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Abstract: In this review, we focused on the applicability of artificial intelligence (AI) for opportunistic
abdominal aortic aneurysm (AAA) detection in computed tomography (CT). We used the academic
search system PubMed as the primary source for the literature search and Google Scholar as a
supplementary source of evidence. We searched through 2 February 2022. All studies on automated
AAA detection or segmentation in noncontrast abdominal CT were included. For bias assessment,
we developed and used an adapted version of the QUADAS-2 checklist. We included eight studies
with 355 cases, of which 273 (77%) contained AAA. The highest risk of bias and level of applicability
concerns were observed for the “patient selection” domain, due to the 100% pathology rate in
the majority (75%) of the studies. The mean sensitivity value was 95% (95% CI 100–87%), the
mean specificity value was 96.6% (95% CI 100–75.7%), and the mean accuracy value was 95.2%
(95% CI 100–54.5%). Half of the included studies performed diagnostic accuracy estimation, with
only one study having data on all diagnostic accuracy metrics. Therefore, we conducted a narrative
synthesis. Our findings indicate high study heterogeneity, requiring further research with balanced
noncontrast CT datasets and adherence to reporting standards in order to validate the high sensitivity
value obtained.

Keywords: abdominal aortic aneurysm; opportunistic screening; computed tomography; artificial
intelligence; QUADAS

1. Introduction

Abdominal aortic aneurysm (AAA) has no specific symptoms and can be asymp-
tomatic at the early stages [1]. When untreated, AAA can lead to an aortic rupture,
a life-threatening condition with an overall mortality of 80% [2–4]. Presently, the ac-
cepted diagnostic modality for AAA screening is ultrasonic imaging, while computed
tomography angiography (CTA) remains the “gold standard” for treatment planning [2].
Compared to ultrasonography, the advantages of CT include superior image quality, a
lower operator dependency, three-dimensional reconstruction, and the possibility of a
retrospective data audit [2]. A CT is also more sensitive to aortic dilation than ultrasonog-
raphy [5]. The radiation exposure associated with CT restricts its application as a screening
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method, but CT data can be used for opportunistic AAA detection either while reporting
the study or via retrospective analysis of scans with the abdominal aorta in the field of
view. According to the results of such audits, non-reported AAAs ranged from 0.4% (one of
261 patients) [6] to 5.8% (187 of 3246 patients) [7]. Taking into account the high volume of ac-
cumulated CT data (for example, in the USA the number of CT examinations was 278.5 per
1000 inhabitants in 2019 [8]), opportunistic screening could yield an increase in early diag-
nosed aneurysms in the population. Despite its potential, opportunistic screening for AAA
at the CT exam remains a challenging task. The reported radiologist diagnostic accuracy
for this task depends on the aneurysm’s size, with the lowest sensitivity of 0.52 for the
small ones (30–39 mm) [7]. The radiologists’ errors consist of false-negatives and incorrect
classification due to human-based or technical reasons [9]. AAA detection is also compli-
cated by the measurement ambiguity of the key diagnostic parameter, the aneurysmal sac
maximum transverse diameter [2].

Artificial intelligence (AI) has already shown its high potential for CT image-processing
automatization [5,10,11] and promises to be a powerful assistant for radiologists’ practice.
Automatization of diagnostic information processing has several advantages. First, it
provides a tool for a retrospective audit of big data. Second, AI yields reproducible and
precise measurements, addressing the ambiguity issue of human experts.

The aim of this review was to quantify the diagnostic accuracy of AI algorithms for
AAA detection by noncontrast CT, regardless of the aneurysm’s size.

2. Materials and Methods

This systematic review was planned, conducted, and reported in accordance with the
PRISMA statement [12], and the full protocol was registered on PROSPERO on 25 July 2021,
before the literature search (PROSPERO ID CRD42021264021). The target condition eval-
uated was abdominal aortic aneurysm, defined as a permanent localized pathological
dilatation of the abdominal aorta with a diameter greater than 3 cm or more than 50%
larger than the nondilated part [13]. We also defined a negative diagnosis for AAA as the
absence of abdominal aortic dilatation corresponding to the criteria above. In this review,
we focused on the opportunistic screening model—the interpretation of noncontrast CT
studies. For that reason, we considered CT studies without intravenous contrast and
containing the aorta abdominal region in the field of view.

The index test was AAA detection by an AI algorithm. AI should have provided
enough information to conclude whether an AAA was present or absent from the non-
contrast CT images of the abdominal area. The image processing could be of any AI type,
but the segmentation should have been fully automatic.

Manual expert segmentation was considered to be the reference standard, or “ground
truth” (GT). The quality of the reference standard was estimated either by the level of
expertise for a single observer or by any of the agreement metrics [14].

2.1. Search Methods for the Identification of Studies

The PubMed database was used as the main data source. Additional data (including
gray literature) were searched using the Google Scholar search engine. The last search date
was 2 February 2022. As sources of grey literature, we explored commercial websites with
AI solutions for automated aortic segmentation in noncontrast CTs, because they rarely
report results in articles [15]. The key concepts were the following: artificial intelligence, CT,
abdominal aortic aneurysm, and opportunistic screening. We defined the most important
and specific components of the query following the method proposed by Bramer et al. [16].
The terms included medical object (AAA), technical subject (AI), and type of intervention
(detection or segmentation). Despite the research question being focused on the processing
of noncontrast CT images, we did not exclude the MeSH term “angiography” from the
query to avoid omissions of comparative analysis or studies with mixed target datasets.
Suitable MeSH terms and keywords were identified using PubMed tools [17] and the Yale
MeSH Analyzer [18]. Additionally, the most repeated words (except function words) were
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identified for a subset of five studies [19–23] by full-text automatic semantic analysis using
an in-house developed Python script. To avoid extra bias, we did not include the MeSH
term “sensitivity and specificity” in the query. The search strategies and queries are shown
in Appendix A.

2.2. Data Collection and Analysis

We exported all articles identified in the database searches into the Mendeley Reference
Manager [24], where duplicates were removed. Narrative review papers, commentaries,
and letters to the editor were excluded. Two reviewers independently screened the titles
and abstracts of all articles for eligibility. We emailed the authors if we were unable to
retrieve the full paper, requesting a copy of the full publication. Authors were re-emailed
after two weeks in the case of nonresponse, and if no contact had been made after three
weeks, the study was excluded. The same pathway was used if the relevant data were not
available in the published report. All full-text articles were independently and in duplicate
screened for suitability, and reasons for exclusion were recorded. Any discrepancies in
opinion between reviewers were discussed, the third reviewer was consulted in the case
of disagreement.

Two reviewers independently identified and extracted the following data from each
publication: study authors, country of origin, study design, sample size (including train-
ing and validation sets), dataset structure, test details and technical parameters (both
for index test and reference test), and outcome measures. When possible, we extracted
2 × 2 contingency tables or summary statistics, from which they could be computed. If a
study stratified the results by the aneurysm size, we divided the data into subgroups. If the
number of included studies was small or of high heterogeneity, we summarized the key
study-level information and synthesized the findings narratively, focusing on AI sensitivity
and specificity. We also extracted Dice similarity coefficient (DSC) values, because this
metric allows estimation of segmentation quality, essential for single-case studies. If there
was no information about this metric, we calculated it from the presented images of the
AI-segmented mask and GT mask according to the formula below [25]:

DSC =
2|X ∩Y|
|X| ∪ |Y| , (1)

where X represented the coordinates of the AI-segmented mask pixels, and Y represented
the coordinates of the GT mask pixels. For this task, we exported the presented images of
segmentation and GT (or original image) in JPEG format. If there were no expert markups,
our medical expert (a certified radiologist with experience of 3 years) segmented it manually
with a stylus using the Procreate 5.2.6 application [26] on iPad Pro 11. Then both pictures
were binarized: the area was white inside the mask (values equal to 1) and black outside
(values equal to 0), and they were aligned and analyzed automatically with an in-house
developed script (Figure 1), prepared with R 4.1.2 [27].

We assessed the risk of bias and applicability concerns independently and in duplicate.
Any disagreements were resolved through discussion. We did not use the QUADAS-2
domain list, as it was shown neither to accommodate the niche terminology encountered
nor to signal the sources of bias found within AI studies [28]. Instead, we developed and
used AI-specialized domain questions based on the traditional QUADAS-2 [29] (detailed
information is presented in Appendix B).
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Figure 1. Scheme of R script for DSC calculation with comments.

3. Results

In total, we identified and imported 730 search results from PubMed into a Mende-
ley library. No additional relevant information was found in the grey literature sources.
After title and abstract screening, 695 records were removed, including duplicates. Of the
35 studies selected for full-text assessment, we included eight studies in this review. Refer
to Figure 2 for the PRISMA flow diagram of the search and inclusion results [12]. Exclu-
sions were mainly due to ineligible study design (23 studies), ineligible study outcomes
(three studies), or the absence of results (one study).

Figure 2. Flow diagram.

3.1. Description of Included Studies

We included eight studies (three journal articles and five conference papers) with a
total of 355 cases, of which 273 (77%) had the diagnosis of AAA (Table 1). The studies were
widely geographically distributed: three studies from the USA and one study each from
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Croatia, Greece, Japan, Iran, and Malaysia. Only three studies (37.5%) reported the data
origin sources. These three studies presented algorithms based on neural network (NN)
approach [23,30,31], and data augmentation was used in two of these works [23,31]. Other
studies proposed different non-NN models and did not report any information regarding
the data source or the expertise of the data tagging specialists. The examined outcomes were
variable. Four articles did not present any quantitative metrics of AI accuracy [32–35]. Two
articles did not present suitable images for DSC calculation. An example of the processing
for the cases with the highest and the lowest DSC is presented in Figure 3.

Figure 3. Image extraction for cases with the highest (a) and the lowest (b) DSC.

3.2. Dataset Characteristics

The datasets of the included studies can be grouped in several ways. More than half of
the studies (62.5%) were a “single-study” (or contained a single noncontrast series). Only
one study used a full noncontrast CT: a single AAA-positive case consisting of 145 slices.
There were four studies that used mixed datasets (noncontrast and contrast-enhanced CT
images) [23,30,32,33]. Two studies [23,30] used representative sets, consisting of 321 (with
232 slices per study on average) and 10 (each case consisted of 160 slices) studies with
pathology rates of 77% and 20%, respectively. Two other studies [32,33] used single cases
consisting of 170 and 40 slices, respectively. Three studies [31,34,35] did not report the
contrast usage in the CT examination. The overall data contained 21 AAA-positive cases
with variable slice numbers: the mean number of slices in each case was 186 [31] and was
of a single-case for two others.

3.3. Findings

The mean values for the relevant outcomes were as follows: 95% (95% CI 100–87%;
three studies) for the sensitivity, 96.6% (95% CI 100–75.7%; two studies) for the specificity,
95.2% (95% CI 100–54.5%; two studies) for the accuracy, and 0.91 (95% CI 0.97–0.84; two
studies) for the DSC. Only two studies simultaneously reported the accuracy, DSC, and sen-
sitivity. Four studies did not report any quantitative diagnostic metrics. It was possible
to calculate the DSC for six (75%) studies, and for two of them reporting the DSC, our
calculation corresponded to the author-provided values. The data on the number of TP,
FP, TN, and FN cases were provided only in one study [23] (Table 2). We tried to contact
other authors to clarify the missing values, but unfortunately, the necessary data were not
provided (either there was no answer or the authors had no information). There were also
several design drawbacks, e.g., only two publications included nonpathological cases in
the testing dataset. This made the quantitative estimation of the sensitivity, specificity,
and accuracy impossible. One study [36] computed the sensitivity and positive predictive
value by dividing a single case into two parts. The whole set consisted of 145 noncontrast
CT scans of which 111 had AAA. For training and improving accuracy, the authors used 30
and 9 manually segmented noncontrast CT scans, respectively. No other dataset was used
for algorithm validation. We suppose that this approach cannot be completely satisfactory,
as the near-slice connection of the ROI (aortic lumen) introduced bias to the estimates.



Diagnostics 2022, 12, 3197 6 of 16

Table 1. Key characteristics of the studies 1.

№ 1st Author (Year) Study/Data Origin (Country) Objectives Type of Data
Processing

Key Characteristics of
Datasets Relevant Outcomes Calculated DSC

1 Almuntashri A. (2012) [32] USA/- AAA segmentation Digital image
processing algorithms

Two studies (one
noncontrast case), 100%
pathology rate, mixed

- 0.94

2 Fujiwara J. F. (2021) [36] Japan/- AAA detection and
measurement NN (not specified)

A single study, 100%
pathology rate,
noncontrast CT

Se 94.6% -

3 Habijan M. (2020) [31] Croatia/Belgium AAA segmentation NN (fourfold cross
validation)

19 studies, 100 %
pathology rate, CT type

n/s
DSC 0.91 ± 0.16 0.96

4 Hosseini B. (2010) [33] Malaysia/- AAA detection Non-NN (logical
algorithm)

Two studies (one
noncontrast case), 100%
pathology rate, mixed

- 0.99

5 Kossioris G. T. (2008) [34] Greece/- AAA segmentation Non-NN (level set
method)

A single study, 100%
pathology rate, CT type

n/s
- 0.93

6 Lu J.-T. (2019) [30] USA/USA AAA detection NN (fivefold cross
validation)

321 studies, 77%
pathology rate, mixed

Ac 92.0 %; Se 92.0%; Sp
95.0%; DSC 0.90 ± 0.05 0.99

7 Mohhamadi S. (2019) [23] Iran/Iran AAA segmentation and
classification

Hough’s algorithm and
NN (fivefold cross

validation)

10 studies, 20%
pathology rate, mixed

Ac 98.4%; Se 98.4%; Sp
98.3% -

8 Schei T. R. (2003) [35] USA/- AAA detection Non-NN (computer
algorithm)

A single study, 100%
pathology rate, CT type

n/s
- 0.97

1 Note: used abbreviations: Se—sensitivity; Sp—specificity; Ac—accuracy.
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Table 2. Data presence for confusion matrix arrangement 1.

№ Study First Author (Year) Test Set Size (Images) TP FP TN FN

1 Almuntashri A. (2012) [32] 40

no information

2 Fujiwara J. F. (2021) [36] 9
3 Habijan M. (2020) [31] not stated
4 Hosseini B. (2010) [33] 170
5 Kossioris G. T. (2008) [34] 1
6 Lu J.-T. (2019) [30] 57
7 Mohhamadi S. (2019) [23] 1448 357 11 1080 5
8 Schei T. R. (2003) [35] 1 no information

1 Note: TP—true positive, FP—false positive, TN—true negative, FN—false negative (responses).

3.4. Methodological Quality of Included Studies

The risk of bias due to the imbalanced dataset usage was high in six (75%) and low in
two (25%) studies (Figure 4); the main concern was associated with the dataset imbalance in
terms of the pathology and demographic ratios. The risk of bias due to concerns regarding
the AI algorithm implementation was unclear in one (12.5%) and low in seven (87.5%)
studies. These results were due to the fact that non-NN algorithms were used in half of
the studies (thus, some QUADAS questions were irrelevant). The risk of bias due to the
ground truth labeling concerns was unclear in four (50%) and low in four (50%) studies.
The main concern was associated with the low clarity of the human readers’ expertise.
Finally, the risk of bias due to the use of heterogeneous data was unclear in two (25%) and
low in six (75%) studies. The reason for the ambiguity was connected to the low detail of
the data processing pathway. The weights for each study were assigned proportionally to
the number of processed cases. Additional details about the risk of bias assessment are
provided in Appendix B. Concerns about the applicability for all domains were low for all
studies, because the authors clearly postulated the research question, and their data, index,
and reference tests were prepared and performed according to the claimed task.

Figure 4. Risk of bias domains.
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4. Discussion

This systematic review summarized the published data on the application of AI for the
automatic detection of AAA on noncontrast CT images and included eight unique studies.
The major findings from our review include the following:

1. The AI sensitivity for AAA detection varied from 92 to 98.4% with a mean value of
95% (95% CI 100–87%; three studies);

2. The AI specificity for AAA detection varied from 95 to 98.3% with a mean value of
96.6% (95% CI 100–75.7%; two studies);

3. The AI accuracy for AAA detection varied from 92 to 98.4% with a mean value of
95.2% (95% CI 100–54.5%; two studies);

4. The DSC for AAA segmentation varied from 0.93 to 0.99 with a mean value of 0.96
(95% CI 0.99–0.94; two studies).

Since it was possible to perform only one measurement for DSC calculation, we consid-
ered the obtained values as estimates of the mean for segmentation quality. However, we
observed a discrepancy between our measurements and two provided DSC values [30,31].
For the first algorithm, the reported mean DSC value was 0.91 versus our calculated 0.96.
For the second one, the reported value was 0.9 versus our 0.99. We assume that the au-
thors may have presented the best-case scenario for their algorithms, which could differ
significantly from their real-life performance. These reported estimates of segmentation
accuracy could be inflated. Therefore, we encourage authors to include examples of failed
or suboptimal segmentation in order to access real-world applicability of the algorithms.

The success of the application of AI for the automatic detection of AAA on CTA
has been previously reported by many researchers and has been already systematically
reviewed [37]. At the same time, less attention has been paid to the AI-based screening
capabilities. Screening tasks are usually performed with restricted timing, without contrast
enhancement, and involve big data analysis. Our purpose was to investigate whether AI
was applicable for tasks of AAA detection on CT without contrast enhancement. The re-
ported AI sensitivity (95%) for AAA detection in noncontrast CT was higher than the AAA
incidental detection sensitivity by radiologists (65%) [7]. Thus, AI may have the potential
for AAA opportunistic screening automatization to increase the early detection of this
pathology. However, due to objective reasons, this paper was unable to conduct a complete
meta-analysis of the AI diagnostic accuracy. Moreover, the methodological quality analysis
revealed several significant shortcomings of the included studies, causing serious doubts
about the plausibility and reproducibility of the obtained metrics. In our opinion, the lack of
regulations and reporting standards may be the reasons for the AI metrics’ overestimation
in the original studies. To this end, STARD-AI recommendations for diagnostic accuracy
studies are currently being developed [38].

4.1. Limitations of the Review

Our study had several limitations. Despite our results demonstrating the high di-
agnostic accuracy of AI for the automatic detection of AAA detection on a noncontrast
CT, there were some concerns on the applicability and safety of the reviewed models in a
clinical setting. The main reasons for the concerns were the sampling bias and the hidden
stratification. Only two studies (25%) included nonpathological cases in the testing datasets.
Moreover, 62.5% of included studies used a single AAA-positive CT scan to validate their
algorithm, which does not allow estimation of the accuracy, specificity, and sensitivity.
Because of this, we believe that the reported values of the sensitivity and specificity may be
artificially high and need to be reassessed using standardized protocol and a high-quality
independent testing dataset. Only a few papers met the inclusion criteria. However, the
number of studies is not as important as their methodological quality: even if there were
more studies, the methodological flaws and inflated diagnostic accuracy values cause
doubts of the feasibility of meta-analysis. This is a well-known problem of reviews of AI
studies [39] that requires regulatory attention. Perhaps consideration should be given not
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only to the reporting standardization of papers on diagnostic accuracy (STARD-AI) but
also to AI-specific analyses in systematic reviews of such papers.

4.2. Implications of the Results for Practice, Policy, and Future Research

Our study revealed a significant difference in the number of studies on the detection
of AAA from CT images with (over 500 studies) and without (eight studies) contrast
enhancement. Nevertheless, despite its objective technical complexity, we consider the
task of AAA detection from noncontrast CT scans just as clinically important, and we
are looking forward to obtaining the results of the pilot project on AAA opportunistic
screening [40] in the Moscow Experiment on Computer Vision in Radiology [41].

5. Conclusions

The uncertainty resulting from the high or unclear risk of bias associated with the
heterogeneous parameters of the datasets (pathology ratio, studies per dataset, and slices
per CT scan) limit our ability to confidently draw conclusions based on our results. More-
over, all eight studies included in the analysis evaluated automated AAA detection and
segmentation on noncontrast CT using different accuracy metrics. To pool the accuracy
values, we developed an original approach to approximate the DSCs from the imaging
data included in the studies. According to our estimates, the algorithms in the included
studies demonstrated high segmentation quality (DSC 0.96 ± 0.02). However, our results
overestimated the DSC values provided by the authors (0.99 versus 0.9, and 0.96 versus
0.91), indicating a trend towards showcasing only the best examples of the algorithm’s
performance, and the limited applicability of this approach. During the literature search,
we observed an evident tendency in the published studies towards the use of contrast-
enhanced scans for analysis (over 500 studies with CTA versus eight with noncontrast CT).
Despite the higher task complexity of AAA detection and segmentation on noncontrast
scans, it remains a promising meeting point for opportunistic screening prerequisites and
practical computer vision implementation. Further studies are required, focused on bal-
anced datasets with noncontrast CT scans and the utilization of reporting standards for
satisfactory results’ reproducibility.
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Abbreviations
The following abbreviations are used in this manuscript:

AAA abdominal aortic aneurysm
AI artificial intelligence
CT computed tomography
CTA computed tomography angiography
DSC Dice similarity coefficient
GT ground truth
NN neural network
ROI region of interest

Appendix A. Search Queries

Appendix A.1. PubMed

“Tomography, X-ray Computed”[mh] OR ((X-Ray[tiab]) AND (Comput*[tiab]) AND
(Tomograph*[tiab])) OR CT X-ray*[tiab] OR tomodensitometry[tiab] OR X-ray CT Scan*[tiab]
OR Electron Beam Tomograph*[tiab] OR “Radiography, Abdominal”[mh] OR “Aortic
Aneurysm, Abdominal/diagnostic imaging”[mh] OR “Dilatation, Pathologic/diagnostic
imaging”[mh] OR CT[tiab]) AND (“Neural Networks, Computer”[mh] OR “Artificial Intel-
ligence”[mh] OR “Diagnosis, Computer-Assisted”[mh] OR “Radiographic Image Interpre-
tation, Computer Assisted”[mh] OR AI[tiab]) AND (“Aortic Aneurysm, Abdominal”[mh]
OR Aortic Aneurysm, Abdominal/classification[mh] OR abdominal aortic aneurysm[tiab].

Appendix A.2. Google Scholar

allintitle:AI|deep|neural|”artificial intelligence”|algorithm segmentation|detection
AAA|”abdominal aortic aneurysm”.

Appendix B. QADAS-CAD

The patient selection domain questions were reoriented to data specification. The first
question (“Was a consecutive or random sample of patients enrolled?”) was loosely related
to index test performance. Instead of this, we proposed to check whether the datasets
used had any disbalance. The proposed questions were: “Were the data (training and
testing sets) balanced by the severity (including the absence) of the target pathology?”
and “Were the data (training and testing sets) balanced in terms of demographic factors?”.
The second original question (“Was a case-control design avoided?”) was omitted, since
the composition of a dataset is always known in retrospective AI studies. The third
question (“Did the study avoid inappropriate exclusions?”) remained the same, with the
only appropriate exclusion being due to low image quality.

The index test domain was fully reorganized. The first question “Were the index
test results interpreted without knowledge of the results of the reference standard?” was
replaced by a more appropriate: “If a neural network was used, did the training and
testing datasets have no intersections or resembles?”. This question reflects the idea of
interpretation independence, while adding AI-specific issues that can affect the outcomes
of a study. We added a question on the data preparation: “If a neural network was
used, was the size of each set rationalized?”. The dataset size is a parameter that is
significant both for the segmentation algorithm’s training efficiency and for the diagnostic
accuracy measurement [42]. Finally, we split the question “If a threshold was used, was
it prespecified?” into two subquestions. The first subquestion was condition-specific.
For example, AAA can be defined as an aortic diameter greater than 3 cm or a diameter
more than 50% larger than the normal width of a healthy aorta [43]. The second subquestion
was algorithm-specific. The algorithm can provide continuous data as outputs (for example,
target condition probability), and in order to classify a case as positive or negative the
data should be dichotomized using some threshold of test positivity. We supposed that
predefinition of both mentioned thresholds was necessary to exclude bias from the study.
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The reference standard domain had only one replacement. The question “Were the
reference standard results interpreted without knowledge of the results of the index test?”
was inconclusive, as the ground truth for AI studies is conventionally obtained before the
index test performance measurements, at least in retrospective designs. Therefore, we
instead proposed to check the quality of data preparation to penalize cases of inappropriate
methodology: “Were the reference standard results prepared or verified with the required
level of expertise?”.

For the flow and timing domain, we proposed to address the properties of the data
used to assess the diagnostic accuracy of the index test and reference standard. The time
interval between the reference standard and index test had no significance. Both interven-
tions require analysis of the same medical image, which is a piece of static data. However,
the nontransparency of how the outcome results were obtained may raise serious doubts
about both their reproducibility and their validity. That is why we proposed to include the
following question, “Was there transparency in how the outcomes were generated?”.

Each signal question of the four domains was expected to be answered as “yes”, “no”,
or “unclear”. The overall risk of bias for each domain was assigned as “low”, “high”, or
“unclear”. Generally, if the answer was ‘yes’ to all signaling questions for a domain, the risk
of bias could be judged as ‘low’. There were three signaling questions with the critical
potential of bias introduction (Table A1 italicized). The answer “unclear” or “no” to any of
these questions could render a corresponding domain as having an “unclear” or “high”
risk of bias, respectively. The applicability concerns questions were left unchanged.
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Table A1. QUADAS-CAD 1.

Domain Patient Selection (D1) Index Test (D2) Reference Standard (D3) Flow and Timing (D4)

Description
A description of included patient

data (previous intervention,
pathology rate, and severity)

A description of the index test and
how it was conducted and

interpreted within the context of the
study

A description of the reference
standard and how it was conducted
and interpreted within the context

of the study

A description of any difference
between the index test(s) and the

reference standard
performance conditions

Signaling questions
(yes/no/unclear)

Were the data (training and testing
sets) balanced by the severity (including

the absence) of the target pathology?

If a neural network was used, did the
training and testing datasets have no

intersections or resembles?

Is the reference standard likely to
correctly classify the target

condition?

Was there transparency in how the
outcomes were generated?

Were the data (training and testing
sets) balanced in terms of demographic

factors?

If a neural network was used, was
the size of each set rationalized?

Were the reference standard results
prepared or verified with the
required level of expertise?

Did all patient data have the same
reference standard?

Did the study avoid inappropriate
exclusions?

If a pathology threshold was used,
was it prespecified?

Were all patient data included in the
analysis?

If a decision threshold (for AI) was
used, was it prespecified?

Risk of bias (high/low/unclear) Could the selection of patient data
has introduced bias?

Could the conduct or interpretation
of the index test have introduced

bias?

Could the reference standard, its
conduct, or its interpretation have

introduced bias?

Could the patient flow have
introduced bias?

Concerns regarding applicability:
high/low/unclear

Are there concerns that the included
patient data do not match the

review question?

Are there concerns that the index
test, its conduct, or interpretation
differ from the review question?

Are there concerns that the target
condition as defined by the

reference standard does not match
the review question?

1 Note: gray color denotes sections of proposed changes; the italic font denotes key questions.
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Table A2. QUADAS domain questions 1.

Domain Question Almuntashri
A. (2012) [32]

Fujiwara J. F.
(2021) [36]

Habijan M.
(2020) [31]

Hosseini B.
(2010) [33]

Kossioris G. T.
(2008) [34]

Lu J.-T. (2019)
[30]

Mohhamadi S.
(2019) [23]

Schei T. R.
(2003) [35]

D1
Were the data (training and testing sets)
balanced by the severity (including the
absence) of the target pathology?

no no no no no yes yes no

Were the data (training and testing sets)
balanced in terms of demographic factors?

no no unclear no no unclear yes no

Did the study avoid inappropriate ex-
clusions?

yes yes yes yes yes yes yes yes

D2

If a neural network was used, did the
training and testing datasets have no in-
tersections or resembles?

x unclear yes x x yes yes x

If a neural network was used, was the
size of each set rationalized?

x unclear yes x x yes yes x

If a pathology threshold was used,
was it prespecified?

yes yes yes yes yes yes yes yes

If a decision threshold (for AI) was
used, was it prespecified?

x unclear unclear x x unclear unclear x

D3 Is the reference standard likely to cor-
rectly classify the target condition?

unclear unclear yes unclear unclear yes yes yes

Were the reference standard results
prepared or verified with the required
level of expertise?

unclear unclear yes unclear unclear yes yes yes

D4 Was there transparency in how the
outcomes were generated?

yes no yes yes yes yes yes yes

Did all patient data have the same ref-
erence standard?

yes unclear yes yes yes unclear unclear yes

1 Note: for the names of the domains, see Table A1; the italic font denotes key questions.
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Table A3. Risk of bias.

Study 1st Author (Year) D1 D2 D3 D4 Overall Weight (%)

Study 1 Almuntashri A. (2012) [32] high low some concerns low high 3
Study 2 Fujiwara J. F. (2021) [36] high some concerns some concerns some concerns high 11
Study 3 Habijan M. (2020) [31] high low low low low 31.6
Study 4 Hosseini B. (2010) [33] high low some concerns low high 12.9
Study 5 Kossioris G. T. (2008) [34] high low some concerns low high 0.1
Study 6 Lu J.-T. (2019) [30] low low low some concerns low 29.2
Study 7 Mohhamadi S. (2019) [23] low low low low low 12.1
Study 8 Schei T. R. (2003) [35] high low low low low 0.1
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