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Abstract: Serous ovarian cancer is the most common type of ovarian epithelial cancer and usually has
a poor prognosis. The objective of this study was to construct an individualized prognostic model
for predicting overall survival in serous ovarian cancer. Based on the relative expression orderings
(Ea > Eb/Ea ≤ Eb) of gene pairs closely associated with serous ovarian prognosis, we tried con-
structing a potential individualized qualitative biomarker by the greedy algorithm and evaluated the
performance in independent validation datasets. We constructed a prognostic biomarker consisting
of 20 gene pairs (SOV-P20). The overall survival between high- and low-risk groups stratified by
SOV-P20 was statistically significantly different in the training and independent validation datasets
from other platforms (p < 0.05, Wilcoxon test). The average area under the curve (AUC) values of the
training and three validation datasets were 0.756, 0.590, 0.630, and 0.680, respectively. The distribution
of most immune cells between high- and low-risk groups was quite different (p < 0.001, Wilcoxon
test). The low-risk patients tended to show significantly better tumor response to chemotherapy than
the high-risk patients (p < 0.05, Fisher’s exact test). SOV-P20 achieved the highest mean index of
concordance (C-index) (0.624) compared with the other seven existing prognostic signatures (ranging
from 0.511 to 0.619). SOV-P20 is a promising prognostic biomarker for serous ovarian cancer, which
will be applicable for clinical predictive risk assessment.

Keywords: serous ovarian cancer; relative expression orderings; prognostic biomarker

1. Introduction

Ovarian cancer is one of the three major malignant tumors of the female reproductive
system, and its incidence ranks third among gynecological malignancies [1,2]. However,
because the ovaries are deep in the pelvis, the onset is insidious, and the early symptoms
are not apparent [3]. As the most common ovarian epithelial tumor subtype, serous ovarian
cancer accounts for about 40–50% of all malignant ovarian tumors, and its survival rate
within five years is only about 30% [4]. Clinically, physicians treat serous ovarian cancer
patients with the same clinical and pathological stages in the same way. However, due to
the heterogeneity of the tumor, patients usually have different survival outcomes. Studies
have shown clinical prognostic factors such as the stage of The Federation of Gynecology
and Obstetrics (FIGO), the size of residual after debulking surgery, BRCA1/2 mutations,
and the degree of lymphocyte infiltration could cause gene expression changes in serous
ovarian cancer [5,6]. These influencing factors are related to the high recurrence rate and
poor prognosis of serous ovarian cancer through the activation of oncogenes and the
inactivation of tumor suppressor genes [7]. Therefore, there is an urgent need to explore
gene expression biomarkers that can predict the prognostic effect of serous ovarian cancer.

In recent years, many studies have used gene expression information to develop
biomarkers for serous ovarian cancer [8]. The level of patient risk was determined by
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a predetermined threshold of the risk score in the models [9–11]. However, such a risk-
score-based prognostic model has some limitations. Firstly, gene expression levels are
sensitive to systematic bias in high-throughput data [12,13]. The risk thresholds generated
by the training dataset cannot be directly applied to independent datasets. Therefore, the
training and validation data need to be pre-normalized to make the trained thresholds
applicable to new data [14]. This means that the risk of samples in the training data can
significantly influence the risk prediction outcome of an unknown sample. In addition,
data normalization requires prior sample collection, which may be clinically impractical.
However, without data normalization, the risk scores of independent samples are not
comparable [15,16]. Therefore, finding stable prognostic risk biomarkers with clinical
translational value in serous ovarian cancer samples has become an urgent issue.

Several studies have developed disease-related biomarkers based on the within-sample
relative expression orderings (REOs) of genes [17–19]. Studies have claimed that REOs
are insensitive to systematic biases [20,21]. They are also robust against interindividual
biological variation of gene expression levels. Moreover, REOs use qualitative information
about gene expression. They relate only to relative changes in gene expression within
individual samples.Thus, they are independent of other samples, indicating that REO-
based biomarkers can be naturally applied to individual samples [22]. Thus, our objective
in this study was to develop an individualized prognostic model for serous ovarian patients
based on the within-sample REOs of genes.

2. Materials and Methods
2.1. Study Population

Gene expression profiles from eight independent array datasets containing 1493 sam-
ples were collected from Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/
geo/, accessed on 11 October 2020) and the UC Santa Cruz Xena platform (UCSC Xena,
https://xenabrowser.net/datapages/, accessed on 1 November 2020). The division of data
into training, test, and validation sets is shown in Figure 1. Training datasets included
561 samples divided into low-grade (G1, n = 6), high-grade (G2–G4, n = 544), borderline
(n = 9), and ungraded (n = 2). Clinical information, including age, grade, and stage, was
available for most datasets. The detailed clinical information for each dataset can be found
in Table 1. Of all the data used, chemotherapy information was only available for the
466 samples from TCGA. Detailed tumor response information for TCGA samples was
provided in Supplementary Table S1.

The RMA algorithm pre-processes the raw microarraydata downloaded from GEO.
The annotation files in each platform were used to map probe IDs to gene IDs. Probes
that were not mapped to genes were deleted. For different probes mapped to the same
gene, the average was used as the final expression value of the gene Normalized gene
expression profiling data and clinical data from 630 TCGA ovarian cancer patients were
downloaded from the UCSC Xena platform. The data were pre-processed in the following
steps before constructing a prognostic biomarker: (1) remove normal samples; (2) remove
tumor samples without clinical information; (3) remove samples with overall survival of
0 days; and (4) remove low-expression genes (more than half of the samples with missing
or 0 gene expression).

2.2. Identification of Candidate Prognosis-Related Gene Pairs

Univariate Cox regression analysis was used to evaluate the predictive value of genes
and gene pairs. When Cox regression analysis was applied to single genes, a p-value less
than 0.05 was considered significantly associated with patients’ overall survival. Pairing
every two significant prognosis-related genes yields candidate prognosis-related gene pairs.
Then, the REO matrix X of the candidate prognosis-related gene pairs was constructed.
X is a 0–1 matrix, wherein xij = 1 indicates that the REO of the gene pair i (Ga, Gb) in
the serous ovarian cancer sample j is Ga > Gb, and xij= 0 indicates Ga ≤ Gb. When Cox

http://www.ncbi.nlm.nih.gov/geo/
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regression analysis was applied to gene pairs, an adjusted p-value less than 0.05 after the
Benjamini–Hochberg correction was considered significant [23].
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Figure 1. Flow chart of the study.

2.3. Identification of The Prognostic Biomarker

Given the concordance index (C-index) values for all gene pairs in the significant
prognosis-related gene pairs, we selected the prognostic biomarker comprising top-ranked
gene pairs in a greedy manner. First, the first N gene pairs with the highest C-index were
selected. Then, for each top N gene pair, the remaining significant prognosis-related gene
pairs were added to form the combination if the added gene pairs could increase the C-
index values of the combination. For each of the N combinations, the test set GSE13876 was
used to find the combination significantly correlated with the prognosis of serous ovarian
cancer with a higher C-index value as the final prognostic-related biomarker gene pairs.

2.4. Performance Evaluation of The Prognostic Biomarker

A sample was classified into the high- or low-risk group based on the majority voting
of the gene pairs in the prognostic biomarker by their REOs. Gene pairs not detected in
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cross-platform validation data were removed, and the remaining gene pairs were used to
determine the risk labels.

Table 1. Clinical characteristics of serous ovarian cancer samples used in this study.

Training Test
Validation

Dataset 1 Dataset 2 Dataset 3

GEO accession GSE18520 GSE19829 TCGA GSE13876 GSE14764 GSE26712 GSE26193 GSE53963
Microarray

platform GPL570 GPL8300 GPL96 GPL7759 GPL96 GPL96 GPL570 GPL6480

Sample No. 53 42 466 415 80 185 78 174
Stage

I - 0 15 - 8 - 12 0
II - 1 28 - 1 - 20 8
III - 35 369 - 69 - 53 125
IV - 6 51 - 2 - 14 41

Late 53
(III–IV) - - 415 (III–IV) - - -

Unstaged - - 3 - - - - -
Age, median - 58.3 59.9 57.9 - - - 63

(range), y (39–80) (26–89) (21–84) - - (24–89)
Grade

G1 1 5 - 3 - 7 0
G2 9 60 - 23 - 33 4
G3 - 32 389 - 54 - 67 90
G4 - 0 1 - - - - 80

High-grade
(G2/3/4) 53 - - - - - - -

Borderline - - 9 - - - - -
Ungraded - - 2 - - - - -

Survival, median
(range), m

40.4
(5–150)

38.5
(1–68)

59.5
(0.27–182.70)

45.6
(1–234)

35
(7–73)

38.3
(0.72–163.80)

60.2
(0.1–133.71)

55.7
(0.3–201.61)

Multivariate Cox risk regression analyses wereconducted to evaluate the joint prog-
nostic significance of the developed prognostic biomarker and clinical factors, including
age, stage, and grade. As clinical information was unavailable in all datasets (see Materials
and methods, Table 1), we only included the existing clinical elements in each dataset. The
overall survival was calculated using the Kaplan–Meier, and the log-rank testwas used to
compare the two survival curves. Forest plots were used to display the results of multiple
Cox regression analyses.

2.5. Functional Enrichment Analysis

Gene annotation and pathway analysis were performed in the database of Metascape
(http://www.metascape.org/) to search for functions associated with genes in the prog-
nostic biomarker. We considered the following ontology sources in Metascape: KEGG
Pathways, GO Biological Processes, Reactome Gene Sets, Canonical Pathways, CORUM,
TRRUST, DisGeNET, PaGenBase, Transcription Factor Targets, Wiki Pathways, and COVID.
To further understand the biological function of the differentially expressed genes between
the high- and low-risk groups predicted by the prognostic biomarker, functional enrichment
analysis was carried out based on the Kyoto Encyclopedia of Genes and Genomes (KEGG).
The relevance was considered significant if the Wilcoxon p-value was less than 0.05.

2.6. Immune Infiltration Analysis

TIMER2.0 (http://timer.cistrome.org/, accessed on 10 September 2021) was used to
quantify the proportions of immune cell infiltration, and the differences between the high-
and low-risk groups were compared. The content of six immune cells (B cells, CD4+ T
cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells) was estimated, and the
differences were compared using the Wilcoxon test method.

http://www.metascape.org/
http://timer.cistrome.org/
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2.7. Drug SensitivityAnalysis

The chemotherapeutic response for each serous ovarian cancer sample in the train-
ing sets was predicted according to the Genomics of Drug Sensitivity in Cancer (GDSC,
https://www.cancerrxgene.org/, accessed on 24 November 2022) database. The chemother-
apy sensitivity of each tumor sample was evaluated by the half-maximal inhibitory con-
centration (IC50) value, which was obtained using regression analysis, and the prediction
accuracy was measured by 10-fold cross-validation. The differences in IC50 values between
high- and low-risk groups were compared using the Wilcoxon test method.

2.8. Performance Comparison with Other Prognostic Biomarkers

Seven published prognostic models based on gene expression data were selected [24–29].
Since most of the models are constructed based on TCGA-OV sequencing data, the RNA
sequencing data of TCGA-OV in UCSC Xena are collated to ensure comparativeness.
According to the median risk score of each model, the samples were also split into high-
and low-risk groups, and the overall survivals were compared.

2.9. Statistical Analysis

Statistical analyses were performed using R (version 4.2.0). We used the survival R
package for univariate and multivariate risk regression analysis. The timeROC and survival
packages were used to evaluate the receiver operating characteristic curve (ROC curve) and
calculate area under curve (AUC) values. The survminer and survival R packages were used
to show the K-M curves and Forest plots of grouped samples. The ggplot2 and clusterProfiler
packages were used to enhance the appearance of the enrichment plot, and ggplot2 was also
used to draw a violin boxplot diagram. The oncoPredict was used to determine the IC50 for
evaluating drug sensitivity. All parameters are default, including “combat”, to eliminate the
batch effect and the average of repeated gene expression. The rms R package was used for
calculating the C-index.

3. Results
3.1. Identification of the Prognosis-Related Biomarker

To detect the prognosis-related gene pairs, we first performed the Cox regression to
find genes that are significant predictors of survival. Only genes common to all platforms
in the training set were considered. There were 6934 genes in common, of which 82,550,
and 796 were significantly correlated with overall survival in GSE18520, GSE19829, and
TCGA-OV data, respectively (p < 0.05, Wilcoxon test, Supplementary Table S2). Among
them, 1347 were significant in at least one of the three datasets, and 486 genes had consistent
directions of hazard coefficients (positive or negative). These 486 genes were selected for
subsequent analysis. After pairing the 486 genes, we obtained 117,855 prognosis-related
gene pairs, and 11,569 were significantly associated with overall survival (p < 0.05, Wilcoxon,
BH adjusted for multiple testing).

Then, the prognosis-related biomarker was developed by applying the greedy method
to the top gene pairs with the largest C-index values (see Materials and Methods). Here, we
used the top 10 gene pairs (C-index ranging from 0.68 to 0.72) to form the final combinations
of selected gene pairs. The test dataset was used to obtain the best combination, and
univariate Cox regression analysis was performed for each of the ten combinations. The
combination significantly correlated with overall survival with the largest C-index value
(p = 0.00046, Wilcoxon test; C-index = 0.69) was selected as the final prognostic biomarker,
which contains 20 gene pairs (Supplementary Table S3), and referred to as SOV-P20.

3.2. Prediction of Overall Survival by SOV-P20

In the training set, 298 and 452 samples were categorized into high- and low-risk
groups, respectively. The high-risk group had a significantly decreased overall survival
compared to the low-risk group (Figure 2A, p < 0.0001, HR = 0.23,95% CI: 0.18–0.29). In the
three validation datasets, 292 and 136, 44 and 145, and 129 and 150 samples were divided

https://www.cancerrxgene.org/
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into high- and low-risk groups, respectively. Kaplan–Meier survival analyses showed
that in all datasets, the high-risk group had a significantly lower overall survival rate. In
contrast, the low-risk patients usually showed a longer survival time, with a significant
difference between the two groups (p = 0.0077, HR = 0.60, 95% CI: 0.41–0.88, Figure 2B;
p = 0.028, HR = 0.54, 95% CI: 0.31–0.94, Figure 2C; p = 0.0062, HR = 0.59, 95% CI: 0.41–0.87,
Figure 2D).
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Since the overall survival time of patients exceeded five years, the AUCs of SOV-P20
for 3, 5, and 7 years were calculated. The mean AUC was 0.756 in the training set, while in
the three validation datasets, the mean AUCs were 0.590, 0.630, and 0.680 (Figure 2E–H),
respectively, indicating a potential predictive value of the SOV-P20 biomarker.

Multivariate Cox analyses were conducted to confirm whether the SOV-P20 was an
independent prognostic factor. The results showed that age and SOV-P20 were significantly
associated with overall survival (p < 0.05, log-rank test, Figure 2I–L), and SOV-P20 was an
independent risk factor for patients with serous ovarian cancer.

3.3. Functional Enrichment Analysis

Functional enrichment analysis was performed on the 37 genes comprising SOV-P20.
As shown in Figure 3, eight GO terms related to cytokine production were significantly
enriched (Figure 3A). Cytokine refers to small molecule polypeptides secreted primarily by
immune cells that regulate cell function [30]. Cytokines and cytokine receptor processes
are mainly related to regulating the body’s immune response, hematopoietic function, and
inflammatory response [31]. They can inhibit tumorigenesis and progression and have
been shown to be effective in cancer treatment [32]. Three genes are involved in the virus’s
entry into the host cell biology pathway. Pathway analysis showed that five genes were
associated with tumor recurrence (Figure 3B), confirming that SOV-P20 plays a role incancer
onset and development.

Further enrichment analysis for differentially expressed genes between the high-
and low-risk groups identified three significant KEGG pathways (BH adjusted p < 0.05),
including PI3K-Akt signaling pathway, proteoglycan pathway, and AGE-RAGE signaling
pathway in cancer (Figure 3C). These pathways have been reported to play an essential
role in the progression and prognosis of serous ovarian cancer [33–35].

3.4. Immune Infiltration Analysis

The distribution of tumor-infiltrating immune cells is an essentialindicator of immune
invasion and prognosis in patients [36]. Results from TIMER showed significant differences
in the infiltration levels of immune cells between the high- and low-risk groups (p < 0.05,
Wilcoxon test, Figure 3D), and the low-risk group had higher infiltration levels.

3.5. Tumor Response to Drug Treatment

For all training samples, only TCGA data provide information about an individual
patient’s response to chemotherapy drugs (Supplementary Table S1). The RECIST was
used to evaluate tumor response to chemotherapy drugs, categorized as complete response
(CR), partial response (PR), stable disease (SD), or progressive disease (PD). Only 338 pa-
tients with RECIST measurements were analyzed. Among them, 143 were high-risk, and
195 were low-risk. They were further classified as chemo-sensitive (CR and PR) or chemo-
resistant (SD and PD). Of the 143 high-risk patients, 107 were chemo-sensitive, and 36 were
chemo-resistant. In contrast, of the 195 low-risk patients, 171 were chemo-sensitive, and
24 were chemo-resistant, significantly different from the high-risk groups (Fisher’s exact
test, p = 2.50 × 10−3). In addition, compared to high-risk patients, low-risk cases tended to
be chemo-sensitive (odds ratio = 2.397) and were less likely to be chemo-resistant (odds
ratio = 0.417).

Similar analyses were performed for 310 TCGA patients who received platinum-
based chemotherapy. There was a significant difference in sensitivity and resistance to
platinum-based chemotherapy between the high- and low-risk groups (Fisher’s exact,
p = 6.59 × 10−4), as the number of chemo-sensitive and chemo-resistant patients were
100 and 33 for high-risk groups, respectively, while in low-risk groups, the numbers
were 157 and 20, respectively. Low-risk cases were more likely to be chemo-sensitive to
platinum (odds ratio = 2.591) and less inclined to develop chemoresistance to platinum
(odds ratio = 0.386) relative to the high-risk group.
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Since only TCGA samples had drug-response information, we used the GDSC database
to predict the response to commonly used chemotherapeutic drugs for each training sample.
As shown in Figure 3E, patients in the low-risk groups were more sensitive to Cisplatin,
Gemcitabine, Oxaliplatin, Sorafenib, Tamoxifen, and Topotecan. In contrast, patients in
the high-risk groups were more sensitive to 5-Fluorouracil, and there were significant
differences between the high- and low-risk groups (p < 0.05, Wilcox test).

The above results revealed a significant difference in tumor response to chemotherapy
between the high- and low-risk groups predicted by SOV-P20.

3.6. Comparison with Other Models

To further validate the predictive value of SOV-P20, we compared its performance with
seven different prognostic models previously reported using TCGA-OV RNA sequencing data.
Survival was significantly different between high- and low-risk groups in TCGA-OV samples
assessed by the seven models, and the high-risk group had a poor prognosis (Figure 4A, all
p < 0.05). The C-index of the above seven prognostic models was smaller than the C-index
of SOV-P20 (Figure 4A), indicating that the overall predictive performance of the prognostic
model in this paper was better than that of the other seven models in other studies.
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The performance comparison of SOV-P20 with the seven predictive models was also
performed using the validation set collected in this study. In the seven models, only
the genes detected in each dataset were analyzed. Results showed that, except for the
8-gene model by Zhang et al. [37] with a significant Kaplan–Meier curve in the validation
set 2 (p = 0.0083), all Kaplan–Meier curves of the remaining prognostic models in each
validation dataset showed no statistically significant difference between high- and low-risk
groups (Figure 4B). SOV-P20 achieved the highest mean C-index (0.624) compared with
the other six existing prognostic signatures (ranging from 0.511 to 0.619, Figure 4C). The
above results further suggested that the prognostic biomarker developed in this study had
a robust predictive ability.

4. Discussion
4.1. Main Findings

In this study, we constructed the gene-pair-based biomarker, SOV-P20, to predict the
prognosis of serous ovarian cancer and further validated the predictive value in indepen-
dent datasets. Our results suggest that SOV-P20 has strong robustness and stable predictive
performance in datasets from different platforms. Many genes involved in SOV-P20 have
been reported as prognostic biomarkers or potential therapeutic targets for serous ovarian
cancer. The literature supporting the association between genes in SOV-P20 and serous
ovarian cancer is shown in Supplementary Table S3. Genes in SOV-P20 were significantly
enriched in the biological pathways related to regulating cytokine production, virus entry
into host cells, and tumor recurrence. The high- and low-risk groups predicted by SOV-P20
showed a significant difference in overall survival time and tumor-infiltrating immune cells.
Differentially expressed genes between the high- and low-risk groups were significantly en-
riched in the PI3K-Akt signaling pathway, the proteoglycan pathway, and the AGE-RAGE
signaling pathway in cancer. Compared with the published prognostic models, SOV-P20
stood out in terms of C-index, demonstrating its good predictive ability for ovarian cancer
prognosis.

4.2. Strengths and Limitations

Many studies have developed genetic biomarkers for stratifying patient survival on
different datasets. However, these biomarkers have not been applied in the clinical setting
due to various limitations. There are many reasons. Firstly, most researchers agree that
developing a robust prognostic biomarker requires a large sample size. Most studies have
a relatively small sample size, which may suffer from model overfitting problems. As
shown in this study, by applying Cox regression to the three datasets in the training set, the
prognosis-related genes were detected and intersected, and few intersection genes were
found (Supplementary Table S2). Therefore, when developing the biomarker, we combined
561 samples into the training set to meet the requirement of large sample size while trying
to include data from different platforms. Second, most current predictive biomarkers for
patient stratification are based on risk scores, which are sensitive to system deviations and
poorly robust. To address this issue, we developed the predictive model based on the REOs
within each sample. As a qualitative model, it is highly robust and insensitive to systematic
bias and laboratory batch effects. The prognostic value of the developed biomarker was
confirmed in the test set of 415 samples and the validation set of 517 samples from different
platforms.

However, there are some limitations to this study. First, the method of identifying
disease biomarkers based on within-sample REOs is a qualitative metric. Considering
only REOs of genes may lose some subtle quantitative information about gene expression.
Second, the imperfect clinical characteristics of the dataset may reduce the accuracy of
multivariate survival analysis and comprehensive prediction model when performing
multivariate Cox regression analysis. Third, genes in the prognostic biomarker were not
subjected to a wet biological experiment, which deserves continued study in detail in future
work.
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4.3. Interpretation of Findings

Many studies have used gene expression information to develop predictive biomarkers
or diagnostic models for serous ovarian cancer (Supplementary Table S4). We divided these
studies into two main categories according to the number of feature genes.

In the first category, researchers assessed the impact of individual genetic biomarkers
on the prognosis of ovarian cancer. For example, Buttarelliet al. identified the long-chain
noncoding RNA-MEG3 gene as a tumor suppressor for serous ovarian cancer through
in vitro and in vivo experiments, demonstrating that its high expression predicts better
progression-free survival and overall survival [8]. A study by Zhang et al. showed that miR-
212-3p might suppress serous ovarian cancer by directly targeting MAP3K3 [38]. However,
such single-gene-based studies do not consider the effects of gene-to-gene interactions and
might not accurately predict the prognosis of patients with serous ovarian cancer.

The second category evaluates the predictive value of a set of genes based on a specific
biological function. For example, Yang et al. constructed a risk scoring model containing
seven genes to predict the prognosis of serous ovarian cancer based on stromal and immune
infiltrates in the immune tumor microenvironment [39]. Wang et al. constructed an 8-gene
predictive risk assessment model for serous ovarian cancer from energy metabolism-related
genes [28]. Zheng et al. built a prognostic risk scoring model for serous ovarian cancer using
11 lipid metabolism-related genes [11]. However, such biological function-based predictive
biomarkers may ignore the heterogeneity of individual patients and the complexity of
influencing factors and are prone to overfitting.

We found more than 20 published prognostic models for serous ovarian cancer (see
Supplementary Table S4). However, many models’ genes could appear undetected when
applied to datasets from different platforms. In this study, we did not compare the single-
gene-based biomarkers and only selected those models whose comprising genes were
detected across platforms for comparison. Finally, only seven models were included in
the comparison. We found that the Kaplan–Meier curve results for six models were not
statistically significant enough to predict the prognosis in independent datasets other than
their own. According to our study, when the median risk score of the training set was taken
as the threshold, the test set could not make prognostic predictions. In contrast, SOV-P20
was developed from samples from different platforms, and it can still predict the prognosis
on the principle of half voting when the platform does not detect all genes. Actually,
SOV-P20 can be applied to any data set where no thresholds are needed. Moreover, it is
REO-based and thus robust to noise in the data and offers a natural way to overcome the
heterogeneity across datasets, especially across different platforms. Therefore, SOV-P20 can
achieve the goal of personalized precision medicine.

Most serous ovarian cancer samples analyzed in this study were high-grade. Currently,
the standard first-line care for high-grade serous ovarian cancer remains surgical resection
and platinum-based chemotherapy. We analyzed the tumor response to platinum-based
chemotherapy. The results showed a significant difference in sensitivity to platinum-based
chemotherapy between the high- and low-risk groups. Notably, resistance to platinum-
based chemotherapy was present in both high- and low-risk groups, consistent with the
assumption that a small proportion of ovarian cancer cells are chemo-resistant from the
beginning [40]. Such inherent resistance in ovarian cancer may occur due to reduced
immunosurveillance and drug-resistant cells that belong to cancer stem cells (CSCs) [7,40].
CSCs from the ovaries have a particular genetic signature that can engineer the original tu-
mor mass, develop drug resistance, and promote recurrence. In addition to this possibility,
platinum resistance may also emerge due to reduced intracellular drug accumulation, in-
tracellular inactivation of the agent, increased DNA repair, or impaired apoptotic signaling
pathways [41]. Therefore, the prediction of a tumor to platinum chemotherapy in ovarian
cancer will provide further research directions in the future.

The study only used the retrospective data generated on a genome-wide scale. In the
future, we will use real-time PCR (RT-PCR) techniques to validate SOV-P20 on a separate
ovarian cancer patient cohort prospectively. We will recruit patients with ovarian cancer
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in the First Affiliated Hospital of Gannan Medical University. After obtaining informed
consent from each patient according to the protocol approved by the Ethics Committee of
the hospital, the Department of Obstetrics and Gynecology will admit patients diagnosed
with ovarian cancer between September 2021 and October 2023. Two hundred patients
will be enrolled. Patient inclusion criteria include patients with a diagnosis of serous or
endometrioid tumor. Specific guidelines are as follows: age 18 years or older; histologically
confirmed epithelial ovarian, fallopian tube, or primary peritoneal cancer; FIGO stage
I–IV; and planned to receive platinum-based combination chemotherapy. Patients will be
followed up until 31 October 2028. After obtaining tissue samples, the RT-PCR techniques
will determine the expression of individual mRNAs of SOV-P20 in patients to validate the
predictive efficacy of SOV-P20.

5. Conclusions

Biomarker discovery based on within-sample REOs is a promising approach that can
address the critical limitations of the risk-scoring-based model. The developed ovarian
cancer prognostic model can easily predict patients with different survival prognoses. It is
worth testing in prospective clinical trials to achieve its individualized management clinical
effect in patients with serous ovarian cancer.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics12123128/s1, Table S1: Tumor response to chemotherapy
drugs in TCGA serous ovarian cancer samples, Table S2: The prognosis-related genes in the training
set, Table S3: SOV-P20 and its correlation with serous ovarian cancer, Table S4: Existing models for
predicting serous ovarian cancer prognosis.
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