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Abstract: Antral follicle Count (AFC) is a non-invasive biomarker used to assess ovarian reserves
through transvaginal ultrasound (TVUS) imaging. Antral follicles” diameter is usually in the range
of 2-10 mm. The primary aim of ovarian reserve monitoring is to measure the size of ovarian
follicles and the number of antral follicles. Manual follicle measurement is inhibited by operator
time, expertise and the subjectivity of delineating the two axes of the follicles. This necessitates an
automated framework capable of quantifying follicle size and count in a clinical setting. This paper
proposes a novel Harmonic Attention-based U-Net network, HaTU-Net, to precisely segment the
ovary and follicles in ultrasound images. We replace the standard convolution operation with a
harmonic block that convolves the features with a window-based discrete cosine transform (DCT).
Additionally, we proposed a harmonic attention mechanism that helps to promote the extraction
of rich features. The suggested technique allows for capturing the most relevant features, such as
boundaries, shape, and textural patterns, in the presence of various noise sources (i.e., shadows, poor
contrast between tissues, and speckle noise). We evaluated the proposed model on our in-house
private dataset of 197 patients undergoing TransVaginal UltraSound (TVUS) exam. The experimental
results on an independent test set confirm that HaTU-Net achieved a Dice coefficient score of 90% for
ovaries and 81% for antral follicles, an improvement of 2% and 10%, respectively, when compared to
a standard U-Net. Further, we accurately measure the follicle size, yielding the recall, and precision
rates of 91.01% and 76.49%, respectively.

Keywords: follicle monitoring; deep learning; antral follicle count; harmonic attention; ultrasound
imaging; pelvic ultrasound

1. Introduction

Ovarian reserve, defined as the total number of ovarian follicles, indicates the quality
and quantity of the primordial follicular pool in the ovaries [1]. Patients with infertility
have shown a correlation between predictors of functional ovarian reserves and ovarian
responses to pregnancy outcomes [2]. Antral follicle count (AFC) and size, obtained using
TransVaginal UltraSound (TVUS) images, are non-invasive imaging biomarkers used to
assess and quantify ovarian reserve [2,3].

The primary aim of ovarian reserve monitoring is to measure the number and size
of ovarian follicles and the number of antral follicles, which are, on average, 2-10 mm in
diameter [4]. Follicle size is measured by taking the average of each follicle’s two largest
orthogonal diameters [5]. There are limitations to manually estimating the size and count
of follicles; the process is time-consuming, inconsistent [4], and highly variable depending
upon the actual shape of primarily non-spherical follicles [3]. An accurate, automated
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method to segment ovaries and follicles and count the follicles could optimize the clinical
flow and reduce subjectivity.

Developing an automated solution for ovary and follicle segmentation incorporates
numerous challenges. Figure 1 shows three examples of US images of ovary and follicles.
Quantifying ultrasound images ensures reproducibility and reliability [6,7]. Ultrasound
imaging artifacts impede the performance of deep learning-based segmentation methods.
Blurred ambiguous boundaries further compound challenges in delineating tissue bound-
aries and the presence of acoustic shadowing [8]. Many image processing and computer
vision-based methods are suggested to overcome these challenges that involve geometric
features [9] and watershed [10]. Active contours-based [11] approaches have been used
to segment the ovary and follicles. Traditional ovary and follicle monitoring methods
have been frequently explored with large and distinctly visible follicles [3,12]. Boundary
ambiguity is noticeable in ovarian and follicular images. The traditional methods have
some limitations, such as watershed or thresholding approaches generating discontinuities
and variances of intensity in the ovarian ultrasound images. Their slow speed creates
challenges to adopt in actual practice clinical settings.

Figure 1. Illustration of three examples from the ovary dataset. Here, examples (a—c) show the ovary
and follicles highlighted by the green circle and red arrows respectively.

Convolutional neural networks (CNNs) have shown substantial performance, and ac-
curacy advancements over conventional methods [13]. With the great success of CNNSs,
multiple popular segmentation methods have been developed such as FCN [14], U-Net [15],
SegNet [16], Attention-UNet [17], DeepLabv3+ [18], ERFNet [19], and BiseNetv2 [20] that
segment the objects or anatomies. These methods achieved state-of-the-art results for
various semantic segmentation tasks.

Recently, many deep learning-based methods have been developed for analyzing
medical images [21,22]. Specifically, U-Net-based models have achieved great success
with medical image segmentation [23-25]. Meng et al. [26] proposed an instinctive deep
learning-based contour regression model for biomedical image segmentation. The authors
aggregated multi-level and multi-stage networks to regress the contour coordinates in an
end-to-end manner rather than pixel-wise dense predictions. The authors used this method
to segment the fetal head in ultrasound images and the optic disc and optic cup in color
fundus images. Valanarasu et al. [27] presented a network architecture called KiU-Net,
which projects data onto higher dimensions and picks finer details when compared to a
standard U-Net. The suggested method addressed the performance failures when segment-
ing smaller anatomical structures with blurred, noisy boundaries. The authors performed
the brain anatomy segmentation from 2D ultrasound (US). Singh et al. [28] proposed an
automated solution to segment the breast lesion from the US images. The recommended
method used generative adversarial learning (GAN) networks. The introduced method
efficiently extracts spatial features such as texture, edge, shape, intensity, and global infor-
mation. The authors used an attention mechanism that highlights the most relevant features
and ignores the background ones. However, the GAN-based method has limitations due
to its computational complexity and fails to delineate if the lesion shape is not complete.
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Further, Yang et al. [29] incorporated the multi-directional recurrent neural network (RNN)
with a customized CNN to extract spatial intensity concurrencies to eliminate boundary
ambiguities. The author employed semantic segmentation methods in prenatal ultrasound
volumes that potentially encourage fetal health monitoring.

Various deep learning-based methods have been used to detect and segment ovary,
and antral follicles [8,30]. Li, Haoming et al. [8] proposed an ovary and follicle segmentation
model called CR-UNet, consisting of spatially recurrent neural networks incorporated into
a standard U-Net. The recommended network has limitations in correctly delineating and
detecting the follicles that are joined with each other [30]. Gupta et al. [31] developed
a deep learning-based framework for ovarian volume computation that utilizes 3D US
volumes and the axial orientation. The authors evaluated their methods on 20 3D ovarian
US volumes that enhanced the grade of the 3D rendering of the ovary and addressed the
issue of combined follicles in segmentation. Yang et al. [32] introduced ovary and follicles
segmentation using the contrastive rendering (C-Rend) framework. The authors employed
the semi-supervised learning approach with C-Rend leveraging unlabeled 3D ultrasound
for better performance. However, this study has some limitations during inference due
to its hyperparameter default value which might not be the most suitable setting for each
3D US.

The clinical need to monitor the smaller follicles automatically and precisely, such as
antral follicles (follicles that are 2-8 mm in average diameter) [4] could not be met using the
current Al segmentation technologies, due to some limitations, such as deep learning mod-
els overfitting and imaging artifacts. Therefore, the main aim of this paper is to develop an
automated method for efficient ovary and follicles segmentation in ovarian TVUS images
to facilitate measuring the size of the follicle. Figure 2 shows the schematic view of our
proposed framework. The framework incorporates three stages, i.e., ovary segmentation,
follicle segmentation, and follicle counting. We designed a new segmentation method that
replaces the standard 2D convolution layer with a harmonic convolution. In contrast, [33]
harmonic convolution combines the learned kernels with predefined filters for feature
learning. This weighted combination reduces overfitting and computational complexity.
The proposed HaTU-Net method effectively extracts the features that allow precise seg-
mentation of the ovary and follicles from the US images. Moreover, we developed a new
attention block that helps to improve the segmentation performance by encouraging the
feature discriminability between the pixels and ignoring US imaging artifacts. In summary,
our major contributions are in four folds:

*  We propose a segmentation network called HaTU-Net to segment ovaries and follicles
from TVUS images.

*  We propose using harmonic convolution [33] to replace the standard convolutional
filter. The input image is first decomposed using the discrete cosine transform (DCT);
these transformed signals are combined using learned weights.

*  We developed harmonic attention (HA) block to improve feature discriminability
between the target and background pixels in the segmentation stage. The HA block
encourages the features by avoiding the artifacts, and support for the HaTU-Net leads
to improved segmentation results.

*  Our experimental results confirm HaTU-Net has shown significant improvement com-
pared to the various state-of-the-art segmentation methods (U-Net [15], AttentionU-
Net [17], R2U-Net [34], U-Net++ [35], and DeepLabv3+ [18]).

The remainder of this paper is organized as follows: Section 2 describes the dataset
and methodology. Section 3 explains our experimental results and highlights the limitations
of the work. Section 4 completes our study and suggests some future lines of research.



Diagnostics 2022, 12, 3213

40f 15

Harmonic 1-D Factorized HA Block Deconvolution Skip Stage 1: Ovary Stage 3 |

Convolution Block Convolution Block Connection Segmentation

Input
384x384x1

— Stage 2: Follicle
Segmentation

Follicle Count

Figure 2. A general framework of ovarian ultrasound quantification. Here L,, refers to the number of
layers (i.e., 1 to 5) in the encoder network.

2. Material and Methods

This section presents a detailed description of the ovary US dataset and architecture de-
tails of the proposed HaTU-Net as depicted in Figure 2. The proposed method incorporated
two main parts: harmonic convolution and harmonic attention (HA) blocks.

2.1. Dataset

The Institutional Review Board approved the retrospective study (IRB), and the re-
quirement for informed consent was waived. The radiology reports of adult patients who
underwent transvaginal ultrasound (TVUS) exams between 2005 and 2019 in a single
institution were reviewed, and a total of 197 eligible patients were identified and selected.
The inclusion criteria were: (1) premenopausal female adult patients, (2) underwent TVUS
exams, (3) normal ovary on the pelvic ultrasound, and (4) available B-mode static images
of the ovary. Patients with the following criteria were excluded: (1) low-quality US images
with obscure boundaries of the ovary, (2) abnormal ovary findings on the ultrasound, or
(3) known ovarian pathologies or ovarian surgical history.

All TVUS exams were performed using GE LOGIQ E9 (General Electric Healthcare,
Waukesha, WI, USA) ultrasonic system equipped with a transvaginal IC5-9 transducer. US
exams were reviewed in a picture archiving and communication system (PACS) to extract
the DICOM images of ovaries in sagittal and coronal planes. Using the MicroDicom Viewer
tool (Version 3.2.7, Sofia, Bulgaria), a radiologist who had ten years of experience in pelvic
ultrasound annotated the contours of the ovary and follicles following a specific protocol,
(1) annotated all follicles of 2-28 mm [36] in diameter within each ovary, (2) annotate
ovary and follicles in different colors, and (3) avoid overlaps among annotations within the
same ovary. Another senior radiologist with more than ten years of experience reviewed
the annotated images as part of the quality control process. Table 1 shows the overview
of the ovarian dataset totaling 767 images with qualified annotations, split into training,
validation, and testing sets with 466, 160, and 141 TVUS images, respectively.

Table 1. TVUS ovarian dataset split into the three subsets.

Dataset Subset Number of Images
Train 466

TVUS ovary Validation 166
Test 141

2.2. HaTU-Net Architecture

Figure 2 illustrates the general framework of the proposed ovarian ultrasound quan-
tification. This includes the three stages: ovary segmentation, follicles segmentation,
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and follicle count. Note that HA refers to harmonic attention block, and red arrows show
the follicles. We propose the ovary and follicles segmentation model called HaTU-Net.
It consists of encoder and decoder networks. Each network consists of five layers with
added skip connections. The encoder network utilized a harmonic convolutional layer with
kernel size 3 x 3 instead of standard 2D convolutional layers. Each layer within the encoder
employs batch normalization followed by the ReLU activation function. The first encoder
layer combines harmonic convolution with a 1-D kernel factorization [19], allowing feature
extraction with low computational costs. The second layer uses a variety of harmonic
convolution, 1-D kernel factorization, and harmonic attention (HA) blocks. The attention
mechanism boosts the feature discriminability between the target and background pixels.
The last three encoder layers use a harmonic convolution with an HA block to enable chan-
nel interdependencies, and highlight features specific to the ovaries and follicles. After each
layer, dimensionality reduction is achieved using a max-pooling operation with a kernel
size of 2 x 2. In the decoder, feature upsampling is performed through the conv-transpose2D
operation. Each encoder layer’s features are concatenated with the corresponding features
in the decoding layer (skip connections). A threshold of 0.5 is used to generate the final
predicted mask for ovary and follicles segmentation.

2.3. Feature Extraction with Harmonic Convolution

Motivated by [33], we replaced the standard convolution with a harmonic convolution,
i.e., a weighted sum of the responses to a discrete cosine transform (DCT) filter bank to pull
the harmonics from lower-level features to decrease the burden of overfitting. The DCT
is a separable transform that converts a signal from the temporal domain to the spectral
domain. The DCT of a 2D image I of size H x W with a one-pixel discretization step can be
formulated as follows [33]:

H-1—W-1 [Bu [Bo mf., 1 . 1
Tup =) g 2].:0 \ g\ L) X cos [H <1+ 2)1{] cos [W <]+ 2>v

where T, ; is the coefficient corresponding to a sinusoidal frequency of # and v in the two
orthogonal directions. Here By = 1 and B, = 2 are scaling factors used to normalize the
value of the basis function.

The input image features are decomposed using the DCT transform to perform the
convolution operation. A kernel size of f x f and depth of f? in the filter bank is used. Let
Y(u,0) indicate the u, v frequency selective DCT filter with kernel size f X f. The feature
map F;, at depth d is represented as a weighted linear aggregation of DCT coefficients on
all input channels C as follows:

@

c-1f-1f-1

=YY wﬁ,u,ﬂ(u,w * *Ffrf(;)’ @
n=0 u=00v=0

where wﬁ/u/v represented the learned weight for the nth feature at frequency u, v and *x
denoted as the 2-D convolution operator. The transformation process allows the input
feature to undergo harmonic decomposition, allowing learned weights to be used for
combining the transformed signals.

2.4. Harmonic Attention Block

To advance the feature discriminability between the small targeted region and back-
ground pixels, Figure 3 presents the proposed harmonic attention (HA) block details.
The block makes use of harmonic convolutions to extract feature maps. It is designed to
promote feature discriminability between the target objects and their background, i.e., ovary

and follicles, in our application. In this block, an input feature map T € R©*H*W jg aver-

4
age pooled to aggregate C, which is the channel statistics. This generates T" € R’ Cxixd

which is then passed to the two 1 x 1 harmonic convolution layers to extract non-linear
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inter-channel relationships with the help of spectral DCT filters. If W, € RC*F and Wy €
RC* % are weights of two harmonic convolutional layers (where r refers to the reduction

ratio), then the channel attention map can be formulated as:
attn(T') = o(Wy % (ReLU(Wy + T'))), ©)

where 0(.) is the sigmoid activation function. Finally, the channel attention map can be
generated as follows:

C,=TxT. 4)

The use of skip connections between the input feature map T and C; helps to narrow
the semantic gap and results in the final output map O:

O=C+T. 5)

Harmonic Element-wise Element-wise \
/ Average Pool > Convolution @ Multiplication

Addition

Residual connection

Input Output
1x1xC 1x1xClr 1x1xC  Sigmoid
Y Ct
T > W > Wi —> 9—)

HxWxC HxWxC
\ Harmonic Attention (HA) Block /

Figure 3. Illustration of harmonic attention (HA) block.

2.5. Cost Function

We use a weighted sum of the binary cross-entropy (BCE) and focal loss £ which are
defined as:

L (y,9) = —y(1 —9)7-log(9) — (1 —y)§7"-log(1 — 7). (6)
LPE(y,9) =—(y-log(§) + (1 — y)-log(1 — 7)), @)

The final loss is expressed as follows:

LOE(y,9) + = LF (v, 1), ®)

Loss fing =

where,  is the target binary mask, and { is the predicted mask obtained by the segmentation
model. We used # equal to 0.6 as an empirical weighting factor.

2.6. Follicle Counting

In the third stage, segmented follicles are used to measure the follicle size. Figure 4
shows an ovarian US image with oval-shaped follicles and its corresponding follicle seg-
mentation mask generated by stage 2. The main steps of follicle counting are explained as
follows:

Input: Single ground truth follicle segmentation mask and predicted follicle segmen-
tation mask.

*  Load ground truth mask and predicted mask images.

*  Measure follicle diameters on both images in pixels.

*  Convert pixel diameters to physical measurements.

*  Exclude follicles sized outside the recruitable range of 2-10 mm in diameter by con-
verting pixels black, as counting antral follicles < 2 mm in diameter might heighten
the chances of counting small anechoic structures like vessels or artifacts; whereas
counting dominant follicles > 10 mm lack the evidence of clinical practicality [3].
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¢  Compute the dice similarity coefficient (DSC) between the ground truth mask and
predicted mask images.

e Calculate the number of correctly detected follicles from the predicted mask (follicles
with >0.5 Dice coefficient score are considered).

¢ Calculate the number of detected follicles from the predicted mask.

¢ Calculate the number of actual follicles from the ground truth mask.

e Evaluate the precision and recall of our predicted follicle counting with the formula
from [37].

Figure 4. (a) shows an ovarian US image with two oval-shaped follicles; (b) shows the corresponding
follicle segmentation mask. The follicle delineations are white with green dots denoting individual
follicles” centroids. These act as the starting point for calculating the major and minor axis lengths
shown in red lines. The diameter is then calculated by multiplying the axis lengths by the pixel size
in mm to obtain physical measurements. The follicle count is labeled in blue.

3. Experimental Design and Results
3.1. Implementation Details

All the methods are implemented in PyTorch [38]. We use an NVIDIA GeForce RTX
2080Ti GPU with 11 GB RAM. Table 2 summarizes the hyperparameters used to build the
proposed segmentation model. The images are resized to 384 x 384, and the pixel values
are normalized between 0 and 1. The training dataset is augmented with random 15-degree
rotations and horizontal flips. An ADAM optimizer with $1= 0.5, B2 = 0.999, and an initial
learning rate of 0.0002 is used to optimize the model better. Step decay learning is activated
if the Dice coefficient score for the validation set plateaus for two consecutive epochs. We
used a batch size of four images and trained the model for 50 epochs since the model was
optimized completely.

This paper organizes our experiments into three key stages: 1. ovary segmentation,
2. follicle segmentation, and 3. follicle counting. To measure the effectiveness of the
proposed model on segmentation stages, five evaluation metrics are used, i.e., accuracy, dice
similarity coefficient (Dice), intersection over union (IoU), sensitivity, and specificity [39].
The precision and recall metrics are used to evaluate the follicle counts.
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Table 2. A summary of hyperparameters.

Hyperparameter Value

Input image size 384 x 384

Pixel value normalize 0-1

Learning rate 0.0002

Adam optimizer B1=0.5, B =0.999

Epochs 50

Batch size 4

Data augmentation rotation 15 degree and horizontal flipping

3.2. Ovary Segmentation

Table 3 demonstrates the quantitative result of proposed HaTU-Net (i.e., Baseline (BL)
plus harmonic attention block) compared to five state-of-the-art segmentation methods in-
cluding U-Net [15], Attention U-Net [17], R2U-Net [34], U-Net++ [35], and DeepLabv3+ [18].
We also demonstrate the result of the Baseline (BL) method consisting of a standard U-Net
network with harmonic convolution without an attention block. Experimental results
confirm that the HaTU-Net performed significantly better than the second-highest U-Net
method in DSC, and IoU metrics with 2%, and 3%, respectively. We observed that the
DCT-based spectral kernel aids in learning shape, boundary, and texture mapping from
noisy ultrasound images. These noisy images include poor contrast, shadows, speckle
variation, and poor signal-to-noise ratio. To reach the optimal version of the proposed
method, we performed an ablation study to determine and quantify the perceptiveness of
each employed block to segmentation results.

We define our baseline model as a U-Net where it replaces the standard 2D convo-
lutions layers with harmonic convolutions. Since the ovary occupies a large part of an
ultrasound image, we enforce fine boundary segmentation while retaining shape informa-
tion through an HA block (BL + HA). Therefore, adding the harmonic attention block to BL
leads to better segmentation results. Finally, HaTU-Net improves the DSC and IoU scores
by approximately 1.5% in both metrics compared to our BL model. The characteristics of
the attention mechanism allow highlighting the most relevant feature of the hypoechoic
ovary region and ignoring the background or acoustic shadows in the US images.

Table 3. Comparing of the proposed model for ovary segmentation with five state-of-the-art segmen-
tation methods. Statistically significant results are highlighted in bold.

Methods Accuracy Dice IoU Sensitivity  Specificity
U-Net [15] 96.89 £0.02 87.89+0.08 77.54+0.12 90.51+£0.09 98.27+0.01
Attention U-Net [17] 96.41£0.02 86.02+£0.09 74.89+0.13 8796+0.11 98.16£0.02
R2U-Net [34] 95.73+£0.03 83.31+0.12 7149+0.15 86.31£0.13 97.53+0.02
U-Net++ [35] 9714+£0.02 87.78+0.10 77.72+0.13 89.42+0.13 98.19+0.01
DeepLabv3+ [18] 96.99+£0.02 86.66+0.11 76.21+0.14 87.35+0.15 98.25+0.01
Baseline 9726 +£0.01 88.37+0.09 7851+0.13 90.46+0.12 98.18+0.01
HaTU-Net 97.55+0.01 90.01 £0.07 80.72+£0.11 90.86+0.10 98.57 & 0.01

Figure 5 shows the box-plot analysis of Dice and IoU scores on the ovarian dataset.
The HaTU-Net has generated fewer outliers compared to other segmentation methods.
For instance, we can see that the proposed method has a lower standard deviation than
other methods, showcasing its robustness.
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Figure 5. Boxplots of Dice and IoU scores of ovary segmentation.

Further, qualitative analysis plays a crucial role in visually determining segmentation
results. Figure 6 exhibits the three qualitative examples results generated by state-of-
the-art segmentation methods compared to the HaTU-Net. We provide the color maps
that help to identify the true positive (orange), false positive (green), false negative (red),
and true negative, including the background. Visual inspection confirms that HaTU-Net

precisely segments the ovary boundaries, whereas other methods have produced many
false positives.
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HaTU-Net

Baseline AttU-net Deeplabv3+ U-Net++ R2U-Net U-Net

Figure 6. Illustration of three qualitative example results generated by HaTU-Net against five
state-of-the-art methods for ovary segmentation.

3.3. Follicle Segmentation

Table 4 exhibits the follicle segmentation results. The proposed HaTU-Net improved
follicle segmentation results with 10% DSC and IoU scores compared to U-Net. Our BL
methods demonstrated more remarkable results than other state-of-the-art segmentation
methods. We observed that incorporating the HA block leads to better segmentation
results. Especially, HA block can capture many small follicles’ shape features and provide
separation between them. This allows delineating of the follicle boundaries efficiently.
Furthermore, Figure 7 displays the boxplot analysis of Dice and IoU scores. The results
confirm that HaTU-Net achieves significantly high mean segmentation results with a lower
standard deviation. Additionally, it is seen that it produces fewer outliers than other
methods. Note that all values outside the whiskers are considered outliers.

Figure 8 represents the three examples for qualitative assessment of follicle segmen-
tation. The harmonic attention block helps in refining the boundaries between follicles,
as shown by the performance of HaTU-Net in separating follicles for automating the follicle
count process.

Table 4. Comparing of the proposed model for follicles segmentation with five state-of-the-art
segmentation methods. Statistically significant results are highlighted in bold.

Methods Accuracy Dice IoU Sensitivity ~ Specificity
U-Net [15] 99.20+0.01 71.77+£0.22 5418+0.23 74554+0.25 99.51+0.01
Attention U-Net [17] 9928 £0.01 7323+£0.22 5556+0.22 7392+024 99.62+0.01
R2U-Net [34] 98.99+0.01 7328+0.2 56.07+0.21 84.91+0.19 99.17+0.01
U-Net++ [35] 99.35+0.01 7548+0.20 57.61+£0.22 755840.23 99.68+0.01
DeepLabv3+ [18] 99.35+0.01 69.37+0.26 5236+£0.26 66.43+0.28 99.77 +£0.01
Baseline 99.45+0.01 79.80+0.19 6251+£0.21 81.644+0.20 99.70+0.01

HaTU-Net 99.51+0.01 81.40+0.18 64.11 £0.20 82.24+0.19 99.78 +0.01
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Figure 8. Illustration of three qualitative example results generated by HaTU-Net against five
state-of-the-art methods for follicle segmentation.



Diagnostics 2022, 12, 3213

12 0f 15

3.4. Ablation Study

Table 5 demonstrates an ablation study to estimate the effect of loss function employing
the proposed HaTU-Net method. Our experiments use various combinations of loss
functions such as BCE, Dice loss, BCE+Dice, and BCE+Focal loss. BCE+Focal loss leads to
1% refinement over Dice loss in segmentation results. This combination of loss functions
focuses on boundaries. Separately, employing the Dice loss gains better results versus
BCE+Dice loss. On the follicle dataset, we also see that BCE+ Focal loss yields a 7% and 2%
increment in DSC and IoU scores, respectively, compared to BCE+Dice loss. This suggested
loss function help detach follicles that appear joined together, thus improving clinical
outcome. However, employing only BCE leads to poor segmentation results achieving a
68.10% Dice score.

Table 5. Ablation study of the loss function. Statistically significant results are highlighted in bold.

Dataset Loss Function Accuracy Dice IoU Sensitivity ~ Specificity
BCE 97.67 £0.01 89.28+0.10 80.06+0.13 88.94+0.14 98.86+0.01
Dice Loss 9746 £0.02 89.45+0.08 7997+£0.12 89.69+0.12 98.7£0.01
Ovary

BCE + Dice 97.44 £ 0.0 89.13£0.09 79.64+0.13 90.76 £0.12 98.45+0.01
BCE + Focal 97.55+0.01 90.01 £0.07 80.72+0.11 90.86£0.10 98.57 £0.01
BCE 99.11+0.00 68.1+0.22 5564023  62.954+0.26 99.76 +0.01
Dice Loss 99.14+0.01 7272+£019 6026+021 72.02+0.20 99.71£0.01
BCE + Dice 99.18 £0.01 7456+018 624+020 77.44+0.19 99.64+0.0

BCE + Focal 99.51+0.01 81.40+£0.18 64.11+0.20 82.24+0.19 99.76 £0.01

Follicle

3.5. Follicle Counting

Table 6 confirms the results for follicle counting. Experimental results prove that
HaTU-Net attained a very high rate of follicle counting (i.e., precision) against other state-
of-the-art models. In addition, we observed that the 76.79% of HaTU-Net gained a 1.5%
recall rate compared to R2U-Net. The HaTU-Net helps lower the false positive rate from
segmentation artifacts, leading to higher follicle counting.

Table 6. Follicles counting results in five state-of-the-art segmentation methods.

Methods U-Net Attention U-Net R2U-Net U-Net++ DeepLabv3+ HaTU-Net
Total No. of Images 141

No. of Real Follicles 378

No. of Detected Follicles 447 438 482 453 488 448
No. of Correctly Detected Follicles 315 303 350 339 328 344
Precision (%) 70.47 69.18 72.61 74.83 67.21 76.69
Recall (%) 83.33 80.16 90.59 89.68 86.77 91.01

3.6. Discussion and Limitations

We have proposed an efficient segmentation model to segment the ovary and follicle
in TVUS images. For this purpose, we replaced the standard convolutional filter using
harmonic convolution. The input image was first decomposed using the discrete cosine
transform (DCT), and these transformed signals merged using learned weights. We utilized
the proposed harmonic attention block that provides a better feature representation of
the targeted region (i.e., ovary and follicle) by ignoring the unwanted features that could
infer the segmentation performance. Although the existing methods achieved acceptable
results, they failed to capture the precise boundaries of the ovary and follicles from noisy
US images. We found that the proposed model ignored the imaging artifacts in the presence
of shadows, speckle noise, and poor contrast images, leading to better segmentation results
than existing approaches. It also produced fewer false-positive pixels and provided a more
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robust segmentation performance with less error rate. However, our proposed model has
the limitation of poorly segmenting the ambiguous boundaries of ovaries and follicles.

4. Conclusions

In this paper, we proposed an automated solution for ovarian ultrasound quantifi-
cation. We have developed a novel method named HaT-UNet that provides accurate
segmentation of ovaries and follicles from TVUS images. The proposed HaTU-Net em-
ployed harmonic convolution with discrete cosine transform (DCT) and enhanced feature
discriminability through HA block to handle ambiguous boundaries. Experimental results
proved that the HaTU-Net tackles the presence of imaging artifacts by achieving DSC score
improvement of 2% and 10% for the ovary and follicles, respectively, compared to U-Net.
Further, the proposed model verified its effectiveness in follicle counting and attained a
recall of 91% and a precision of 76.69%. Conclusively, the experimental output demon-
strated HaTU-Net’s outstanding ability and provided efficient segmentation results by
outperforming other state-of-the-art algorithms. In the future, we will extend the potential
of the proposed model to 3D segmentation tasks. Future research could investigate the
proposed model’s ability on additional biomedical datasets.
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