
p = 0.0460) and had lower all-cause mortality (HR 0.70 [95% CI 0.50–0.96], p = 0.28) com-
pared to usual care [23]. Furthermore, the Better Effectiveness After Transition- Heart
Failure (BEAT-HF) trial, utilizing predischarge HF education coupled with regular tele-
phone visits and telemonitoring, did not show any statistical difference in reducing 180-day
readmission rates in patients with HF (HR: 1.03 [95% CI, 0.88–1.20]; p = 0.74) [21]. Although
telemonitoring was the backbone of the above trials, the recent emergence of wearables
and novel sensor devices that can accurately detect intrinsic hemodynamic changes have
demonstrated the potential to change the remote monitoring landscape.

Most representative studies of wearables in HF patients have involved pedometers
and actigraphy devices which, by analyzing the pattern of physical activity, can enable
patients and physicians to engage in lifestyle modification and therapy modulation [24,25].
Moreover, several emerging technologies have been tested in monitoring HF readmissions.
While thoracic impedance monitoring via implantable cardioverter defibrillators (ICDs) has
been shown to be a better predictor than daily weight monitoring for assessing pulmonary
fluid status, studies of impedance-derived fluid index (Optivol index) for predicting HF
hospitalizations in the ambulatory setting have yielded conflicting results [26–30]. Remote
dialectic sensing (RedS) has been recently proposed for monitoring pulmonary congestion
in HF. In a recent analysis, patients were provided with a vest, which they wore for a
period of 90 s every day. Electromagnetic analysis of tissue dielectric properties, reflecting
the degree of pulmonary congestion, was used to guide clinical management. ReDS-
guided management decreased 90-day readmissions by 87% (HR: 0.07 [95% CI: 0.01–0.54],
p < 0.01). Notably, discontinuation of ReDS increased readmissions by 79% (HR: 0.11
[95% CI: 0.012–0.88], p < 0.05) [31].

Similar to wearables, implantable devices, such as pacemakers, ICDs, and intracardiac
pressure sensors, also generate an enormous amount of data that can be used to create
algorithm-based risk prediction models aimed at early diagnosis treatment selection. For
example, the MultiSENSE (Multisensor Chronic Evaluation in Ambulatory Heart Failure
Patients) study tested the HeartLogic multisensor index and alert algorithm for predicting
HF exacerbation [24]. In 900 patients receiving cardiac resynchronization therapy, the
HeartLogix algorithmic analysis of sensor data (the first and third heart sounds, thoracic
impedance, respiration rate, ratio of respiration rate to tidal volume, heart rate, and pa-
tient activity) yielded a sensitivity of 70% (95% CI: 55.4–82.1%) for early detection of HF
exacerbation with an unexplained alert rate of 1.47 (95% CI: 1.32 to 1.65) per patient-year,
the median time from alert onset to a HF exacerbation being 34 days (interquartile range:
19.0 to 66.3 days). In addition, the algorithm’s performance was assessed across a range of
thresholds, providing an opportunity to customize its use for the individual patient.

The latest addition to the family of remote monitoring devices has been the implantable
pulmonary artery and the left atrial pressure sensors, with the benefits of remote monitoring
of pulmonary artery pressures (PAPs) in patients with HF being confirmed in multiple
trials [9,10,32]. More recently, with the VECTOR-HF trial showing positive results on the
safety and usability of a digital, leadless intra-atrial pressure sensor (V-LAP system) in
HF patients, the field is bound to grow [33]. Moreover, with data being transmitted via
multiple digital devices, parameters can be clubbed together via AI/ML techniques to
tailor to better outcomes. Although remote PAP, LAP, and other monitoring devices have
high costs and technical limitations, this can also be amenable to an AI/ML solution by
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developing algorithms from previous PAP-monitored patient data to ‘learn’ who benefits
most, thus enabling targeting the intervention to a specific population.

4. Current Applications of AI/ML in Remote Monitoring via Wearables and
Implantable Cardiac Devices

While AI/ML has increasingly been used for detecting and diagnosing a variety of
cardiac diseases, its application to remote monitoring data is relatively new. While remote
monitoring has been utilized for the detection of cardiac arrhythmias and for coronary
vascular events, cutting-edge clinical applications in the realm of HF include the use of artificial
neural networks trained with cardiac function parameters (QT interval, heart rate variability,
seismocardiogram signals) from wearables to accurately identify early decompensation of HF,
identify patients at higher risk of sudden cardiac death (SCD), etc. (Table 2) [34–43]. Accurate
identification of pathophysiological dynamics may be helpful as it allows for the institution
and optimization of medical therapies before the onset and progression of symptoms,
thereby reducing the risk of HF hospitalizations and readmissions. Additionally, early
identification of patients at high risk of SCD may allow for earlier intervention, translating
into reduced morbidity and mortality.

Table 2. Studies evaluating the use of ML models and wearable sensors in HF cohorts.

Author Study Design and Sample
Size (n) ML Model Results Limitations

Inan et al. [35] 2018

n = 45; single center. SCG
signals and ECG signals were

analyzed at rest, during
6MWT and 5 min of recovery.

GSS was developed using
SCG and ECG signals to

assess HF state.

GSS developed with
the help of K-means

clustering

GSS can significantly
differentiate between

compensated and
decompensated HF

(p < 0.0001). GSS can
longitudinally assess

improvement in HF status and
cardiovascular reserve from

admission to discharge
(p < 0.05).

Differentiation between
decompensated and

compensated HF groups is
subjective and future work is

needed to enhance this
classification. Investigators

were not blinded to the HF state
of each patient. Small single
center study in a controlled

setting.

Shandhi et al. [36]
2022

n = 20; measuring changes in
PAP and PCWP via SCG
signals after vasodilator
infusion during RHC.

Globalized
(population)

regression model
developed using

logistic regression

Regression model estimated
changes in PAP and PCWP in
both validation and training

sets with good accuracy. SCG
signals can be used to track

changes in intracardiac
pressures non-invasively.

Single center study design with
small population size, needs
future research to extrapolate

results.

Stehlik et al. [39]
2020

n = 100; multicenter
observational study. Subjects
were fitted with a wearable

sensor that collected
continuous ECG waveform,
skin impedance, continuous

3-axis accelerometry,
temperature and patient

activity/posture data.

Multivariate change
index was

developed using
Cloud-based

analytics derived
from

similarity-based
modelling

Multivariate chain index
platform was able to detect

risk of HF hospitalization with
76% to 87.5% sensitivity and
85% specificity. Clinical alert

triggered by personalized
machine learning algorithm

preceded hospitalization by a
median time of 6.5 to 8.5 days.
Predictive accuracy to detect

impending HF hospitalization
was similar to

implanted devices.

Non-compliant subjects were
excluded from the analysis.
Lack of formal testing and

validation sets. Observation
study mainly on male patients
with reduced ejection fraction.



Diagnostics 2022, 12, 2964 8 of 19

Table 2. Cont.

Author Study Design and Sample
Size (n) ML Model Results Limitations

Au-Yeung et al. [44]
2018

n = 788; ICD data of patients
enrolled in Sudden Cardiac
Death-Heart Failure Trial

(SCD-HF) was used to
automatically predict

ventricular arrythmias via
heart rate variability (HRV).

RF and SVM

The accuracy of 5-min
prediction using RF and SVM
was about 0.81 (AUC) whereas
10-s prediction of ventricular
arrhythmia was higher with

an accuracy of 0.87–0.88.

Real time continuous
monitoring requires significant
computational resources and
would rapidly drain device
battery. HRV data employed
can be influenced by multiple

non-cardiac factors like exercise,
anxiety, etc. Rarity of

life-threatening ventricular
arrythmia increases the

difficulty of accurate arrythmia
prediction with many

false positives.

Joo et al. [45] 2012

n = 78 patients; >1000 EKGs
from the Spontaneous

Ventricular Arrythmia (SVM)
database 1.0 from Medtronic

ICDs were used to predict
VT/VF using HRV analysis.

ANN

ANN models were able to
detect VT, VF, VT + VF events

with an accuracy of 76.6%,
92.2% and 75.6%, respectively.
The normalized areas under
the ROC curve of each ANN

were 0.75, 0.93 and 0.76,
respectively.

Small sample size in the
training set was insufficient to
ensure statistical classification.

Database used had limited
pre-VF data, leading to

sampling bias. ECGs from
single manufacturers were

studies; which limits
generalizability. ANN require

devices with high
computational power.

Kim et al. [46]
2022

n = 721; A prospective
multicenter study aimed at

predicting clinically relevant
atrial high-rate episodes

(AHREs) after pacemaker
implantation.

RF, SVMs and
extreme gradient

boosting

Predictive accuracy of ML
models was higher compared

to logistic regression-based
models (AUC for RF: 0.742,

SVM: 0.675 and XgBoost 0.745,
vs. logistic regression: 0.669).

Data sets used to develop the
validation set were relatively
small and contained limited

features.

Acharya et al. [38]
2015

n = 41 patients; ECG signals
from an open access Holter
database and normal sinus
rhythm database were used

to develop a novel integrated
index for prediction of SCD.

Decision trees;
K-Nearest Neighbor,

and SVMs

1. SCD Index had a predictive
ability of 92.11%, 98.68%,

93.42% and 92.11% for first,
second, third and fourth

minutes before the occurrence
of SCD, respectively.

1. Small sample size.

Taye et al. [41] 2019

n = 55; ECG data from
multiple freely available

databases was analyzed to
predict VF using QRS
complex morphology.

ANN, SVM, KNN,
RF

Prediction accuracy for VF was
significantly higher using QRS
complex features compared to
HRV features: 98.6% vs. 72%

(p < 0.05). In addition,
sensitivity, and specificity of

VF prediction 30 s before
occurrence was higher using

QRS complex features
compared to HRV (AUC 0.99

and 0.71 for QRS complex
shape and HRV, respectively).

Small sample size and shorter
length of signals before

occurrence of VF.

Lee et al. [40] 2019

n = 82; early VT prediction
ML model was developed
using HRV and RRV data
from monitors of patients

admitted to
cardiovascular ICU.

ANN
ML model predicted VT with a
sensitivity of 88%, specificity

of 82% (AUC: 0.93).

Single center study with small
sample size.

Abbreviations: 6MWT: 6-min walk test; ANN: Artificial Neural Network; ECG: Electrocardiogram; GSS: Graph
Similarity Score; HF: Heart Failure; HRV: Heart Rate Variability; ICD: Implantable-cardioverter defibrillator; ICU:
Intensive Care Unit; KNN: K nearest neighbor; ML: Machine learning; PAP: Pulmonary artery mean pressure;
PCWP: Pulmonary capillary wedge pressure; RF: Random forest; RHC: Right heart catheterization; ROC: Receiver
Operating Curve; RRV: Respiratory rate variation; SCD: Sudden cardiac death; SCG: Seismocardiogram; SVM:
Support Vector Machines; VT: Ventricular tachycardia; VF: Ventricular Fibrillation.
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Novel wearable devices have been integrated with AI/ML, with the goal of investi-
gating surrogates for pulmonary vascular congestion, thereby leading to earlier detection
of clinical decompensation. A pilot study on 45 patients by Inan et al. investigated
the feasibility of wearable seismocardiogram patches to proactively assess and manage
patients with HF [35]. The researchers used wearable seismocardiogram patches to mea-
sure vibrations of the chest wall in response to each heartbeat. At-home hemodynamic
changes were estimated with the 6-min walk test. The authors used an analytic graph
mining–based approach to then quantify and compare the similarity of the structure of
seismocardiogram signals before and after the 6-min walk test (graph similarity score).
Since the decompensated (hospitalized) HF patients were unable to meet the increased
cardiac requirement from the walking test, the changes in the graph similarity score (GSS)
for decompensated HF patients were significantly lower than for compensated (outpatient)
HF patients. This study showed that a small, wearable device could be used to identify HF
states and preemptively treat patients before they required hospitalizations. More recently,
using seismocardiogram-derived signals in 20 patients, good accuracies were reported
for vasodilator-induced acute changes in mean pulmonary artery pressure (mPAP) and
pulmonary capillary wedge pressure (PCWP) by the same group (root mean squared error
of 2.5 mmHg and 1.9 mmHg for changes in mPAP and PCWP in the training dataset and
2.7 mmHg and 2.9 mmHg in the validation data sets, respectively), thus paving the way for
easier tracking of monitoring of intracardiac hemodynamics [36]. Moreover, a recent hier-
archical clustering algorithm developed by Burton et al. aiming to identify phenogroups
with elevated left ventricular end-diastolic volume (LVEDV) used electromechanical data
collected via photoplethysmography and CorVista phase space analysis, thereby providing
insights into the characteristics leading towards phenotypes of myocardial dysfunction [47].

Furthermore, Stehlik et al. investigated the accuracy and applications of noninvasive
wearable monitoring in detecting HF exacerbations [39]. A total of 100 subjects (74 with
HF with reduced ejection fraction and 26 with HF with preserved ejection fraction) were
fitted with a wearable sensor that collected continuous ECG waveform, skin impedance,
temperature, and patient activity data. Cloud-based analytic platforms used similarity-
based modeling to evaluate the cumulated study subject data. The personalized AI/ML
platform and wearable sensor predicted hospitalization secondary to HF exacerbation
within a 10-day positive window with a sensitivity of 76% and a specificity of 85%, thus
demonstrating the viability of timely detection and early intervention of HF with the use of
AI/ML and wearables.

Apart from predicting HF decompensation, research has also focused on predicting
sudden cardiac death (SCD) events in patients with HF [38,44–46]. Acharya et al. devel-
oped a sudden cardiac death index (SCDI) utilizing discrete wavelet transform (DWT)
and nonlinear AI/ML analysis of ECG signals four minutes before SCD onset [38]. The
ECG signals were retrospectively obtained from Holter monitor data and the normal sinus
rhythm database. At one-minute intervals, nonlinear features were isolated from DWT de-
composed ECG signals. Support Vector Machines, Decision Trees, and k-Nearest Neighbors
were used to differentiate between normal variant ECG signals and ECG signals associated
with SCD subjects. The most distinguishing features were then combined to form a single
integrated index (i.e., SCDI), which was able to predict impending SCD with an accuracy
of 92.1%, 98.7%, 93.4%, and 92.1% at one, two, three, and four minutes, respectively. More
recently, using a prospective multicenter registry, Kim et al. used pacemaker-collected data
to predict clinically relevant atrial high-rate episodes (AHREs). With data from 721 patients
without a history of atrial fibrillation or flutter, AI/ML-based models were able to outper-
form logistic regression-based models in predicting clinically relevant AHREs (AUC for
logistic regression and XgBoost 0.669 and 0.745, respectively) [46].

Additionally, DeMazumder et al. used ML algorithms (EntropyX) at the signal pro-
cessing level to adapt to the signal noise and extract physiological dynamics with very high
accuracy and precision. In a prospective multicenter observational study of 852 HF patients
in sinus rhythm, the EntropyX of cardiac repolarization (EntropyXQT) strongly predicted
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appropriate ICD shock as well as all-cause mortality, above and beyond a comprehensive
set of conventional predictors and risk scores [48]. Unlike conventional measures of vari-
ability, EntropyX analysis of a time series does not require equally sampled time intervals
or preprocessing of data and is less sensitive to the presence of outlying points such as
ectopic beats or noise. EntropyX analysis of physiological dynamics provides unique
insight into subclinical physiological deterioration such as early changes in metabolic and
redox properties that cannot be detected by contemporary clinical measures [49]. This new
paradigm has also proven important for highly accurate rhythm discrimination, including
a ROC area under the curve of 98% for identifying very brief paroxysms of atrial fibrillation
and outperforming ICD rhythm discrimination algorithms in a prospective multicenter
study [50].

More recently, the DeepEntropy algorithm was developed for ML analysis of sinus
rhythm during sleep to identify ostensibly healthy adults who will and will not develop
new-onset atrial fibrillation over the next ten years. In a multicenter derivation study of
2807 community adults, the incorporation of DeepEntropy into a multivariate prediction
model added major independent prognostic value to conventional risk factors and scores
for predicting the incidence of new-onset AF [51]. Whereas the performance of conventional
risk predictors are limited in diverse populations, a subsequent validation study in the
Multi-Ethnic Study of Atherosclerosis demonstrated that DeepEntropy performs well
regardless of age, sex, race/ethnicity, etc., and has potential for broad application [52].
Ultimately, randomized controlled trials are needed to definitively establish the clinical
utility of AI/ML analysis of physiological time series for improving outcomes. With the
initial success of wearable technology and the incorporation of AI/ML in pilot studies,
multiple trials are underway employing AI/ML to further widen the scope of wearables
in HF management, such as GDMT optimization, medication adherence, etc. [53–60]
(Table 3). Moreover, innovative AI/ML algorithms are currently being designed utilizing
ECG and acoustic recordings recorded by electronic stethoscopes, which can accurately
detect changes in pulmonary artery pressures in patients with an implanted CardioMEMS
device [55]. If successful, such an approach allowing for accurate monitoring of HF
dynamics via wearables can help alleviate the burden on outpatient healthcare providers
while enabling the creation of ‘personal’ patient profiles. Analysis of troves of remotely
monitored individual patient data can allow for delineation of daily patterns in activity,
medication adherence, cardiac hemodynamics, etc., which will help patients by allowing
for the creation of personalized health management plans, and simultaneously physicians
by providing zettabytes of reliably collected real-world data, which can be used to further
HF research.

Table 3. Ongoing clinical trials investigating the application of digital devices and machine learning
in HF cohorts.

Clinical Trial Wearable/Implantable Description Current Stage

Activity-Aware Prompting to
Improve Medication

Adherence in Heart Failure
Patients (NCT04152031) [54]

Smartphone

Designing ML-based software
algorithms aimed at analyzing daily
behavior and to utilize it to improve

medication compliance among
patients with HF.

Recruitment complete

AIM-POWER study
(NCT04191330) [53] BiovitalsHF

To study the effectiveness of a
cloud-based platform (BiovitalsHF)

collecting data using remote wearable
sensors in improving GDMT

adoption among patients with HF.

Recruiting
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Table 3. Cont.

Clinical Trial Wearable/Implantable Description Current Stage

ASE-INNOVATE study
(NCT03713333) [59] Multiple digital health devices

To study the effectiveness of
technology-based visitations

(outpatient visit supplemented by
focused echocardiography, ECG, and
vitals collected by digital devices) on
long term cardiovascular outcomes.

Unclear

Heart Failure Monitoring
With Eko Electronic

Stethoscopes (CardioMEMS)
(NCT05080504) [55]

Eko electronic stethoscopes
(AI based)

Designing a ML-based algorithm
which can correlate Eko stethoscope
acoustic and ECG recordings with the

pulmonary artery pressure
measurements taken via the

CardioMEMS device.

Recruiting

Interactive Patient’s
Assistant-LUCY

(NCT03474315) [56]

Implanted CRT and ICD
devices

Designing a ML-based algorithm
based on remotely monitored data to

determine the parameters in
CRT/ICD requiring an ambulatory

device clinic visit, overall optimizing
long term patient care.

Unclear

LINK-HF2 study
(NCT04502563) [57]

Continuous remote
monitoring via wearable

sensors

To study the impact of remote
monitoring on 90-day HF

hospitalizations rate in patients with
HF.

Recruiting

Validation of Ejection Fraction
and Cardiac Output Using

Biostrap Wristband
(NCT05279066) [58]

Wristband with
photoplethysmgraphy sensor

Correlation of ejection fraction and
cardiac output measured via

AI-powered translation of wristband
PPG recordings with echocardiogram

and pulmonary artery catheter
measurements.

Recruiting

VESTA study (NCT04758429)
[60] Wearable sensor data

Validation of ML algorithm for early
detection of HF events via

multi-parametric sensor data.
Not yet recruiting

Abbreviations: AI: Artificial Intelligence; ECG: Electrocardiogram; CRT: Cardiac resynchronization therapy;
GDMT: Guideline directed medical therapy; HF: Heart Failure; ICD: Implantable cardiac defibrillator; PPG:
Photoplethysmography.

5. Limitations and Future Prospects

While the applications of AI/ML and digital health in the field of HF are enticing,
noteworthy limitations exist that need to be addressed. Limitations exist at the level of data
extraction, storage, privacy, and integration, with an added layer of challenges specific to
the AI/ML model development, accuracy, and implementation.

5.1. Data Extraction and Storage

Currently, medical information is stored in local data centers with a fixed computa-
tional capacity which requires extensive resources for storage expansion, data transmission,
and integration across platforms. With remote monitoring likely to play a significant role in
guiding cardiovascular care in the future, cloud computing solutions can bridge the unmet
need for data storage and integration solutions for such large amounts of data. Cloud
computing can accommodate terabytes of data while allowing for quick data retrieval from
multiple sources (remote monitoring data, EHRs, medical images, etc.) (Figure 3) [61].
Apart from integration at the patient level, ‘data decentralization’ can help medical re-
searchers by potentially creating more extensive repositories of data for improved disease
modeling and forecasting. Moreover, while tons of data are stored in electronic health
records, such troves of data are not readily employable and often need to be converted
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and restricted before being fed into an ML algorithm. More recently, Aslan et al. devised
a convolutional neural network (CNN) based approach to convert numerical data into
images, which can then be accurately classified for the purpose of diagnosing HF [62]. Such
an approach, along with data extraction methods that use natural language processing algo-
rithms, can help expand the current data pool and thereby lead to improved performance
of the current diagnostic and prognostic models [63].
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local computers, can be transferred to a cloud computing network, allowing for data integration.
Blockchain technology (a) can allow for secure data transfers between systems and allow for data
decentralization. Such pools of data, once established, can be used to train powerful ML algorithms,
which can be used to guide remote interventions and identify patients needing loser follow-ups.
Abbreviations: EHRs: Electronic health records; GDMT: Guidelines directed medical therapy; ML:
Machine learning.

5.2. Data Quality Challenges

Data privacy, sometimes also referred to as information privacy, is an area of data
protection that concerns the proper handling of sensitive data, including personal data
or other confidential data. Researchers are confronted with the issue of privacy when
transmitting data over the internet. Data transmission over the internet is susceptible to
cyber-attacks, misuse, tampering, etc., and technologies ensuring data encryption and
safe data transmission need to be established. Blockchain technology, though initially
introduced in cryptocurrency, can facilitate data decentralization, interoperability, and data
integrity across institutions [64]. Electronic computer code-based agreements (i.e., smart
contracts) can help improve data transparency and allow for easier data sharing between
parties while ensuring data integrity, owing to the blockchain-based timestamped nature
of the data [65].
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There is also a lack of regulations on using patient health information generated via
consumer-owned wearables by third-party companies. Confidentiality is paramount re-
garding data transmission and sharing, with data sharing being protected by the Health
Insurance Portability and Accountability Act (HIPAA) regulations [66]. The HIPAA regula-
tions currently cover physicians and associated business entities, but concrete guidelines
are necessary to direct data handling by third-party companies [67].

5.3. Challenges to Digital Technology Adoption

There is a potential for a ‘digital divide’ with the dawn of wearable sensors in HF.
Apart from the clinical heterogeneity observed in patients with HF, socioeconomic sta-
tus (SES) plays a paramount role, with studies showing more than a 50% increase in HF
risk with lower SES [68,69]. While wearable technology has the potential to transform
cardiovascular care, it can increase health inequity, owing to the need for adequate digital
affordability and literacy associated with wearable technology. For instance, in a survey of
4551 adults in the United States, individuals with a higher annual household income (de-
fined as $75,000 or more per year) were more likely to use wearables than individuals with
a household income of less than $20,000 per year (OR 2.6; 95% CI [1.39–4.86], p < 0.001) [70].
Incorporating device-related costs into healthcare insurance benefit packages is crucial
for narrowing the digital divide based on economic disparities. Moreover, loaner digital
wearables can help mitigate the financial implications on healthcare, provided checks are
in place to ensure the return of the digital devices. The novel iShare program utilizing
loaner iPhones and smartwatches in 200 patients demonstrated augmented participation
of patients without access to smartphones in remote monitoring following an acute my-
ocardial infarction. However, with a modest return percentage of 72% at the end of the
30-day follow-up period, a system of checks and incentives is needed for its widespread
implementation [71]. Nevertheless, the cost-effectiveness of wearable devices coupled with
AI modalities needs to be studied in HF, with such devices being previously proven to be
cost-effective in the screening of other cardiac pathologies, such as atrial fibrillation [72].
With pulmonary arterial pressure monitoring being shown to be cost-effective in multiple
studies, complementing remote monitoring with AI is likely to improve the cost–benefit
ratio, although it yet needs to be proven across a spectrum of population cohorts [73,74].

A lack of digital literacy can not only impede the adoption of digital technology but
can also impact patient compliance with data transmission. Not surprisingly, individuals
possessing college degrees or greater have been shown to be more receptive to the adoption
of digital technology when compared to people with a lesser educational background [70].
Moreover, elderly individuals are less likely to adopt the usage of digital technology and
also to comply with regular data transmission [70]. While it is essential to devise ways
to improve the usage of wearables in this at-risk population, how these measures can be
implemented in patients with neurocognitive disorders and visual/hearing impairment
remains challenging.

5.4. Challenges Inherent to AI/ML Model Development and Processing

Apart from intensive computational power, model training requires diversely repre-
sented data and well-thought-of model assumptions. If overlooked, the above factors risk
introducing implicit selection bias in terms of gender, race, socioeconomic status, etc. [75].
For instance, Obermeyer et al. described their observations on a healthcare algorithm
aimed at recognizing the medical needs to be preferentially skewed towards white patients.
By using healthcare spending as a proxy for the severity of medical illness, the algorithm
underestimated the number of sicker black patients by more than half [76]. Careful data
curation and representation in the model pre-processing stage can help mitigate some of
the inherent bias.

While AI/ML models have the advantage of incorporating more horizontal data, the
model’s predictive power starts decreasing with increasing dimensional complexity, often
referred to as the ‘Hughes phenomenon’ [77]. Multi-dimensional data, when fed, leads to
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a lower degree of bias but a high variability. This leads to higher accuracy when tested
internally but a dismal external performance. Smaller retrospective databases are especially
susceptible to overfitting, given the higher rate of data missingness and irregularities,
leading to additional noise being incorporated into the model. Moreover, data mining
approaches on national database registries face the unique challenge of a high degree of
dimensional heterogeneity, predisposing to overfitting. While solutions such as k-fold
cross-validation and regularization have been proposed to tackle this challenge, feature
extraction techniques such as principal component analysis can be undertaken to condense
high-dimensional data into fewer dimensions responsible for maximum variance in the
dataset, thereby allowing for better generalizability. Furthermore, feature selection can
be undertaken to eliminate noise and incorporate only the features accounting for the
variance in output. While these techniques have been used in studies variably to overcome
overfitting, external validation has been done only infrequently. A recent systematic review
reported that >90% of studies not performing an external validation of their AI/ML algo-
rithms, thereby indicating an urgent need to test for generalizability, albeit in prospectively
trials, before its implementation in the clinical practice [78].

Despite the abundance of clinical trials on a yearly basis, inadequate infrastructure,
lack of physician training, and incentives are significant hurdles to the process. Moreover,
industry-based sponsorship for clinical trials might complicate matters further, as data
withholding and the creation of proprietary algorithms might be undertaken for industrial
purposes [79]. With a push from the International Committee of Medical Journal Editors
(ICMJE) and the National Institute of Health to encourage data sharing and the formulation
of repositories such as BigData@Heart, and SWEDEHEART in recent years, the unification
of data resources leading to more impactful clinical research might be attainable in the near
future [79–81].

Furthermore, some AI/ML models suffer from the black box problem, which refers to
the limited interpretability of the AI/ML models, with the models becoming increasingly
uninterpretable with the increasing complexity of AI/ML algorithms. This becomes a
problem in healthcare, as physicians and patients are interested in knowing the result and
why the algorithm arrived at a specific result. Not surprisingly, much research has been
focused in the past years on making the models more explainable, whereby intelligible
approximations of how the model functions (e.g., variable importance plots) are made,
helping unzip the black box nature of complex AI/ML models [82].

Apart from the above challenges of model overfitting and lack of interpretability, addi-
tional limitations exist specifically to AI/ML models employed for time-series forecasting.
Data, once collected, might need to be carefully pre-processed to prevent the model from
becoming unstable [83]. Moreover, training AI/ML models for time series forecasting is
labor intensive, with neural network-based models requiring substantial computational
power. Furthermore, while AI/ML models have been increasingly applied for time series
forecasting, there have been few studies directly comparing statistical and AI/ML models,
with some showing statistical models to be better than the current AI/ML models [83].
Moreover, besides knowledge of the forecasted variable, researchers are also interested in
knowing about the uncertainty surrounding the forecast, which is imperative to making
decisions based on forecasts [83]. This becomes especially useful in the clinical setting,
whereby creating a parameter of uncertainty (analogous to confidence intervals) can help
clinicians decide the significance of a forecasted variable and thereby make insightful
medical decisions.

With the demonstrable success of artificial intelligence and the steps taken by the
scientific community to address the aforementioned issues, the next decade is set to witness
artificial intelligence techniques being employed and tested in randomized controlled
trials against standard-of-care modeling, paving the way toward incorporation into clinical
practice. Significant strides have already been made with the guidelines being made for
the appropriate conduct of trials employing artificial intelligence [84]. Moreover, multiple
trials are already underway aimed at testing the role of wearables and AI/ML in improving
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patient outcomes in HF [53–60]. With AI/ML bound to advance further, future trials could
see the unification of structured clinical variables and unstructured medical images to
produce robust algorithms, hoping to further our knowledge in understanding disease
characteristics and phenogroups within the domain of HF.

6. Conclusions

AI/ML and wearable technology, when used together, have the potential to induce a
paradigm change in HF management. With few pilot studies showing the effectiveness of
AI/ML approaches in conjunction with wearable technology and multiple trials currently
underway, the field is only bound to expand. Notable limitations exist at present, which
need to be addressed before digitization can be used to its fullest potential. While the
scientific community is devising ways at present to address these limitations, the next few
years could witness an expansion of the medical armamentarium physicians currently
possess, with AI/ML complementing our current tools, henceforth re-enforcing the notion
of continuous, physiology-driven monitoring in order to reduce the burden of adverse
events, with a focus on hospitalizations, in HF patients.
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