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Abstract: A corneal ulcers are one of the most common eye diseases. They come from various
infections, such as bacteria, viruses, or parasites. They may lead to ocular morbidity and visual
disability. Therefore, early detection can reduce the probability of reaching the visually impaired. One
of the most common techniques exploited for corneal ulcer screening is slit-lamp images. This paper
proposes two highly accurate automated systems to localize the corneal ulcer region. The designed
approaches are image processing techniques with Hough transform and deep learning approaches.
The two methods are validated and tested on the publicly available SUSTech-SYSU database. The
accuracy is evaluated and compared between both systems. Both systems achieve an accuracy of
more than 90%. However, the deep learning approach is more accurate than the traditional image
processing techniques. It reaches 98.9% accuracy and Dice similarity 99.3%. However, the first
method does not require parameters to optimize an explicit training model. The two approaches
can perform well in the medical field. Moreover, the first model has more leverage than the deep
learning model because the last one needs a large training dataset to build reliable software in
clinics. Both proposed methods help physicians in corneal ulcer level assessment and improve
treatment efficiency.

Keywords: cornel ulcer; Hough transform; semantic segmentation; ResNet18; localization

1. Introduction

A corneal ulcer is a type of illness in the cornea; it comes from infection or injury and
leads to ocular morbidity [1,2]. The likelihood of vision impairment is decreased by early
identification and differentiation of various ulcer conditions. Slit-lamp imaging techniques
used in conventional clinical procedures can be tedious, costly, and time-consuming. The
following issues make it challenging to appropriately segment corneal ulcers: significant
discrepancies in the pathological morphologies of point-flaky and flaky corneal ulcers,
hazy border, noise interference, and a dearth of reliable ground-truth slit-lamp pictures. To
recognize and quantify corneal ulcers from ocular staining pictures, various segmentation
procedures are needed. Due to the varied sizes and forms of point-flaky mixed corneal
ulcers and flaky corneal ulcers, it is difficult to segment them in a slit-lamp picture. The lack
of high-quality datasets for both corneal ulcers and their ground truth segment, particularly
for supervised learning-based segmentation algorithms, has hampered the development
of such systems [3,4]. Corneal segmentation is the first step for diagnosing and assessing
ocular surface damage. Therefore, extracting information from fluorescein images is a
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big challenge for specialists. However, the automated method may help the specialist
in localizing and extracting the corneal ulcer region for further assessment. This paper
proposed two methods for corneal ulcer segmentation: image processing techniques and
semantic segmentation using deep learning. Section 2 is devoted to the most recent studies
on ulcer segmentation approaches.

2. Review of the Study

In 2018, Lijie Deng et al. proposed a pipeline for automatically extracting corneal ulcers
that uses machine learning and image processing techniques based on fluorescein staining
images. Each image was segmented using simple linear iterative clustering, and a support
vector machine discriminated between the two classes, followed by erosion and dilation
procedures to polish the images. The suggested method achieved a mean accuracy of 98.4%,
significantly outperforming Otsu thresholding and active contour techniques. The problem
with this study is that the suggested model is semiautomatic since it uses manually labeled
landmarks [5]. In 2019, Zhenrong Liu et al. developed an automatic pipeline for segmenting
flaky corneal ulcers from fluorescein staining images. They employed a combination of
Gaussian Mixture Models (GMM) and Otsu thresholding. They employed the HSV color
space, and the number of Gaussian was determined using information theory. The model
was validated using 150 images and achieved a Dice similarity coefficient of 0.88 [6].

In 2020, Jessica Loo et al. developed SLIT-Net, an automatic algorithm for the seg-
mentation of microbial keratitis biomarkers under two different illuminations. SLIT-Net
segments and identifies four pathological ROIs on diffuse white light images, one patho-
logical ROI on diffuse blue light images, and two pathological ROIs on all images. The
model was tested using manually annotated slit lamp photographs from 133 eyes. They
used seven-fold cross-validation and achieved a Dice that ranged between 0.62–0.95 for
all ROIs [7]. Additionally, in 2020, Pablo Lima et al. suggested a semiautomatic approach
using supervised machine learning and image processing techniques to segment corneal
lesions. They evaluated the multi-layer perceptron, SVM, K-nearest neighbors, and random
forest algorithms. Random forest outperformed all other algorithms, achieving a Dice
similarity of 0.85 and an accuracy of 99.08% [8]. Finally, Junyan Lyn et al. proposed a novel
transfer learning-based model for corneal segmentation using 712 images from the publicly
available SUSTech-SYSU dataset. The suggested model contained an encoder-decoder with
an Xception feature extractor using atrous spatial pyramid pooling. The proposed method
achieved a Dice score of 0.9582, 97.63% accuracy, and 95.37% sensitivity [9].

In 2021, Veena Mayya et al. [10] developed a multi-scale convolutional neural network
(MS-CNN) for accurate corneal segmentation. The suggested model consisted of a deep
neural pipeline to automatically segment images followed by a ResNeXt for differentiation.
The authors successfully detected fungal keratitis with an 88.96% accuracy using 133 images
from the Loo et al. dataset [7]. Additionally, in 2021, Tingting Wang et al. proposed a
novel Corneal Ulcer Segmentation Network (CU-SegNet) to segment corneal ulcers with
different shapes and sizes in fluorescein images. They used a U-shape encoder-decoder
structure and two novel modules. To demonstrate their network effectiveness, the proposed
network was evaluated on the SUSTech-SYSU dataset and achieved a Dice coefficient of
0.8914 [11]. To improve the segmentation accuracy further, in 2022, the same research group
developed a novel semi-supervised multi-scale self-transformer Generative Adversarial
Network (Semi-MsST-GAN) for corneal ulcer segmentation in slit lamp images. Again, they
evaluated their model using the SUSTech-SYSU dataset and achieved better segmentation
performance than the state-of-the-art CNN-based methods. However, the limited number
of slit lamp images available for training and evaluation represents a limitation for both
studies [12].

This paper compares the effectiveness of employing image processing techniques and
deep learning approaches on corneal ulcer region segmentation. Section 3 presents the two
proposed methods, while Section 4 illustrates the results and discusses the performance of
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each method in terms of accuracy, sensitivity, and specificity. On the other hand, Section 5
is devoted to the conclusion and future work.

3. Materials and Methods

This paper proposes two methods for the automatic segmentation of corneal ulcers.
The first method is image processing techniques, and the second is the semantic segmen-
tation method. The dataset utilized in this paper is the publicly available SUSTech-SYSU
database [13–15]. The dataset consists of 712 fluorescein-stained images that acquired the
ocular surface region for patients with different corneal ulcer disease levels. In addition,
there are 354 images labeled where the corneal ulcer region is localized. The labeled images
are used for evaluating both methods. On top of that, they are used for building deep
learning models in the semantic segmentation procedure. The corresponding sections
clarify the proposed methods.

3.1. Image Processing with Hough Transform

The first method utilizes the benefits of image processing techniques with the Hough
transform to segment the corneal ulcer region. The designed method is shown in Figure 1.
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Figure 1. The proposed method block diagram.

The corneal ulcer region segmentation system proposed in this work is fully automated.
Segmentation of the corneal ulcer regions from the whole RGB eye image undergoes
several stages. First, the image is subjected to preprocessing stage by initially excluding
most unwanted details from the image, particularly the specular reflection region. This
is performed by taking the blue part of the image, then squaring its pixel values and
binarizing the output. Next, we applied the morphological operation of closing, followed
by calculating its complement, as illustrated in Figure 2, for one of the corneal ulcer image
datasets, as an example.

The binary image shown in Figure 2b was then multiplied by the green part of the
original-colored image after smoothing using a Gaussian filter, which gives the output
shown in Figure 3a. The pixel values are then squared and binarized to give the image
shown in Figure 3b.
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Next, designing an ellipse mask with proper semi-minor and major axis and centroid
coordinates is similar to the binary image shown in Figure 3b. The mask shown in Figure 3a
is used to exclude most of the unwanted details by multiplying the mask with the binary
image shown in Figure 2b, which then gives the image shown in Figure 4b. The final
step of the preprocessing stage is performing a thinning operation on the image shown in
Figure 4b, which gives the image shown in Figure 5.
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In general, the eye contour extraction shown in Figure 5 is insufficiently accurate due
to the many details in the eye image. To make a better delineation of the eye border, we
performed the second stage, which is eye border recognition using a proper eye border
mathematical model, and then used a proper recognition algorithm. Hough transform was
used as a parametric shape recognition algorithm, where the eye border parametric shape
was generated using a closed mathematical formula introduced by Johan Gielis, namely
the Superformula [16]. It models curves called Gielis curves, as described by the polar
coordinate, r(φ), in the corresponding equation

r(φ) =
1[(∣∣∣ 1

a cos
(
φ m

4
)∣∣∣)n2

+
(∣∣∣ 1

b sin
(
φ m

4
)∣∣∣)n3

]1/n1
, (1)

where r is the radial distance to the origin, φ is the polar angle, and the rational number m
is the value of rotational symmetry. The exponents n1, n2, and n3 are introduced, which,
with the m parameter, allow a greater degree of freedom and enable the Superformula
equation to represent several useful shapes. The chosen parameters for mimicking the eye
border are 1, 1, 1, and 2 for n1, n2, n3, and m, respectively, which gives the shape shown in
Figure 6a. To determine the iris region, where the cornea is positioned directly in front of
the iris and pupil, a disk is designed with a diameter and centroid equal to the semi-minor
and centers of the eye-recognized shape respectively, as shown in Figure 5b. By applying
this concept to the eye image border and cornea region in the adopted corneal ulcer image
sample, we get the output shown in Figures 6 and 7, respectively. Next, the ulcer region of
interest is separated by multiplying the mask shown in image Figure 2b with the image
shown in Figure 8a to get the image shown in Figure 8b.

The pixel values of the green part of the image shown in Figure 9b are squared and
binarized, yielding the image shown in Figure 10a. The mask segments shown are tested in
the segmentation system. Provided the segment is connected to the eye border in which
its semi-major to semi-minor ratio is greater than a certain threshold, it will be considered
as an accumulation of the fluorescein stain at the eyelids. It will then be excluded from
the final ulcer regions result, as shown in Figure 10b. Finally, the original image will be
masked with the remaining mask segments, as in the result shown in Figure 11.

3.2. Semantic Segmentation

The second method that is proposed in this paper is semantic segmentation. Figure 12
demonstrates the steps for automated segmentation using a deep learning model.
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As stated in Figure 12, the system splits the dataset (images and their labels) into training
and test partitions. The pre-trained convolutional network in this paper is ResNet 18 [15,17].
The pre-trained CNN model was trained and evaluated on the test data.

Semantic segmentation divides image pixels into one or more semantically inter-
pretable classes rather than real-world objects. Region proposal and annotation is the
process of categorizing pixel values into distinct groups using CNN. Candidate object
patches (COMPs) are small groups of pixels that most likely belong to the same object as
region proposals.

The semantic segmentation procedure is started by the encoder network and followed
by the decoder network. The encoder is typically a pre-trained network such as ResNets,
which is followed by a decoder network. The type of ResNet used in this paper is the
Resnet-18 model that won the 2016 ImageNet competition. It is well-known due to its
depth and use of residual blocks [18]. These blocks are essential for solving obstacle issues
in training by introducing identity skip connections, which allow layers to copy their inputs
to the next layer [19].

To create a segmentation map, encoders may be convolutional neural networks, and
decoders may be based on deconvolutional or transposed neural networks [20,21]. Figure 13
describes the procedure of semantic segmentation, which is based mainly on the deep
learning approach [22]. The corresponding figure illustrates that the input image passes
through a trained deep-learning model to end by the localization of the ulcer region.
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Figure 13. Deep learning method for ulcer localization [20].

The pre-trained ResNet18 was used, and the data were divided into 70% training and
30% testing. The images were resized to 224 × 224 × 3 to match the input requirements
for the first layer in ResNet18. The model was trained using MATLAB® with a single CPU.
The hyper-parameters are the Adam optimization method besides the initial learning rate
of 0.0001, with a minibatch size of 32 and a maximum epoch of 50.

4. Results and Discussion

Both methods are applied to the whole dataset, trained, validated, and tested to
localize ulcer regions in the cornea.

4.1. Image Processing and Hough Transform

The method is applied to whole images. Figures 14–18 depict some of the obtained
results for different shapes of ulcer regions. Each figure illustrates the original image, the
segmentation output, and its corresponding ground truth.
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Figure 14. Example 1: Comparison between segmentation output and the ground truth (a) original 
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truth of the corresponding input image. 

Figure 14. Example 1: Comparison between segmentation output and the ground truth (a) original
image, (b) the segmentation of ulcer region using the first proposed method, (c) and the ground truth
of the corresponding input image.

The examples of figures from Figures 14–18 illustrate the output of the first proposed
method. All figures describe the ability of the proposed method to localize the ulcer region
with high similarities to the ground truth. Similarity indices are calculated for each case,
such as the Jaccard similarity index and intersection union unit (IOU). The similarities
indices are almost 100% for all presented images except the image in Figure 16. As shown
in Figure 16, the method was sensitive to the bottom region of the eye to detect ulcer region
that is not presented in the ground truth. In this case, the Jaccard and IOU indices are too
low. However, the proposed method may have the capability to distinguish ulcer regions
from other eye regions more than manual segmentation.
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4.2. Semantic Segmentation

After training the model on 70% of the whole dataset, accuracy, sensitivity, and speci-
ficity were calculated for the training and test stages. The accuracy reveals the percentage
of correctly classified pixels to all over pixels. Table 1 describes the results of sensitivity,
accuracy, and specificity of semantic deep learning segmentation for both training and test
stages [23–31].

Accuracy =
TP + TN

TP + TN + FP + FN

Speci f icity =
TN

FP + TN

Sensitivity =
TP

TP + FN

Table 1. Performance of semantic deep learning segmentation.

Global Accuracy Specificity Sensitivity

Training Phase 99.75% 99.84% 96.77%
Test Phase 98.8% 99.3% 83.5%

The proposed method is applied to the dataset. The following Figures 19–23 illustrate
the output of the deep learning model. Each figure shows the original image and its
corresponding ulcer region that is localized by the deep learning model.
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Figure 19. Example 1: Semantic segmentation approach, (a) the original image, (b) the segmentation
output, (c) and the ground truth of the corresponding input image.

Figures 19–23 illustrate how sensitive the model is to the ulcer region. In addition,
the time required for each test image is less than 1 s, implying that the second proposed
method is accurate, sensitive, and fast after building the AI model.

The comparison is performed between the two methods in terms of sensitivity, accu-
racy, specificity, Jaccard index, and Dice similarity. The Jaccard index expresses the division
of true classified pixels over the sum of the number of ground truth pixel and the predicted
pixels. It is also defined as intersection of union (IOU), as is clear in the corresponding
equation [31]:

IOU =
TP

TP + FP + FN
On the other hand, the Dice similarity defines as two times the area of intersection

divided by the sum of the number of pixels predicted and the number of ground truth pixels,
and it can be defined as F1 score. The corresponding equation reveals the relation [31]:

DSC =
2TP

2TP + FP + FN
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output, (c) and the ground truth of the corresponding input image. 

  
(a)  (b)  

Figure 20. Example 2: Semantic segmentation approach, (a) the original image, (b) the segmentation
output, (c) and the ground truth of the corresponding input image.
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Figure 21. Example 3: Semantic segmentation approach, (a) the original image, (b) the segmentation
output, (c) and the ground truth of the corresponding input image.

All evaluated matrices are carried out on the same test data, which is formed by 30% of
the whole dataset. The number of test data is 107 images. Table 2 depicts the performance
of each method on the same images.

Table 2. Comparison between two proposed methods over the test dataset (30% of whole data).

Method Global Accuracy Specificity Sensitivity Jaccard Similarity Dice Similarity

Image Processing
Techniques

Method
98.7% 63.4% 99.4% 98.64% 98.9%

Deep Learning
Method 98.8% 99.3% 83.5% 98.655% 99.3%

Table 2 abstracted the results for both methods and its conclusion of the benefit of
deep learning techniques on the traditional image processing tools. In terms of accuracy,
specificity, and Jaccard similarity, the second approach is higher than the first one. However,
it is less sensitive than the first method. Additionally, the IOU is lower than the image
processing proposed method. That comes from the truth; the deep learning approach
needs a large dataset to obtain a robust and highly sensitive one by optimizing its training
parameters. On the other hand, the time required for the second approach is less than the
first approach where the first method requires almost 30s to detect the ulcer region whereas
the second strategy is just 1 s for a single test image. Therefore, the second method can be
the promised approach for ulcer segmentation in the medical field. Furthermore, building
a sensible and reliable model requires training the semantic model on a large dataset.

Figure 24 describes the performance of each method. Both methods are effective as
shown in the corresponding figures. Their IOU and Dice similarity are almost the same.
Based on the experiment which is carried out in this paper, the time required to segment
ulcers in a single image using AI is just 1 s, where using image processing needs 30 s.
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Figure 22. Example 4: Semantic segmentation approach, (a) the original image, (b) the segmentation
output, (c) and the ground truth segment.

This study compared with literature that used the same dataset. Table 3 describes the
performance of both methods in terms of accuracy, sensitivity, specificity, and Dice index.

Table 3. Comparison of the proposed method with previous studies.

Study Accuracy Sensitivity Specificity Dice Index

[10] 88.96% 90.67% 87.57% 88.01%
[12] - 89.65% 99.7% 89.14%
[13] - 91.9% 90.93%

This Study (1st method) 97.97% 99.8% 63.4%
This study (2nd method) 98.9% 83.5 99.3%

As illustrated in Table 3, both methods are effective and influence ulcer detection.
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5. Conclusions

A corneal ulcer is commonly a corneal disease. It causes ocular morbidity due to
injury or infection by bacteria, viral, or parasites. Ulcer early diagnosis decreases vision
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impairment chance. Employing slit-lamp imaging techniques in clinics can be tedious,
expensive, and time-consuming. Localization of ulcer regions in slit-lamp images influences
the level of diagnoses.

Manual detection needs highly expert physicians, and it is not accurate. Automated
segmentation of the corneal ulcer region develops the assessment method and helps
diagnose accurately.

This paper proposed two methods to extract the ulcer region automatically. The
first approach utilizes image processing techniques with Hough transform to localize the
corneal ulcer-affected segment. The second approach is designed based on deep learning
algorithms. The two methods are trained and evaluated in terms of performance matrices:
accuracy, sensitivity, specificity, Jaccard similarity, Dice similarity, and IOU. The results
show the effectiveness of both methods in accuracy, but deep learning is more accurate than
image processing. However, image processing is more sensitive to ulcer regions, whereas
the deep learning method has higher specificity. This study recommends exploiting the
properties of image processing algorithms and artificial intelligence (AI) to guide the
residents in extracting the affected ulcer region.

The sensitivity of the AI model can be enhanced using a large dataset to achieve a more
sensitive, reliable, and robust model. The two approaches leverage finding appropriate
treatment based on the assessment report, which decreases the probability of reaching the
visually impaired.
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