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Abstract: Interstitial pneumonia of uncertain cause is referred to as idiopathic interstitial pneumonia
(IIP). Among the various types of IIPs, the prognosis of cases of idiopathic pulmonary fibrosis (IPF)
is extremely poor, and accurate differentiation between IPF and non-IPF pneumonia is critical. In
this study, we consider deep learning (DL) methods owing to their excellent image classification
capabilities. Although DL models require large quantities of training data, collecting a large number
of pathological specimens is difficult for rare diseases. In this study, we propose an end-to-end scheme
to automatically classify IIPs using a convolutional neural network (CNN) model. To compensate for
the lack of data on rare diseases, we introduce a two-step training method to generate pathological
images of IIPs using a generative adversarial network (GAN). Tissue specimens from 24 patients
with IIPs were scanned using a whole slide scanner, and the resulting images were divided into patch
images with a size of 224 × 224 pixels. A progressive growth GAN (PGGAN) model was trained
using 23,142 IPF images and 7817 non-IPF images to generate 10,000 images for each of the two
categories. The images generated by the PGGAN were used along with real images to train the CNN
model. An evaluation of the images generated by the PGGAN showed that cells and their locations
were well-expressed. We also obtained the best classification performance with a detection sensitivity
of 97.2% and a specificity of 69.4% for IPF using DenseNet. The classification performance was also
improved by using PGGAN-generated images. These results indicate that the proposed method may
be considered effective for the diagnosis of IPF.

Keywords: idiopathic interstitial pneumonias; classification; convolutional neural network; generative
adversarial networks

1. Introduction
1.1. Background

Interstitial pneumonia is an inflammation that occurs in the interstitium between
alveoli. There are many types of interstitial pneumonia, including interstitial pneumonia of
unknown cause, which is referred to as idiopathic interstitial pneumonia (IIP). IIPs include
a variety of pathological forms, with idiopathic pulmonary fibrosis (IPF) having the poorest
prognosis [1]. Differentiation of IPF is important because the associated treatment methods
differ significantly from those of other IIPs (non-IPF).

In the diagnosis of IIPs, a high-resolution chest CT scan is used to diagnose the extent
and type of inflammation. If differentiation is difficult on a CT examination, pathologi-
cal examination is performed using lung biopsy. Recently, whole specimens have been
digitized using whole slide scanners, and digital images have become more common for
diagnosis [2]. However, the diagnosis of IPF using pathological imaging requires extensive
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experience and very few pathologists are capable of performing the task. Therefore, we
aimed to develop assistive technology to diagnose IPF accurately in this study.

Artificial intelligence (AI) has evolved markedly with the emergence of deep learning
(DL) in the early 2010s and has shown superior capabilities in image recognition [3,4]. There-
fore, in this study, we focused on the classification of IPF and non-IPF patients using DL.

1.2. Related Works

Various DL technologies have been proposed for lung diseases [5–10]. We developed
a method to automatically detect lung nodules in CT images using a convolutional neural
network (CNN), which is a DL technique [5]. For pathological images, an automated
method for classifying histological types of lung cancer cells by CNN and a method
for differentiating between benign and malignant cells have also been proposed [6–8].
Regarding pneumonia, many studies have considered the automatic detection of COVID-
19 pneumonia [9] and predicted the severity of the disease [10]. In a study using non-lung
histopathology specimens, Shi et al. proposed a method for the automatic detection of
gastric cancer regions in images of gastric histopathology specimens using a CNN decoder
for feature extraction and an attention mechanism [11]. The evaluation using two datasets
showed that it has a satisfactory detection agreement. Li et al. also proposed a classification
method for cholangiocarcinoma by introducing a generator and a discriminator with a
transformer [12].

To detect and classify IIPs, Takeuchi et al. studied the automatic extraction of regions of
IIPs from CT images and their classification as IPF or non-IPF, and achieved a differentiation
accuracy of 75.7% [13].

Uegami et al. used pathological images to automatically classify IIPs by extracting
features from finely cropped images using self-supervised learning [14]. The features were
clustered, and pathologists manually merged clusters with the same pathological features.
On this basis, they developed a method to classify IIPs using deep learning, which achieved
an AUC of 0.92. Their study demonstrated the feasibility of analyzing pathological patterns
of IIPs using deep learning. In contrast, the model’s ability to automatically classify IIPs
without manual clustering by pathologists exhibited an AUC of 0.65. To the best of our
knowledge, no other works in the relevant literature have considered this approach, and
no existing methods can automatically classify IIPs with sufficient accuracy.

Thus, very few studies have classified pathological images of IIPs, and automated
classification remains challenging. IIP is a rare disease, and so collecting a large number of
biopsy specimens is difficult. Despite the small number of cases, the patterns that emerge
in tissue specimens from IIPs are diverse. Therefore, methods that can produce satisfactory
results using data on a small number of cases are needed.

In this study, we consider data augmentation via a generative adversarial network
(GAN) model, which can generate a large number of images that resemble patterns learned
during an adversarial training process. These methods attracted considerable attention
as a groundbreaking approach when they were originally developed. In prior works, we
used GAN models to classify lesions. For example, we proposed a conditional info-GAN
designed to generate CT images of lung nodules with various shapes, and showed that
the generated images can be used to improve the accuracy of lung cancer histology classi-
fication [15]. In addition, we automatically generated lung cell images using progressive
growth GANs, which can generate high-resolution images, and applied the generated
outputs to classify benign and malignant lung cells. This method achieved results better
than those obtained without using the generated images [16]. In addition, a method to
generate MR images of the head similar to those of stroke patients from MR images of
healthy patients using a CycleGAN model was proposed. This approach was then used to
improve the accuracy of automated detection of cerebral infarction using the transformed
images [17].
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1.3. Objective and Contributions

Based on the background and challenges described above, we propose a method to
automatically classify pathological specimens of IIPs. The main contributions of this study
are as follows.

1. Image generation using GANs is introduced for use as input data for classification.
By using GAN with progressive growing mechanism, high-resolution images are gen-
erated in a stable manner. Generated images can improve the classification accuracy
of IIPs.

2. The CNN model used for classification is trained in two steps: a rough pretraining
using generated pathological images, and fine tuning using real images to obtain
high accuracy.

2. Method
2.1. Outline

An outline of this study is presented in Figure 1. First, tissue specimens from IPF and
non-IPF patients were scanned with a whole slide scanner and classified into patch images.
Only valid patch images were registered in the image dataset. Subsequently, a GAN was
introduced to generate synthesized IPF/non-IPF images and augment the image dataset,
and a CNN trained on the GAN-generated images and real images was used to derive the
IPF/non-IPF classification results.
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Figure 1. Outline of the proposed method.

2.2. Image Dataset

Patients diagnosed with interstitial pneumonia who were biopsied at the Fujita Medi-
cal University Hospital were included in this study. Of these patients, 12 were confirmed to
have IPF, and 12 were diagnosed as non-IPF. The final diagnosis for patients without IPF
consisted of non-specific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia
(COP), and pulmonary involvement associated with collagen vascular disease. Specimens
were obtained by thoracoscopic lung biopsy and prepared by HE staining. The dataset
included 23 patients with IPF and 33 non-IPF patients.

Images of the specimens were collected using a whole slide scanner (AxioScan Z1,
Carl Zeiss, Oberkochen, Germany), tiled with a microscope camera mounted with a
20× objective lens at a pixel resolution of 0.22 µm. The images were stored in CZI format
with a 24-bit depth and compressed using the JPEG XR image compression algorithm. The
areas of tissue present inside the specimen were scanned, resulting in a matrix count of 72,
200 × 59, 600–229, 200 × 102, 700 for the stored images.

2.3. Image Preprocessing

As the whole-slide image of the pathology specimen was large, it was divided into
smaller patch images for processing by deep learning, and the image dataset was con-
structed using a two-step selection process (Figure 2).
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First, because normal lung tissue is likely to impede the classification of IPF and non-
IPF, the area of pneumonia in the image was designated by the pathologist, and the region
of interest was defined within that area. The whole slide images were then divided into
patch images with a size of 2240 × 2240 pixels and raster scanning to avoid overlapping.
These patch images also contain many background areas with no tissue. To remove patch
images with no tissue, patch images were binarized using Otsu’s binarization algorithm
such that the background was black and areas with tissue were white. Images with less
than 10% of the total area showing tissue were excluded from processing. These processes
resulted in 23,142 IPF and 7817 non-IPF images being registered in the image dataset for
this study.

Examples of typical IPF and non-IPF patch images are shown in Figure 3. Typical
IPF lesions show a fibrotic pattern. However, there are many atypical ones, and it is often
difficult to distinguish them from non-IPF patterns caused by a variety of factors.
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2.4. Data Augmentation by Generative Adversarial Networks

In this study, we employed pathology specimens from 24 cases of rare diseases, which
is a small number for deep learning models. Although the total number of images exceeds
30,000, there was little variation in the images, and there was some concern that overfitting
could degrade the classification performance. Therefore, we introduced data augmentation
to increase the amount of training data by artificially generating images similar to each
class. Simple data augmentation methods generate new images using simple manipulations
such as image rotation or scaling. This contributes slightly to an increase in processing
performance; however, the performance improvement that can be achieved with these
methods is limited because they do not significantly change the image pattern itself.

Recently, the use of GAN models, an image synthesis technique, to generate images
similar to real images for deep learning has been widely investigated [18]. Onishi et al.
demonstrated that the use of artificial nodule images generated by a GAN model in addition
to actual CT images for automated differentiation of benign and malignant nodules on
chest CT images improved the performance of nodule differentiation. In this study, we also
aimed to improve classification performance by using GAN-generated images.

The progressive growth of GANs (PGGAN) [19], which can generate high-resolution
images, has been used as the GAN for data augmentation. Teramoto et al. used a PGGAN
model to automatically generate high-resolution lung cell images and used them in the
classification process to improve the performance of differentiating between benign and
malignant lung cytology images. The results showed that the classification accuracy
improved [16].

As shown in Figure 4, PGGAN gradually increases the resolution of a GAN trained
to produce low-resolution images. Initially, a 4 × 4 pixel image was generated in two
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convolution layers with 128 random values (latent vectors). The discriminator identifies
the real and generated images using two convolution layers and one fully connected layer.
Then, by adding two convolution layers to the network of generators and discriminators,
the system was adapted to generate 8 × 8 and 16 × 16 pixel images. This process was
repeated seven times to produce a 256 × 256 pixel image; the base structure of PGGAN
was based on WGAN-GP [20] and was trained using the Wasserstein distance with added
gradient penalty. Adam was used as the optimization algorithm, the learning coefficient lr
was set to 0.00001, β1 to 0.9, and β2 to 0.999, and training was performed for 50 epochs.

Diagnostics 2022, 12, 3195 5 of 13 
 

 

model to automatically generate high-resolution lung cell images and used them in the 
classification process to improve the performance of differentiating between benign and 
malignant lung cytology images. The results showed that the classification accuracy im-
proved [16].  

As shown in Figure 4, PGGAN gradually increases the resolution of a GAN trained 
to produce low-resolution images. Initially, a 4 × 4 pixel image was generated in two con-
volution layers with 128 random values (latent vectors). The discriminator identifies the 
real and generated images using two convolution layers and one fully connected layer. 
Then, by adding two convolution layers to the network of generators and discriminators, 
the system was adapted to generate 8 × 8 and 16 × 16 pixel images. This process was re-
peated seven times to produce a 256 × 256 pixel image; the base structure of PGGAN was 
based on WGAN-GP [20] and was trained using the Wasserstein distance with added gra-
dient penalty. Adam was used as the optimization algorithm, the learning coefficient lr 
was set to 0.00001, β1 to 0.9, and β2 to 0.999, and training was performed for 50 epochs. 

Using these methods, two PGGANs were created to generate IPF and non-IPF im-
ages. The two PGGANs were then assigned random values, and 10,000 images were gen-
erated for each. These were subsequently used to train the CNN. 

To evaluate the image quality of the images generated by the PGGAN model, we also 
generated images using a conventional deep convolutional GAN (DCNN) [21] without a 
progressive mechanism. The DCGAN comprised a generator with five convolutional lay-
ers and four scaling layers, as well as a discriminator with six convolution layers and a 
single fully connected layer to generate images with a size of 256 × 256 pixels from 128 
latent vectors. The model was trained over 2000 epochs using the Adam optimizer with a 
learning coefficient lr set to 0.00002, β1 to 0.9, and β2 to 0.999, and training was performed 
for 2000 epochs.  

 
Figure 4. Architecture of PGGAN. 

2.5. Two-Step Image Classification 
Pathological images were classified as IPF and non-IPF using a CNN model. To in-

crease the variation in images, we prepared images generated by the PGGAN in addition 
to real images, which were used for training in two stages as described below [16,18]. Note 
that the image matrix size was resized to 224 × 224 pixels when the images were provided 
to the CNN. 

First, the CNN for classification was trained using images generated by the PGGAN 
((a) in the Figure 5). However, they reproduced the shape, color, and arrangement of cells 

Tr
ai

ni
ng

 p
ro

ce
ss

Latent

4x
4

8x
8

25
6x

25
6

4x
4

8x
825
6x

25
6

Synthetic
Real

Real

…

Latent

4x
4

8x
8

4x
4

8x
8

Synthetic
Real

Real

Latent
4x

4

4x
4

Synthetic
Real

Real

Figure 4. Architecture of PGGAN.

Using these methods, two PGGANs were created to generate IPF and non-IPF images.
The two PGGANs were then assigned random values, and 10,000 images were generated
for each. These were subsequently used to train the CNN.

To evaluate the image quality of the images generated by the PGGAN model, we also
generated images using a conventional deep convolutional GAN (DCNN) [21] without
a progressive mechanism. The DCGAN comprised a generator with five convolutional
layers and four scaling layers, as well as a discriminator with six convolution layers and
a single fully connected layer to generate images with a size of 256 × 256 pixels from
128 latent vectors. The model was trained over 2000 epochs using the Adam optimizer with
a learning coefficient lr set to 0.00002, β1 to 0.9, and β2 to 0.999, and training was performed
for 2000 epochs.

2.5. Two-Step Image Classification

Pathological images were classified as IPF and non-IPF using a CNN model. To
increase the variation in images, we prepared images generated by the PGGAN in addition
to real images, which were used for training in two stages as described below [16,18]. Note
that the image matrix size was resized to 224 × 224 pixels when the images were provided
to the CNN.

First, the CNN for classification was trained using images generated by the PGGAN ((a)
in the Figure 5). However, they reproduced the shape, color, and arrangement of cells in a
real image, and we considered that studying pathological images using PGGAN-generated
images to understand their general characteristics could be useful. Therefore, the CNNs
were pretrained using PGGAN-generated images. Several CNN models (VGG-16/19 [22],
InceptionV3 [23], ResNet-50 [24], and DenseNet-121/169/201 [25]) were pretrained us-
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ing the ImageNet database, and the fully connected layer was replaced by a multilayer
perceptron with 1024 and 2 units.
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These models were trained with 10,000 generated patch images for each IPF and
non-IPF case. The Adam optimization algorithm was used, with a learning coefficient lr
of 0.00001, β1 of 0.9, and β2 of 0.999, and training was performed for 50 epochs. These
parameters were set so that the training loss was sufficiently reduced, and the validation
loss did not increase in the preliminary experiments.

Next, fine-tuning was performed on the CNN pre-trained using the generated images
and real images ((b) in the Figure 5). As in a previous study [7], data augmentation was
performed by rotating and flipping the images during the training. Because the number
of real images was unbalanced between the two classes, the rotation angle was adjusted
according to the class to achieve a balance. Consequently, 23,142 IPF cases and 23,451 non-
IPF cases were used for the training.

In addition, as an ablation study, a CNN model trained on the ImageNet database with-
out data augmentation by PGGAN was trained by transfer training on actual pathological
images and compared with the proposed method.

2.6. Visualization

In this study, pathological specimens were divided into patch images and CNN-based
classification was performed on a patch image basis. However, there were cells with various
morphologies in these specimens. Therefore, to classify using the information of the entire
specimen, the probability of IPF when the patch images were identified by the CNN was
converted into color information, and the color map output was superimposed on the
specimen. Pathologists can use the color map and pathology image for diagnosis, while
simultaneously observing them.

2.7. Evaluation Metrics

The classification performance of the proposed method was evaluated using image-
and case-based methods. In the image-based evaluation, performance was evaluated by
tabulating the probability of IPF obtained by providing patch images to the CNN. For case-
based classification, we calculated the average value of the probabilities of CNN-output
IPF in each case. Based on this value, IPF and non-IPF were classified.

A cross-validation method was used to evaluate the classification ability [26]. In the
cross-validation, the image dataset was divided into K subsets to avoid case fragmentation.
The CNN was then trained on K-1 subsets; the image data belonging to the remaining
subset were defined as test data, and the classification results were evaluated. In the
cross-validation method, the test results for all data were obtained by training and testing
K times, while changing the subset used as the test data. The data were divided into five
subsets (5-fold cross validation) and the classification ability was evaluated.

A confusion matrix was created based on the classification results of all images obtained
by cross-validation. Based on the matrix, IPF cases were assumed to be positive and non-
IPF cases were assumed to be negative, and the sensitivity, specificity, and accuracy were
calculated. We also generated receiver operating characteristic (ROC) curves by determining
the true positive fraction (TPF), which is the proportion of correctly diagnosed IPF, and the
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false positive fraction (FPF), which is the proportion of incorrectly diagnosed non-IPF as IPF,
while changing the cut-off value for the image-based or case-based IPF probability.

The calculation was performed using the original software written in the Python
programming language with an AMD Ryzen9 3950X processor and 128 GB of DDR4
memory. The training and validation of the CNNs were accelerated by using an NVIDIA
Quadro RTX 8000 GPU.

3. Results
3.1. Synthesized Patch Images Using PGGAN

Figure 6 shows a sample synthesis of IPF and non-IPF pathological images using
PGGAN and DCGAN, along with real images.
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Figure 6. Real and synthesized images generated using PGGAN and conventional DCGAN models.
(a) Images of IPF; (b) Images of non-IPF.

3.2. Image Classification Results

Figure 7 shows the results of image-based classification with and without data aug-
mentation using the PGGAN model. Next, the probability of a sample showing IPF was
calculated for each image, and the results are shown in Figure 8. Table 1 shows the results
of the image-based and case-based evaluations of the classification results with the average
and standard deviation, and Table 2 shows the confusion matrix of the model with the
highest correct rate with and without data augmentation by PGGAN. Figure 9 shows the
results of the ROC curves calculated using the two models.
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Table 1. Performance evaluation.

(a) Image-Based Classification

CNN Model Data
Augmentation Sensitivity Specificity Accuracy AUC

VGG-16
w/o GAN DA 0.601 ± 0.062 0.547 ± 0.031 0.588 ± 0.050 0.615 ± 0.039

w GAN DA 0.582 ± 0.040 0.587 ± 0.047 0.583 ± 0.019 0.618 ± 0.009

VGG-19
w/o GAN DA 0.609 ± 0.027 0.592 ± 0.015 0.605 ± 0.021 0.641 ± 0.021

w GAN DA 0.607 ± 0.006 0.563 ± 0.014 0.596 ± 0.005 0.618 ± 0.007

InceptionV3 w/o GAN DA 0.625 ± 0.020 0.556 ± 0.023 0.608 ± 0.019 0.618 ± 0.032
w GAN DA 0.595 ± 0.011 0.527 ± 0.004 0.578 ± 0.008 0.592 ± 0.006

ResNet-50
w/o GAN DA 0.614 ± 0.021 0.578 ± 0.011 0.605 ± 0.014 0.619 ± 0.019

w GAN DA 0.540 ± 0.089 0.483 ± 0.090 0.526 ± 0.044 0.533 ± 0.009

DenseNet-121
w/o GAN DA 0.628 ± 0.018 0.568 ± 0.019 0.613 ± 0.009 0.628 ± 0.009

w GAN DA 0.683 ± 0.008 0.521 ± 0.016 0.642 ± 0.002 0.644 ± 0.006

DenseNet-169
w/o GAN DA 0.658 ± 0.019 0.554 ± 0.007 0.632 ± 0.013 0.639 ± 0.022

w GAN DA 0.691 ± 0.010 0.522 ± 0.015 0.649 ± 0.004 0.649 ± 0.004

DenseNet-201
w/o GAN DA 0.652 ± 0.036 0.557 ± 0.058 0.628 ± 0.013 0.632 ± 0.023

w GAN DA 0.663 ± 0.013 0.548 ± 0.012 0.634 ± 0.007 0.646 ± 0.006

(b) Case-Based Classification

CNN Model Data
Augmentation Sensitivity Specificity Accuracy AUC

VGG-16
w/o GAN DA 0.806 ± 0.127 0.583 ± 0.083 0.694 ± 0.087 0.701 ± 0.064

w GAN DA 0.861 ± 0.048 0.611 ± 0.048 0.736 ± 0.024 0.811 ± 0.039

VGG-19
w/o GAN DA 0.806 ± 0.048 0.639 ± 0.048 0.722 ± 0.024 0.765 ± 0.022

w GAN DA 0.889 ± 0.048 0.639 ± 0.048 0.764 ± 0.024 0.843 ± 0.019

InceptionV3 w/o GAN DA 0.944 ± 0.048 0.583 ± 0.000 0.764 ± 0.024 0.757 ± 0.030
w GAN DA 0.806 ± 0.096 0.667 ± 0.000 0.736 ± 0.048 0.744 ± 0.040

ResNet-50
w/o GAN DA 0.889 ± 0.048 0.611 ± 0.048 0.750 ± 0.042 0.722 ± 0.047

w GAN DA 0.611 ± 0.048 0.444 ± 0.048 0.528 ± 0.024 0.522 ± 0.028

DenseNet-121
w/o GAN DA 0.861 ± 0.127 0.583 ± 0.000 0.722 ± 0.064 0.734 ± 0.033

w GAN DA 0.972 ± 0.048 0.694 ± 0.048 0.833 ± 0.000 0.843 ± 0.005

DenseNet-169
w/o GAN DA 0.972 ± 0.048 0.583 ± 0.000 0.778 ± 0.024 0.786 ± 0.013

w GAN DA 0.944 ± 0.048 0.639 ± 0.048 0.792 ± 0.042 0.826 ± 0.045

DenseNet-201
w/o GAN DA 0.833 ± 0.220 0.583 ± 0.000 0.708 ± 0.110 0.726 ± 0.074

w GAN DA 0.833 ± 0.083 0.667 ± 0.083 0.750 ± 0.083 0.809 ± 0.024

DA: Data augmentation.

Table 2. Confusion matrix of classification (case-based classification).

(a) Classification without PGGAN (DenseNet-169)

Predicted Class

Non-IPF IPF

Actual class
Non-IPF 7 5

IPF 0 12

(b) Classification Using PGGAN (DenseNet-121)

Predicted Class

Non-IPF IPF

Actual class
Non-IPF 9 3

IPF 1 11
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4. Discussion

In this study, we developed a method to classify IPF and non-IPF cases by using whole-
slide pathology specimen images. Comparing the images generated by the PGGAN and
conventional DCGAN models with the real image shown in Figure 6, it may be observed
that the DCGAN reproduced an overall color distribution similar to that of the real image,
but did not reproduce details such as cells. In contrast, PGGAN accurately reproduced the
cells and their arrangement in the histopathological specimen in both IPF and non-IPF cases,
and the fibrosis pattern that appears in IPF cases was also observed in the generated images.
According to Figure 7, which shows the results of the classification, IPF cases tended to
be correctly classified as IPF with a slightly paler color and fibrotic areas. In addition,
because several disease classifications were included for non-IPF cases, images without IPF
characteristics were classified as non-IPF images. A review of images erroneously classified
into different classes showed that, for IPF cases, images with very dark or weak fibrosis
were misclassified, whereas for misclassified non-IPF cases, images with IPF-like fibrosis
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or pale images were included. For misclassified non-IPF cases, images with dark or weak
fibrosis were misclassified.

An IPF detection sensitivity of 0.658, specificity of 0.554, and accuracy of 0.632 were ob-
tained using DenseNet-169 without PGGAN data augmentation in image-based evaluation.
When using PGGAN data augmentation, a detection sensitivity of 0.691, a specificity of
0.522, and an accuracy of 0.649 were obtained using DenseNet-169. There was no difference
in performance between the two groups, as shown by the ROC curve in Figure 9a.

In contrast, the case-based evaluation showed the highest performance when DenseNet-
169 was used, with a sensitivity of 0.972, a specificity of 0.583, and an accuracy rate of
0.778 when PGGAN was not used. However, when PGGAN data augmentation was used,
the sensitivity was 0.972, the specificity was 0.694, and the accuracy rate was 0.833 with
DenseNet-121, indicating that data augmentation with PGGAN contributed to the improve-
ment in classification accuracy. AUC was used as an evaluation measure for comparison
with previous studies, and the results showed AUC values of 0.92 for the existing methods
that incorporated semi-automated methods, and an AUC of 0.65 for the automated classifi-
cation. Our fully automated method exhibited an AUC of 0.843, which was higher than
that of the previous automated method.

In this work, we introduced multiple CNN models and compared their classification
performance with and without data augmentation using a PGGAN. From these results,
we found that some CNN models were highly effective with data augmentation, whereas
others that were less effective. We assumed that the features to be extracted from the images
generated by the PGGAN model differed depending on the structure of the CNN model.
Even with only a single CNN, the best architecture generally varied depending on the
target image. A comparative evaluation of CNN models is also necessary when using this
method in conjunction with PGGAN. As a result of the evaluation, DenseNet exhibited the
best performance in combination with augmented data produced by the PGGAN model.

Not all pathologists are able to correctly diagnose IPF, and a cohort study on the
diagnostic accuracy of IPF showed that the accuracy of diagnosing IPF patients using
pathology and CT images depends on physician experience, and the correct diagnosis rate
of IPF is about 0.7 on the C-index [27]. The proposed method has the potential to assist non-
specialists in diagnosing IPF and can be used as a tool for resident education and diagnostic
assistance because the distribution of lesions can be visualized using probability maps.

This work involves some limitations. For example, we only used specimens collected
from a single institution. Further research should collect specimens from many institutions
to improve the performance of classification models. In terms of technology, we introduced
a PGGAN to generate high-resolution images and compared its performance with that of a
DCGAN. Because image-generation technology is rapidly evolving, new image-generation
models should be developed and comparative evaluations conducted. Although the
training parameters of the CNN used in this study were fixed based on the results of
preliminary experiments, automatic adjustment should be considered to obtain higher
generalization performance.

In the future, we plan to develop a diagnostic support system that implements the
proposed method in an application to clinical practice. For this purpose, whether the
proposed approach can contribute to diagnosis by pathologists may be considered, includ-
ing the reliability of the results. From a technical perspective, in developing diagnostic
support applications, it is necessary to evaluate and optimize the computational cost of
each process.

5. Conclusions

In this study, we have proposed an automated IPF detection method using a con-
volutional neural network in combination with image generation technology to support
the diagnosis of IPF using histopathological specimens. The results of an experimental
evaluation have shown that the pathological images generated by the PGGAN exhibited
the same characteristics as the real images. When they were used together to classify IIPs
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using a CNN model, the proposed approach outperformed the conventional method with
accuracy and AUC values of 0.833. These results indicate that the proposed method may
prove useful in classifying IIPs.
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