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Abstract: In computer-aided diagnosis methods for breast cancer, deep learning has been shown to
be an effective method to distinguish whether lesions are present in tissues. However, traditional
methods only classify masses as benign or malignant, according to their presence or absence, without
considering the contextual features between them and their adjacent tissues. Furthermore, for contrast-
enhanced spectral mammography, the existing studies have only performed feature extraction on a
single image per breast. In this paper, we propose a multi-input deep learning network for automatic
breast cancer classification. Specifically, we simultaneously input four images of each breast with
different feature information into the network. Then, we processed the feature maps in both horizontal
and vertical directions, preserving the pixel-level contextual information within the neighborhood of
the tumor during the pooling operation. Furthermore, we designed a novel loss function according to
the information bottleneck theory to optimize our multi-input network and ensure that the common
information in the multiple input images could be fully utilized. Our experiments on 488 images
(256 benign and 232 malignant images) from 122 patients show that the method’s accuracy, precision,
sensitivity, specificity, and f1-score values are 0.8806, 0.8803, 0.8810, 0.8801, and 0.8806, respectively.
The qualitative, quantitative, and ablation experiment results show that our method significantly
improves the accuracy of breast cancer classification and reduces the false positive rate of diagnosis. It
can reduce misdiagnosis rates and unnecessary biopsies, helping doctors determine accurate clinical
diagnoses of breast cancer from multiple CESM images.

Keywords: breast cancer classification; contrast-enhanced spectral mammography; deep learning;
contextual features; information bottleneck

1. Introduction

Breast cancer is a common fatal disease that threatens women’s health [1,2]. Early
detection is key to reducing breast cancer mortality [3,4]. However, the diagnostic accuracy
in the clinic depends on the physician’s experience [5]. Therefore, using computer-aided
diagnosis (CAD) technology to classify breast cancer is of great clinical significance.

The clinical diagnosis of breast cancer is currently based on ultrasound (US), magnetic
resonance imaging (MRI), and mammography (MG). Compared with the other methods,
US does not show small lesions clearly, and performing retrospective analysis is diffi-
cult. MRI is highly accurate but relatively expensive, and its clinical utility is limited in
some underdeveloped areas. As an emerging imaging technology, CESM has comparable
performance to and is less expensive than MRI in diagnosing breast cancer.

Contrast-enhanced spectral mammography (CESM) is a new technology based on
traditional mammography [6,7]. Each breast is irradiated with the standard craniocaudal
(CC) view and the mediolateral oblique (MLO) view. Low-energy images (LE), similar to
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mammography, and dual-energy subtracted images (DES) showing abnormal vascular pro-
liferation in tumor tissue can be generated [8,9]. Figure 1 shows examples of CESM images.
CESM has achieved superior diagnostic performance to traditional mammography [10–14].
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Figure 1. Examples of contrast-enhanced spectral mammography images: (a) craniocaudal low-
energy image (CC-LE); (b) craniocaudal dual-energy subtracted image (CC-DES); (c) mediolat-
eral oblique low-energy image (MLO-LE); (d) mediolateral oblique dual-energy subtracted image
(MLO-DES).

We introduce existing breast image classification methods, including machine learning
and deep learning methods, in Section 2. However, most pay no attention to the neigh-
borhood of the tumor in the breast image. In fact, in natural image processing, contextual
features can help identify complex scenes and improve classification accuracy. Similarly,
they are also of great importance to medical image processing. Several researchers have
conducted experiments and discussed their principles and implications [15–19]. In addi-
tion, after each CESM examination, four images with different meanings corresponding to
each breast can be obtained. The LE and DES images can display different breast tissue
characteristics, and the CC and MLO images can provide the lesion location from different
perspectives. It is important to consider features from multiple images and screen out
useful information for breast cancer classification.

In order to fully exploit the special feature information of CESM images, we propose
a new deep learning classification method. We simultaneously input four CESM images
(CC-LE, CC-DES, MLO-LE, and MLO-DES) into the network. Then, we processed the
feature maps in horizontal and vertical directions, preserving the pixel-level contextual
information within the tumor neighborhood. Then, according to the information bottleneck
theory, the common information between them is maximized to obtain more accurate
classification results. The main contributions of this work can be summarized as follows.

1. We designed a feature extraction module for accurately discriminating between
benign and malignant masses with pixel-level location information in horizontal and
vertical directions. This module can capture the contextual features between the lesion area
and its adjacent breast tissue, making the network pay more attention to the edge features
of the lesion area.

2. We proposed a multi-input CESM image classification network to classify breast
cancer. Multiple CESM images are simultaneously input into the network to use comple-
mentary features under different views and irradiation energies.

3. We designed a feature selection module, according to the information bottleneck
theory, by maximizing the common information between the multiple input images and
discarding the irrelevant information from the classification task. We also designed a novel
loss function to optimize our multi-input network.

In Section 2 of this paper, we review recent work on breast cancer image classification,
especially CESM image classification. In Section 3, we introduce the methodology of the
proposed method and details on each module. We also describe the experimental data and
parameter settings. We present the results of the qualitative, quantitative, and ablation
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experiments in Section 4. In Section 5, we discuss the experimental results, implications,
and limitations in depth. Finally, in Section 6, we summarize our work.

2. Related Work

In recent years, CAD technology has played a significant role in diagnosing breast
cancer, which helps improve the accuracy of diagnosis by radiologists [20]. Ragab et al.
introduced a CAD system based on two feature selection methods for distinguishing normal
and abnormal lesions in mammograms [21]. Witowski et al. compared the diagnostic
accuracy of a deep learning system with radiologists, reducing the biopsy rate of benign
masses [22]. Xu et al. developed a radiomics approach to assist diagnosis on multimodal
ultrasound images [23]. Liew et al. used deep learning techniques to classify breast cancer
histology images into eight categories [24]. Michael et al. proposed a method for breast
cancer detection, based on a decision tree algorithm, and a LightGBM classifier, based on
ultrasound images [25].

CESM is an effective breast cancer screening method based on conventional mammog-
raphy. Recently, there have been several studies on breast cancer classification from CESM
images. The methods, datasets, and classification performance of these studies are summa-
rized in Table 1. Marino et al. performed a radiomics analysis based on CESM images [26].
They regarded histopathology as a reference standard and used machine learning methods
to describe the morphological features of the breast. Losurdo et al. trained several SVM
classifiers to compare the classification performance of different texture feature sets with
the overall set [27]. This system extracts regions of interest (ROI) automatically to help
radiologists diagnose breast cancer. Danala et al. developed a CAD scheme for classifying
breast masses based on CESM images [28]. They constructed MLP classifiers to accurately
segment lesions and classify breast cancer. Their method significantly improved the classi-
fication performance of CESM images. For breast images, whether masses have irregular
shapes or fuzzy edges is one of the significant criteria for judging breast cancer [29,30].
However, in CESM images, people only focus on whether there are masses and ignore many
pixel-level features on the edge of the lesion area, and thus may increase the possibility of
misdiagnosing benign masses as malignant tumors.

Table 1. Comparison between methods, datasets, and classification performance of CESM images in
previous work.

Method
Dataset

Accuracy AUC
Type Source Number

Multilayer Perceptron Classifier
(Danala et al., 2018) [28] LE & DES Clinical Database of

Mayo Clinic Arizona 111 - 0.848

SD-CNN
(Gao et al., 2018) [31] LE & DES Mayo Clinic

Arizona & INbreast 49 & 89 0.900 0.920

Support Vector Machine
(Losurdo et al., 2019) [27] CC-DES & MLO-DES Istituto Tumori

“Giovanni Paolo II” 55 0.800 -

Random Forest Classifier
(Fanizzi et al., 2019) [32] CC-DES & MLO-DES Istituto Tumori

“Giovanni Paolo II” 58 0.825 0.850

Fine-tuning Pretrained AlexNet
(Perek et al., 2019) [33]

CC-DES & MLO-DES
& text - 129 0.880 0.897

Radiomics Analysis
(Marino et al., 2020) [26] DES Tertiary Referral

Academic Center 100 - -

Fine-tuning CheXNet
(Dominique et al., 2022) [34] LE & DES Henri Becquerel Cancer

Center 447 0.874 0.910

RefineNet with XGBoost Classifier
(Zhang et al., 2022) [35] CC-LE & CC-DES

Yantai Yuhuangding Hospital
and Fudan University Cancer

Center
1355 0.802 0.867

Several research groups then investigated the feasibility of using the differences
between CESM and traditional mammography images for breast cancer classification. For
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example, Gao et al. developed an SD-CNN network to classify CESM images [31]. They
trained shallow and deep networks from 49 cases. Their method proved the role of DES
images in breast cancer classification. Fanizzi et al. proposed an automatic method to
improve the performance of breast cancer diagnosis through CESM images [32]. They
used different methods to extract the information of key areas from LE and DES images
and trained random forest classifiers. Their research suggested that the proposed method
could assist radiologists in detecting breast cancer. Perek et al. improved two networks
to classify breast masses in CESM images [33]. They combined textual features with the
images’ characteristics and compared the feature fusion and decision fusion methods. Their
proposed multimodal network improved the classification performance and reduced the
rate of benign biopsy. Dominique et al. used the CheXNet-based deep learning model
and tested it on the CESM dataset [34]. They used majority voting rules to calculate the
results of images with different characteristics. Their work showed the importance of deep
learning technology in CESM. Zhang et al. proposed a breast cancer classification method
with multimodal information using RefineNet as the backbone network. Their method
pays attention to both CESM images and clinical features, achieving good performance [35].
However, they do not reasonably exploit the CESM images’ unique features. In clinical
diagnoses, CC and MLO images show doctors different lesion locations and shape features.
These methods ignore information from different illumination views (CC and MLO views).

Our proposed method considers the contextual features between the mass and its
adjacent tissues. In addition, we simultaneously use different information from four CESM
images to classify breast cancer and obtain common information across multiple images.

3. Methods and Materials
3.1. The Proposed CESM Classification Method

Our method uses ResNet-50 as the backbone and includes a feature extraction module
and a feature selection module. Firstly, our network simultaneously receives four images
(CC-LE, CC-DES, MLO-LE, and MLO-DES) generated by the CESM detection of each breast.
ResNet-50 extracts feature maps corresponding to each input image. Then, the feature
maps are input into the feature extraction module. Inspired by the coordinated attention
mechanism [36], this module implements pooling operations in the horizontal direction
with a pooling kernel of size 1 × 7 and vertically with a pooling kernel of size 7 × 1. The
resulting matrices are reweighted onto the original feature maps as the output of the feature
extraction module. They are then input into the information bottleneck module, comprising
a decoder and an encoder. The decoder and encoder consist of three fully connected layers,
extracting the common information from the multiple input images and optimizing the
parameters. The features corresponding to the four input images are concatenated and
input to a fully connected layer to output the final breast cancer classification result. The
flowchart is illustrated in Figure 2a. The feature extraction module in Figure 2b and the
feature selection module in Figure 2c are discussed in detail below.

3.1.1. Feature Extraction Module

Global pooling is often used in conventional attention mechanisms to encode spatial
information globally, which increases the difficulty of preserving the correlation between
the pixels [37]. To overcome the above limitations, we introduce coordinated attention for
capturing the pixel-level contextual information between the lesion area and its adjacent
breast tissue in a single CESM image input into our classification network.

Given the feature map T, we use the pooling kernel (H, 1) to encode each channel
along the horizontal coordinate. Thus, the process can be formulated as

TX
i (i) =

1
H ∑

0≤j≤H
t(i, j), (1)
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where t refers to the feature map input into the feature extraction module; (i, j) refers
to the coordinates of each point in T; and TX is the output of the pooling operation in
the horizontal direction. Similarly, the operation of encoding, along with the vertical
coordinates with the pooling kernel (1, W), can be written as

TY
j (j) =

1
W ∑

0≤i≤W
t(i, j). (2)

Then, we concatenate the feature maps produced by Equations (1) and (2) and input
them together into a 1 × 1 convolutional transformation function f1, yielding

Tconv = ReLU(f1

[
TX⊕TY

]
), (3)

where [ ⊕ ] denotes the concatenation operation between the two feature maps; ReLU is the
non-linear activation function; and Tconv is the output of the 1 × 1 convolutional operation.
Here, Tconv ∈ R(H+W)×C/r, and r is the reduction ratio for reducing the channel number
of Tconv and the model complexity. We then separate Tconv into TX

conv ∈ R(H+W)×C/r and
TY

conv ∈ R(H+W)×C/r in horizontal and vertical directions. TX
conv and TY

conv are the input
into the other two 1 × 1 convolution layers. Finally, the output of the feature extraction
module comprises the superposition of the input feature map and the weights obtained in
two directions, yielding

X(i, j) = T(i, j)×σ(f2(TX
conv))×σ(f3(TY

conv)), (4)

where f2 and f3 denote two 1 × 1 convolutional functions; σ is the sigmoid function; and
X(i, j) is the coordinates of each point in the output.
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3.1.2. Feature Selection Module

As we have already extracted feature information from multi-input CESM images
through the feature extraction module, an effective feature selection method is necessary
before the final classification layer to filter out irrelevant features. Mutual information
between the layers and the input and output variables can quantify deep neural networks,
indicating the relevancy between the information bottleneck and deep learning [38]. The
information bottleneck was originally proposed to filter useless information by maximizing
the mutual information between objects [39]. With the development of deep learning tech-
nology, Tishby et al. discussed the feasibility of combining information bottleneck theory
with deep learning tasks [40–42]. Therefore, we introduced the information bottleneck
theory into our classification method and extended it to multi-input networks.

The information bottleneck module consists of a decoder and an encoder. The decoder
contains three fully connected layers with node numbers 1024, 1024, and 512. Similarly, the
encoder contains three fully connected layers with node numbers 512, 1024, and 1024. Each
fully connected layer is followed by a ReLU activation layer. We proposed a loss function
to train our network, based on the information bottleneck theory. The flowchart of the
parameter optimization process is shown in Figure 3.
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We input the feature maps’ output by the feature extraction module into the informa-
tion bottleneck module. In a set containing the feature maps X and ground truth labels
Y, {(Xnm, Yn)| n = 1, 2, . . . , N; m = 1, 2, . . . , M}, N and M denote the number of cases
and CESM images input into the network simultaneously. According to the information
bottleneck theory, the optimization process of the deep learning classification network
can be expressed as maximizing the mutual information between the labels and predicted
values. In fact, feature maps always contain some information irrelevant to the classification
task. Therefore, this process can be formulated as

max
^
X

I(Y,
^
X)−αI(X,

^
X), (5)

where X̂ refers to the relevant part of X with respect to Y, and α is a parameter to trade
off the mutual information [43]. I( ; ) refers to the mutual information between the two
variables, and it is formulated as

I(U; V) =
∫

p(u, v)log(
p(u|v )

p(u)
)dudv, (6)
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where p( ) denotes the marginal probability density function, and p( , ) denotes the joint
probability density function. Then, we extend it to our multi-input network and learn a
joint representation, X̂, to optimize our model:

max
^
X,

^
X1,

^
X2,...,

^
Xm

I(Y,
^
X)−

m

∑
j=1

λjI(Xj;
^
Xj), (7)

where λ is another form of α in Equation (5), and fε is the classification network f with
the parameter ε. The first term is to maximize the mutual information between the joint
representation X̂ and the real label Y. The following items minimize the mutual information
between the latent representation of each input image and itself.

Since mutual information is difficult to calculate, we use some known distribution
functions to approximate the lower bound of I(Y, X̂) and obtain the approximate solution.
The distribution, p, is complex, whereas the distribution, q, can be learned from the network.
Therefore, we use q to approximate p. According to the KL–divergence, we have

KL[p(y
∣∣∣∣^x), q(y

∣∣∣∣^x)] ≥ 0

⇒
∫

dyd
^
x p(y,

^
x) log(p(y

∣∣∣∣^x )) ≥ ∫ dyd
^
x p(y,

^
x) log(q(y

∣∣∣∣^x )). (8)

Using Equation (6), we have

I(Y,
^
X) ≥

∫
dyd

^
x p(y,

^
x) log

q(y
∣∣∣∣^x )

p(y)

=
∫

dyd
^
x p(y,

^
x) logq(y

∣∣∣∣^x )− ∫ dy p(y) logp(y).
(9)

Since the last item of Equation (9) is a definite value that depends on the label y, it has
no effect on the parameter optimization. Therefore, we directly drop it and have

I(Y,
^
X) ≥

∫
dyd

^
x p(y,

^
x) logq(y

∣∣∣∣^x )
=
∫

dyd
^
xdx1dx2dx3dx4d

^
x1d

^
x2d

^
x3d

^
x4 p(x1, x2, x3, x4,

^
x1,

^
x2,

^
x3,

^
x4, y,

^
x) logq(y

∣∣∣∣^x ). (10)

Using Bayes’ rule, the joint probability density function in Equation (10) can be
formulated as

I(Y,
^
X)

≥
∫

dx1dx2dx3dx4dy p(x1, x2, x3, x4, y)
∫

dyd
^
x1d

^
x2d

^
x3d

^
x4p(

^
x
∣∣∣∣^x1,

^
x2,

^
x3,

^
x4 )

4
∏

j=1
p(

^
xj

∣∣∣∣xj ) logq(y
∣∣∣∣^x ). (11)

We assume that p( x̂|x̂1, x̂2, x̂3, x̂4 ) and p( x̂j
∣∣xj ) are Gaussian distributions, so we have

^
xj = µ(xj;φj) + Σ(xj;φj)εj,

^
x = µ(

^
x1,

^
x2,

^
x3,

^
x4;θ) + Σ(

^
x1,

^
x2,

^
x3,

^
x4;θ)ε,

(12)

where εj, ε ∼ N (0, I); µ denotes the mean; Σ denotes the variance; and θ is a parameter
of the network. They are all learned from our network. Similarly, using distribution, r, to
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approximate p transforms the last terms of Equation (7), according to the KL-divergence.
Therefore, the loss function of the information bottleneck module is

max
1
N

N

∑

EεEε1Eε2Eε3Eε4 logq(y
∣∣∣∣^x )− m

∑
j
λjEεj log

p(
^
xj

∣∣∣∣xj )

rj(
^
xj)

, (13)

where N denotes the number of cases; Eε and Eεi denote the expected value. The total loss
function is the sum of the traditional classification loss and the information bottleneck loss,
which can be formulated as

L =
1
N

N

∑
i=1

H(
^
yi, yi) + max

1
N

N

∑

EεEε1Eε2Eε3Eε4 logq(y
∣∣∣∣^x )− m

∑
j
λjEεj log

p(
^
xj

∣∣∣∣xj )

rj(
^
xj)

. (14)

3.2. Materials
3.2.1. Data and Preprocessing

We collected CESM images from the Yantai Yuhuangding Hospital using the all-digital
imaging equipment. For suspicious breast cancer patients aged 21–69, the imaging was
performed 2 min after intravenous injection of an iodinated contrast agent (300 mg of
iodine/mL, 1.5 mL/kg of body weight, flow rate of 3 mL/s), which is administered to
the patient using a low-energy (26–32 kVp) and high-energy (45–49 kVp) X-ray spectrum.
Low-energy images and dual-energy subtraction images for each breast were obtained
through a specific image reconstruction algorithm at the craniocaudal and mediolateral
oblique, with a total of four mammography images. Based on the imaging examination,
the clear diagnosis made by doctors through a biopsy is regarded as the standard of
our classification task. According to the standard, we divided the image data into two
categories, with 64 benign cases and 58 malignant cases. Then, we divide the dataset into
the training, verification, and test sets according to the proportion of 80%, 10%, and 10%,
respectively. The resolution of all the images is adjusted to 1350 × 2300 px. When working
with deep learning, it is crucial to use a large enough dataset to train the model. Especially
for medical image processing, data enhancement to generate new data sets is also beneficial
to protect the patients’ privacy. We conduct a series of operations on the images in the
CESM dataset, such as pan, rotate, flip, and zoom. At the same time, we use a Gaussian
Blur to simulate the real noise information.

3.2.2. Details of Training

We evaluate our method based on the data-enhanced CESM dataset. All the images
are resized to 227 × 227 px in our experiments. The method proposed in this paper is
based on PyTorch implementation, and it is trained on the NVIDIA Tesla A30 GPU. The
number of training iterations is 150. We optimize the weights by the ADAM algorithm, with
β1 = 0.900. The effects of several super parameters on the method are tested experimentally.
When the batch size, learning rate, and β2 are set to 16, 0.001, and 0.999, respectively, the
method obtains the best results.

4. Results
4.1. Qualitative Comparison

We compare our method to the traditional methods of VGG-16, VGG-19, ResNet-18,
and ResNet-50. We use Grad-CAM [44] to visually interpret our method and the others.
Figure 4 shows the qualitative experimental results of four CESM images input into the
method in the test set. VGG-16 and VGG-19 focus on lesion locations but also on some
regions that are not relevant to the breast cancer classification task. ResNet-18 and Resnet-50
produce competitive results, but the details are still not as accurate as our method. Due to
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the IB feature screening module we designed, our method focuses less on irrelevant features.
Our method produces excellent visuals of the location and size of the mass, especially its
shape and edge. This effect is mainly due to our well-designed feature extraction module.
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shows the four input CESM images. The last column shows the visual interpretation generated by
our method.

4.2. Quantitative Comparison

We test the performance of the methods on the CESM testing set and evaluate them
by accuracy, precision, sensitivity, specificity, and F1-score. As listed in Table 2, our
method achieves higher accuracy and more balanced performance than the other methods.
Based on the experimental data, we draw confusion matrices for all the methods. As
shown in Figure 5, our method outperforms the traditional methods. In particular, our
network misdiagnosed fewer benign cases as malignant. In addition, the receiver operating
characteristic (ROC) curve plots further demonstrate the diagnostic power of the binary
classifier. Figure 6 shows the loss and accuracy of the methods in the experiments. As
shown in Figure 7a, the experimental results are shown through the ROC curve. Our
method achieves the highest area under the curve (AUC), a higher true positive rate (TPR),
and a lower false positive rate (FPR).

Table 2. Classification results of CESM images using different deep learning methods. The bold
values represent the best value.

Method Accuracy Precision Sensitivity Specificity F1-Score

VGG-16 0.8348 0.8354 0.8411 0.8364 0.8376
VGG-19 0.8511 0.8476 0.8561 0.8461 0.8510

ResNet-18 0.8467 0.8412 0.8547 0.8387 0.8479
ResNet-50 0.8572 0.8474 0.8693 0.8431 0.8592

Ours 0.8806 0.8803 0.8810 0.8801 0.8806
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Figure 7. Comparison of ROC curves of different methods. The solid red line represents our method.
(a,b) show the results of our methods in qualitative and quantitative experiments, respectively.

4.3. Ablation Studies

Our method consists of a feature extraction module using the coordinated attention
(CA) principle and a feature selection module using the information bottleneck (IB) theory.
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Therefore, we verified their contribution to the results through experiments: (1) taking
ResNet-50 as the backbone, without CA and IB, which is our baseline; (2) introducing only
CA into the baseline; (3) introducing only IB into the baseline; and (4) the baseline with
CA and IB, which is our method. Table 3 shows the results of CA and IB ablation studies.
ResNet-50 and CA has a more balanced performance than the baseline, but its overall
performance is lower than our method. Similar to our method, ResNet-50 and IB achieves
the best sensitivity, but its performance is not as high in other aspects. As shown in Table 3,
our method has more competitive performance when CA and IB are added to the baseline.
In Figure 7b, our method achieves a higher area under the curve than the other methods.
Figure 5 shows the confusion matrices of the ablation experiments, and Figure 8 shows the
performance improvement. The ablation experiment results show that both CA and IB are
necessary for improving the performance of the CESM image classification.

Table 3. Classification results of ablation studies. The bold values represent the best values.

Method Accuracy Precision Sensitivity Specificity F1-Score

ResNet-50 0.8572 0.8474 0.8693 0.8431 0.8592
ResNet-50&CA 0.8617 0.8550 0.8594 0.8542 0.8602
ResNet-50&IB 0.8609 0.8597 0.8814 0.8553 0.8689

Ours (full) 0.8806 0.8803 0.8810 0.8801 0.8806
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5. Discussion

In this study, we propose a deep learning method for classifying contrast-enhanced
spectral images based on contextual features and the information bottleneck principle. We
curate the raw data obtained from the hospital and perform data augmentation. Since each
CESM examination produces four images with complementary features corresponding
to each breast, we input them into our network simultaneously. In the feature extraction
step, we introduce a coordinated attention mechanism that enables our network to capture
pixel-level contextual information between the lesions and adjacent breast tissue. Then, we
use the information bottleneck theory to perform feature screening on the four feature maps
and generalize it into multi-input networks. This process provides our network with a more
reasonable loss function for further optimization. Finally, we fuse the feature information
from multiple input images to train the network and obtain the final classification of benign
or malignant breast cancer.
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Previous studies mainly focused on developing classification networks for a single
CESM image. Recently, researchers considered the difference between LE and DES images
and used both to classify breast cancer. Perek et al. combined text and image features to
classify breast masses in CESM images [33]. Dominique et al. considered different LE and
DES image features and used a majority voting rule to calculate the results [34]. A recent
approach is the two-view convolutional neural network proposed by Sun et al. [45]. They
used both CC and MLO views for breast cancer classification but did not consider DES
images. In order to fill the previous gap, we use four images (CC-LE, CC-DES, MLO-LE,
and MLO-DES) as input and extract the common information between them for the breast
cancer classification. Our network considers more comprehensive feature information than
the previous methods.

We assess the performance of our proposed method through qualitative and quantita-
tive evaluation in our experiments. Figure 4 shows the interest regions of different methods
for a set of input images. VGG-16 and VGG-19 focus on some highlighted areas in CESM
images that are irrelevant to breast cancer diagnosis. ResNet-18 and ResNet-50 focus on
the tumor location more accurately but also consider irrelevant regions. Therefore, having
the network focus less on irrelevant regions is necessary. In addition, Table 2 shows that
the commonly used methods achieve higher sensitivity in the breast cancer classification
task. It can also be observed from Figure 7 that these methods achieve higher false positive
rates. Therefore, we require a method that reduces the misdiagnosis rate of the CESM
images. Our proposed feature extraction module enables the network to preserve the
pixel-level contextual information of the lesions. This process allows our network to focus
on the lesion’s edges and the influence of adjacent tissues, reducing the probability of
misdiagnosing benign masses as malignant.

However, most existing studies on CESM image classification conduct experiments on
private datasets. Due to medical technology and privacy constraints, there are not many
cases in these datasets, and the variety of lesions is not diverse. These deficiencies should
be addressed in future works based on this study.

6. Conclusions

In this paper, we propose a multi-input classification network based on contextual
features and the information bottleneck to correct the high misdiagnosis rate of breast
cancer caused by traditional classification methods, which extracts the irrelevant features.
We use ResNet-50 as the network backbone to extract features from four CESM images
corresponding to the same breast. Our feature extraction module accurately localizes
the mass in horizontal and vertical directions and preserves the pixel-level contextual
information between the mass and its neighborhood. This process helps the network
focus on the impact of the breast tissue surrounding the lesion. We also propose a feature
selection module, based on the information bottleneck theory, to filter out the features
irrelevant to the classification task in multiple feature maps and preserve their common
information. We evaluated the performance of our network using multiple evaluation
metrics on a dataset of 488 images from 122 patients. The qualitative, quantitative, and
ablation experiment results show that our method significantly improves the accuracy of
breast cancer classification and reduces the false positive rate of diagnosis. We plan to
collect more CESM images to expand the dataset in future work. This step is beneficial to
improving the robustness of our method. Furthermore, we did not consider other image
types, such as ultrasound and magnetic resonance imaging data. Our future work will
combine different data types from the same breast for breast cancer classification.
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