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Abstract: Many epidemics have afflicted humanity throughout history, claiming many lives. It has
been noted in our time that heart disease is one of the deadliest diseases that humanity has confronted
in the contemporary period. The proliferation of poor habits such as smoking, overeating, and lack of
physical activity has contributed to the rise in heart disease. The killing feature of heart disease, which
has earned it the moniker the “silent killer,” is that it frequently has no apparent signs in advance. As
a result, research is required to develop a promising model for the early identification of heart disease
using simple data and symptoms. The paper’s aim is to propose a deep stacking ensemble model to
enhance the performance of the prediction of heart disease. The proposed ensemble model integrates
two optimized and pre-trained hybrid deep learning models with the Support Vector Machine (SVM)
as the meta-learner model. The first hybrid model is Convolutional Neural Network (CNN)-Long
Short-Term Memory (LSTM) (CNN-LSTM), which integrates CNN and LSTM. The second hybrid
model is CNN-GRU, which integrates CNN with a Gated Recurrent Unit (GRU). Recursive Feature
Elimination (RFE) is also used for the feature selection optimization process. The proposed model
has been optimized and tested using two different heart disease datasets. The proposed ensemble is
compared with five machine learning models including Logistic Regression (LR), Random Forest
(RF), K-Nearest Neighbors (K-NN), Decision Tree (DT), Naïve Bayes (NB), and hybrid models. In
addition, optimization techniques are used to optimize ML, DL, and the proposed models. The
results obtained by the proposed model achieved the highest performance using the full feature set.

Keywords: machine learning; deep learning; ensemble learning; heart disease

1. Introduction

Heart disease is among the most common illnesses that persisted in the past and have
increased and spread in our present. The reasons for the increase in its rates are varied,
especially in our modern age. Diabetes, hypertension, cholesterol, erratic heartbeat, and
many more clinical signs are some biological markers and risk factors that are needed to
diagnose heart disease. World Health Organization (WHO) claims that one of the main
and highly-ranked causes of death worldwide is heart disease, which can have several
forms such as ischemic, hypertensive, and vascular heart disease [1], and it has been shown
that cardiovascular illnesses kill 17.9 million patients each year. In addition, unhealthy
behavior that results in being overweight, obesity, and hypertension raises the risk of heart
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disease [1]. In addition, the heart is one of the essential organs of the human body. It
is primarily responsible for the continuity of pumping the blood needed for the work of
the rest of the human body. However, it is difficult for the heart to maintain the same
efficiency throughout a person’s life. The heart is exposed to many problems that can
occur because of several different reasons, such as bad health and nutritional habits or
aging [2]. Therefore, finding methods and techniques that allow for the early detection or
even prediction of potential heart problems has become inevitable. This can help doctors
and healthcare organizations to reduce the problems and complications of the disease.

Artificial intelligence (AI) based on machine learning (ML) and deep learning (DL) has
conducted key roles in evaluating medical data to assist in illness diagnosis to determine the
appropriate treatment. It is used to find patterns automatically from the clinical data and
then reason about clinical data to predict the early risk for patients such as heart disease [3],
cancer disease [4,5], and COVID-19 [6,7]. Recently, deep learning algorithms such LSTM,
GRU, CNN, and hybrid models of these algorithms have played an important role in
strengthening and enhancing the level of heart disease prediction using various layers
that could collect deeper features [8–11] Recently, authors have used ensemble learning to
enhance the performance of these models in the healthcare domain [12]. Ensemble learning
combines the decisions of various base classifiers using many techniques such as voting
or averaging to improve the final decision [13]. Ensemble algorithms can be categorized
into three branches: boosting [14], stacking [15], and bagging [16]. Stacking ensemble is
considered as the best technique for building ensemble models because it is based on a meta-
learner, which learns from data how to weight the base classifiers and combine them in the
best way to optimize the performance of the resulting model. Ensemble stacking optimizes
a set of heterogeneous base models and combines their decisions using a meta-learner [15].

In this study, we proposed an optimized ensemble stacking model that merged the
two pre-trained hybrid models of CNN-LSTM and CNN-GRU with a meta-learner (SVM)
to enhance the performance of heart disease prediction. In addition, Recursive Feature
Elimination (RFE) has been used to choose the most informative features from two heart
disease datasets. Our contributions can be summarized as follows:

• We proposed two hybrid models with heterogeneous architectures: CNN-LSTM and
CNN-GRU were proposed and optimized.

• We proposed a stacking ensemble model that merged the previous pre-trained hybrid
models of CNN-LSTM and CNN-GRU. The best meta-learner classifier has been
selected based on the experimental results. The SVM algorithm achieved the best
results as the meta-classifier to determine the best weights of the base classifiers;

• We compared the proposed model with different ML models using two benchmark
heart disease datasets;

• The proposed model significantly outperformed all other models and achieved the
best results.

The remainder of the paper is structured as follows: Section 2 discussed heart disease-
related works. The section describes the main phases and approaches Section 3 of predicting
heart disease. Section 4 describes the results and discussion results. Finally, the paper is
concluded in Section 5.

2. Related Work

Machine learning and deep learning have been used to predict heart disease. For
example Kavitha M. et al. [17] suggested a hybrid model that combines DT and RF to
predict heart disease using the Cleveland dataset. They contrasted the hybrid model’s
performance with that of DT and RF. Ishaq A. et al. [18] applied different ML algorithms:
SVM, DT, LR, NB, Adaptive boosting (AdaBoost), Stochastic Gradient Descent (SGD), RF,
Gradient Boosting Machine (GBM), and Extra Tree Classifier (ETC) using the Cleveland
heart disease dataset to analyzes the heart failure. The results showed that ETC gave the
best performance and outperformed other models. Ansarullah, S. I. et al. [19] used ML
algorithms to predict heart disease: NB, RF, DT, K-NN, and SVM. The dataset was gathered
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in Kashmir from many heterogeneous data sources (India). The results showed that RF has
the best model performance.

Many authors applied feature selection methods with ML and DL models to predict
heart disease. For example, Spencer R. et al. [20] used Chi2, ReliefF, symmetrical uncertainty
(SU), and PCA feature selection methods to extract the important features from four heart-
disease datasets. They applied BayesNet, Logistic, Stochastic Gradient Descent (SGD), and
KNN Adaboost to the full and selected features. The result showed that the BayesNet
model was recorded as the best performer using the Chi-2 feature selection compared with
other models. Bharti R. et al. [21] used the Lasso algorithm to select features from the
heart disease dataset. They applied ML and DL models: LR, KNN, SVM, RF, DT, and
ANN, respectively. The results showed that ANN has the best performance compared
to ML models. Gokulnath C. B. et al. [22] used KNN, MLP, SVM, and J48 for heart
disease detection. The datasets were gathered from a variety of sources. The authors
applied various feature selection strategies, including the extra tree classifier, gradient
boosting classifier, random forest, recursive feature removal, and XG boost classifier. In the
study by Amin, M. S. et al. [23], in order to increase the prediction accuracy, the authors
proposed a voting hybrid model based on NB and LR. They used k-NN, DT, NB, LR, SVM,
Neural Network (NN), and the hybrid model to choose meaningful characteristics from
the Cleveland heart disease dataset. The hybrid model was given the best performance
compared to other models. Bashir S. et al. [24] used DT, LR, NB, SVM, and RF models
with feature extraction methods with the Cleveland heart disease dataset to predict heart
disease. The results showed that LR and SVM with feature selection methods had better
accuracy than the other models. Javid I. et al. [25] developed model-based GRU and RF
(GRU-RF) for heart disease detection. The GRU-RF was compared with RF, GRU, KNN,
and DNN algorithms and achieved the best performance. Chae M. et al. [26] proposed a
hybrid model, LSTM–GRU, and compared it with DT, RF, LR, LSTM, and GRU to predict
heart disease. They used the dataset from Soonchunhyang University Cheonan Hospital
in Korea to train and test the models. They improved the performance models based on
hyperparameter adjustment, the quantity of primary patient data, and input parameters.
The results indicate that when compared to other models, the GRU model outperforms
the others. In the study by Narmadha, S. et al. [27], the authors used LSTM and GRU
hyperparameter tuning to enhance the performance of the algorithms. The outcomes
demonstrated that the GRU provides better accuracy than the LSTM across the board.

The authors have used ensemble models to predict heart disease. For example, Ad-
hikari, B. et al. [28] applied LR, SVM, DT, K-NN, GNB, and ensemble models using a
dataset collected from the UCI heart disease dataset. They used the voting and averaging
ensemble models built by combining the ML above models. The results showed that the
ensemble model was the best performer compared with other models. Javid, I. et al. [29]
used RF, SVM, K-NN, LSTM, Hard Voting Ensemble Model, and GRU for heart disease
prediction. The results showed that the Hard Voting Ensemble Model recorded higher
accuracy compared to other models.

Ghosh P. et al. [30] proposed hybrid models that integrated boosting and bagging
with traditional ML models: KNN, DT, and RF. The hybrid models: K-NN Bagging Method
(KNNBM), DT-Bagging Method (DTBM), AdaBoost (AB), and Random Forest Bagging
Method (RFBM) were applied to heart disease datasets. Relief, Least Absolute Shrinkage,
and Selection Operator were the three feature selection approaches they used (LASSO).
When compared to other models, the RFBM model showed the best performance.

Previous studies do not use ensemble stacking based on heterogeneous hybrid deep
learning models to predict heart disease. In addition, most previous studies have used
the Cleveland heart disease database to perform this experiment. In our work, we used
a new large heart disease dataset, and we proposed ensemble stacking models based on
optimizing different heterogeneous hybrid models: CNN-LSTM and GRU-LSTM.
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3. Methodology

In this study, we evaluate three approaches: the classical machine learning approach,
the hybrid models approach, and a proposed model. These models are applied to the full
feature set and selected feature set. The proposed model for predicting heart disease has
several steps including data collection, data preprocessing, data splitting, feature selection,
and evaluation models, as shown in Figure 1. Each phase is described in detail as follows.

Figure 1. The phases of predicting heart disease.

3.1. Heart Disease Datasets

In our work, we used two heart disease datasets.

3.1.1. Dataset 1

We used the large heart disease dataset (Heart Disease) [31]. This data includes 18
independent features and one dependent variable as the class label for predicting heart
disease. The class label includes two values: 0 represents the healthy class label, and 1
represents the heart disease class label. Table 1 presents the number of medical records for
each class in the training and testing sets. The description of each feature is described in a
Supplementary File.

3.1.2. Cleveland Dataset

The Cleveland dataset [32] includes 13 independent variables as features and one
dependent variable as the class label used to diagnose heart disease. The class label includes
two values: 0 represents the healthy class label, and 1 represents the heart disease class label.
Table 1 presents the number of medical records for each class in the training and testing
sets of the Cleveland heart disease dataset. The description of each feature is described in
the Supplementary File.

Table 1. The number of medical records for each class in the heart disease datasets.

Dataset Classes Training Set Testing Set Total

Dataset 1
Heart disease 21,898 5475 27,373

Healthy 24,000 6000 30,000

Total 45,898 11,475 57,373

Cleveland Dataset
Heart disease 421 105 526

Healthy 399 100 499

Total 820 205 1025
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3.2. Data Pre-Processing

The first heart disease dataset includes 14 numeric features and four categorical
features. The data was preprocessed after collection as follows: removing duplicate records
and encoding category data into numerical data such as smoking and skin cancer.

3.3. Data Splitting

The two datasets are divided into two sets using a stratified sampling method: 80%
training sets and 20% testing sets. Models are trained and optimized using training data.
The test set is employed to assess and test the model.The stratified sampling method is one
way of splitting the dataset used to get samples that accurately reflect the distribution of
classes in the population. It separates the dataset into homogeneous subsets; each subset
contains the same percentage of every class. [33,34]. This method has been used in studies
of different fields of healthcare [35–37]

3.4. Feature Selection Methods

In our work, we use the Recursive Feature Elimination (RFE) feature selection method
to extract the most informative features from each dataset. The RFE determines the essential
features by figuring a high correlation between features and the target [38]. It assigns one
value as ranking for features if the features have high collaboration with the target. A novel
RFE strategy is recently presented that used RF and SVM to evaluate features rather than
classification performance and selects the minor significant features for deletion [39,40]

3.5. Machine Learning Approach
3.5.1. ML Algorithms

We tested many classical ML models from different families including SVM [41–44],
Logistic Regression (LR) [45,46], Nave Bayes (NB) [47], Decision tree (DT) [48], Random
Forest (RF) [49,50], and K-nearest Neighbors (k-NN) [51].

3.5.2. Optimization Techniques for Classical Models

Grid search is employed to fine-tune hyperparameters of different classical ML models
by generating discrete grids within the hyperparameter domain and select the list of
parameters that give the best performance [52]. Data is split into two segments using the
cross-validation technique: one is used to train and validate the models (training set), and
the other is utilized for model testing (testing set) [19]. The training set has been used to
validate the models using the k-fold cross validation technique.

3.6. The Hybrid Models
3.6.1. The Hybrid Model Architectures

We proposed two hybrid models: CNN-LSTM and CNN-GRU for predicting heart
disease. The structures of hybrid models are illustrated in Figure 2.

• The first model is CNN-LSTM, which combines CNN with LSTM, consisting of
a convolutional layer, a max-pooling layer, an LSTM layer, a flatten layer, a fully
connected, and an output layer;

• The second model is CNN-GRU, which combines CNN with GRU. The architecture
consists of a convolutional layer, a max-pooling layer, an GRU layer, a flatten layer, a
fully connected, and an output layer.
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Figure 2. The architecture of the hybrid models CNN-LSTM and CNN-GRU used to predict heart
disease.

3.6.2. Optimization Techniques for Hybrid Models

The Bayesian optimizer is used to optimize the hybrid models. This search technique
quickly generates the search space and locates the best hyperparameter values for the
models [53]. We adopt the parameter settings for CNN-LSTM and CNN-GRU, as shown in
Table 2.

Table 2. Setting values of the parameters.

Parameters Values

filters [16,128]
Kernel_size [2,3,4,5]
Pool_Size [2,3,4,5]
Unit_LSTM between 20 and 500
Unit_GRU between 20 and 500
Unit_Dense between 20 and 500

3.7. The Proposed Stacking Ensemble Model

In this work, our model is developed using two levels: Level-1 and Level-2, as shown
in Figure 3. Level-1 begins by loading the pre-trained models of hybrid models CNN-LSTM
and CNN-GRU, and the layers of the models are frozen except for the last layers. The
models anticipate the training set’s output probabilities and subsequently integrate them
into stacking training. Secondly, the models estimate the output probabilities of the testing
set and aggregate them in stacking testing. At Level 2, SVM, as a meta-learner, is trained
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and optimized using stacking training and Grid search, respectively, while producing the
final results using stacking testing.

Figure 3. The proposed model for predicting heart disease.

3.8. Evaluating Models

The metrics for classification performance that are most frequently employed are
accuracy (ACC), precision (PRE), recall (REC), and F1-score (F1). In contrast to the True
Positive (TP), which denotes that the person is ill and the test is positive, the True Negative
(TN) shows that the person is healthy and the result is negative. False positives are tests
that come back positive even when the subject is healthy (FP). When a test is negative, but
the subject is ill, it is known as a false negative (FN).

Accuracy =
TP + TN

TP + FP + TN + FN
. (1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-score =
2 · precision · recall
precision + recall

(4)

4. Experimental Results

In this section, we describe the rank of features after applying the RFE to the two
datasets. Moreover, we describe the results of the performance of using ML models (SVM,
LR, RF, NB, and KNN), the hybrid models (CNN-LSTM, CNN-GRU), and the proposed
model to full and selected features.

4.1. Experimental Setup

The experiments in this paper are implemented using Google Colab with Python
libraries such as Scikit-learn, TensorFlow, and others. We used grid-search and the Bayesian
optimizer to optimize the ML and hybrid models. We used RFE technique to identify the
best features from the two datasets. The two datasets are separated into two sets: 80%
training and 20% testing set using the stratified methods. The models are trained and tested
by utilizing the training and testing sets, respectively.
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4.2. Results of Dataset1
4.2.1. Feature Selection Results

In the experiments, we used the RFE to extract the important features from the heart
disease dataset by assigning ranking for every feature. The critical features are ranked 1,
and the least important features are ranked 8. The features ranking is shown in Figure 4. We
can see that the most significant 10 features have a ranking of 1: BMI, Stroke, PhysicalHealth,
MentalHealth, DiffWalking, AgeCategory, Race, Diabetic, GenHealth, and SleepTime. The
lowest important feature has a ranking of 8, which is AlcoholDrinking.

Figure 4. The ranking features for heart disease Dataset 1.

4.2.2. Results of Applying Models

This section presents the ACC, PRE, REC, and F1 of ML, hybrid models, and the
proposed model for Dataset 1. In the hybrid models CNN-LSTM and CNN-GRU some
parameters were adapted: batch_size of 500, epoch = 50, learning rate = 0.00004, and
the optimizer used is Adam. Some of the best values of CNN-LSTM and CNN-GRU
hyperparameters that were selected by KerasTuner are shown in Table 3.

Table 3. The best values of the parameters for CNN-LSTM and CNN-GRU.

Dataset Models Parameters Full Features Selected Features

Dataset 1

CNN-LSTM

filters 128 16

Kernel_size 4 4

Pool_Size 2 2

Unit_LSTM 380 40

Unit_Dense 140 50

CNN-GRU

filters 128 16

Kernel_size 4 4

Pool_Size 2 2

Unit_GRU 100 320

Unit_Dense 100 200
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Table 4 shows the results of applying ML, hybrid models, and the proposed model
with full features and selected features by RFE to the heart disease Dataset 1.

• Results of the full features:
For ML models, RF and LR register approximately the same highest scores (75.32% of
ACC, 75.44% of PRE, 75.32% of REC, 75.33% of F1) and (75.60% of ACC, 75.60% of PRE,
75.60% of REC, 75.60% of F1), respectively. NB records the worst scores (60.87% of
ACC, 64.98% of PRE, 60.87% of REC, 56.69% of F1). KNN registers the second-highest
scores (73.16% of ACC, 73.47% of PRE, 73.16% of REC, 73.16% of F1).
For hybrid models, CNN-LSTM has the highest scores (76.64% of ACC, 76.9% of PRE,
76.64% of REC, and 76.65% of F1). CNN-GRU records the lowest scores (75.63% of
ACC, 75.65% of PRE, 75.63% of REC, 75.58% of F1).
The proposed model records the highest scores (ACC = 78.81%, 78.1% of PRE, 78.81%
of REC, and 78.81% of F1) compared to other models. It improves ACC by 2.17, PRE
by 1.2, REC by 2.17, and F1 by 2.16 compared to CNN-LSTM.

• Results of the selected features:
For ML models, RF and LR register approximately the same highest scores (73.02%
of ACC, 73.06% of PRE, 73.02% of REC, 73.03% of F1) and (73.58% of ACC, 73.60%
of PRE, 73.58% of REC, = 73.59% of F1), respectively. NB records the worst scores
(60.84% of ACC, 64.97% of PRE, 60.84% of REC, F1 = 56.63%). KNN registers the
second-highest scores (72.59% of ACC, 72.92% of PRE, 72.59% of REC, F1 = 72.59%).
The top scores for hybrid models belong to CNN-LSTM (75.22% of ACC, 75.42% of
PRE, 75.22% of REC, and 75.22% of F1). The lowest scores are recorded by CNN-GRU
(74.07% of ACC, 74.23% of PRE, 74.07% of REC, and 74.08% of F1).
In comparison to other models, the proposed model achieves the greatest scores
(77.42% of ACC, 77.99% of PRE, 77.42% of REC, and 77.39% of F1). In comparison to
CNN-LSTM, it enhances ACC by 2.2%, PRE by 2.57%, REC by 2.2%, and F1 by 2.17%.

Table 4. Result of applying models with full features and the selected features for Dataset 1.

Approaches Models Features
Matrix Performance

ACC PRE REC F1

Regular ML approach

RF
Full features 75.32 75.44 75.32 75.33

Selected features 73.02 73.06 73.02 73.03

LR
Full features 75.60 75.60 75.60 75.60

Selected features 73.58 73.60 73.58 73.59

DT
Full features 67.28 67.26 67.28 67.27

Selected features 65.76 65.76 65.76 65.7

NB
Full features 60.87 64.98 60.87 56.69

Selected features 60.84 64.97 60.84 56.63

KNN
Full features 73.16 73.47 73.16 73.16

Selected features 72.59 72.92 72.59 72.59

The hybrid models

CNN-LSTM
Full features 76.64 76.9 76.64 76.65

Selected features 75.22 75.42 75.22 75.22

CNN-GRU
Full features 75.63 75.65 75.63 75.58

Selected features 74.07 74.23 74.07 74.08

The proposed model Stacking SVM
Full features 78.81 78.1 78.81 78.81

Selected features 77.42 77.99 77.42 77.39
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4.3. Results of the Cleveland Dataset
4.3.1. Feature Selection Results

In the experiments, we used the RFE to extract the important features from the Cleve-
land dataset. It assigns features a value of ranking, with the critical features having a
ranking of 1, and the least important features having a ranking of 8. The features ranking is
shown in Figure 5. We can see that the 8 most significant features have a ranking of 1: age,
cp, thalach, oldpeak, ca, and thal. The least important feature has a ranking of 8, which
is fbs.

Figure 5. The ranking features for the Cleveland dataset.

4.3.2. Results of the Applied Models

This section presents the setting of values parameters for models and the results of
applied ML, hybrid models, and the proposed model with the full and selected features
for the Cleveland dataset. The following settings were modified for CNN-LSTM and
CNN-GRU hybrid models: batch size = 50, epoch = 50, learning rate = 0.00004, and the
optimizer used is Adam. Some of the best CNN-LSTM and CNN-GRU hyperparameter
values as determined by KerasTuner are shown in Table 5.

Table 6 shows the results of applying ML, hybrid models, and the proposed model
with full features and selected features by RFE to the Cleveland dataset.

• Full features
For ML models, RF has the highest scores (86.34% of ACC, 86.34% of PRE, 86.34% of
REC, and 86.34% of F1). NB records the lowest scores (60.00% of ACC, 60.05% of PRE,
60.00% of REC, 59.74% of F1). DT registers the second-highest scores (82.44% of ACC,
82.46% of PRE, 82.44% of REC, 82.44% of F1).
For hybrid models, CNN-LSTM has the highest scores (89.76% of ACC, 89.96% of PRE,
REC = 89.76% of REC, F1 = 89.75%). CNN-GRU records the lowest scores (88.29% of
ACC, 89.06% of PRE, REC = 88.29% of REC, 88.26% of F1).
The proposed model records the highest scores (97.17% of ACC, 97.42% of PRE, 97.17%
of REC, 97.15% of F1) compared to the other models. It improves ACC by 7.41, PRE
by 7.46, REC by 7.41, and F1 by 7.4 compared to CNN-LSTM.

• Selected features
For ML models, RF has the highest scores (82.93% of ACC, 82.99% of PRE, 82.93%
of REC, 82.91% of F1). NB records the lowest scores (64.88% of ACC, 64.90% of PRE,
64.88% of REC, 64.88% of F1). DT registers the second-highest scores (81.95% of ACC,
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PRE = 82.01%, 81.95% of REC, 81.93% of F1).
For hybrid models, CNN-LSTM has the highest scores (86.34% of ACC, 86.41% of PRE,
86.34% of REC, and 86.34% of F1). CNN-GRU records the lowest scores (85.85% of
ACC, 86.92% of PRE, 85.85% of REC, 85.78% of F1).
The proposed model records the highest scores (91.22% of ACC, 91.29% of PRE, 91.22%
of REC, 91.22% of F1) compared to other models. It improves ACC by 4.88, PRE by
4.88, REC by 4.88, and F1 by 4.88 compared to CNN-LSTM.

Table 5. The best values of the parameters for the Cleveland dataset.

Datasets Models Parameters Full Features Selected Features

Cleveland dataset

CNN-LSTM

filters 128 16

Kernel_size 4 5

Pool_Size 2 2

Unit_LSTM 360 60

Dense Unit 160 20

CNN-GRU

filters 64 16

Kernel_size 4 5

Pool_Size 2 2

Unit_GRU 440 80

Unit_Dense 160 40

Table 6. Result of applying models with full features and selected features for the Cleveland dataset.

Approaches Models Features
Matrix Performance

ACC PRE REC F1

Regular ML approach

RF
Full features 86.34 86.34 86.34 86.34

Selected features 82.93 82.99 82.93 82.91

LR
Full features 67.32 67.43 67.3 67.18

Selected features 73.17 73.19 73.17 73.14

DT
Full features 82.44 82.46 82.44 82.44

Selected features 81.95 82.01 81.95 81.93

NB
Full features 60.00 60.05 60.00 59.74

Selected features 64.88 64.90 64.88 64.88

KNN
Full features 60.00 60.25 60.00 59.92

Selected features 66.34 66.62 66.34 66.29

The hybrid models

CNN-LSTM
Full features 89.76 89.96 89.76 89.75

Selected features 86.34 86.41 86.34 86.34

CNN-GRU
Full features 88.29 89.06 88.29 88.26

Selected features 85.85 86.92 85.85 85.78

The proposed model Stacking SVM
Full features 97.17 97.42 97.17 97.15

Selected features 91.22 91.29 91.22 91.22
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4.4. Discussion

We used two heart disease datasets downloaded from Kaggle. We applied RFE feature
selection methods to select the essential features. The proposed model, in all cases, has
achieved the highest score compared with the other models.

4.4.1. Dataset1

Figures 6 and 7 show the best models for applying models with full features and
selected features. We can see that the proposed model has achieved the highest scores with
full features at ACC = 78.81%, PRE = 78.81%, REC = 78.81%, and F1 = 78.81% compared to
other models with full features and selected features, and It improves ACC by 2.17, PRE by
1.2, REC by 2.17, and F1 by 2.16 compared to CNN-LSTM. In addition, it has the highest
scores with selected features at (ACC = 77.42%, PRE = 77.99%, REC = 77.42%, F1 = 77.39%,
and it improves ACC by 2.2%, PRE by 2.57%, REC by 2.2%, and F1 by 2.17%. LR has the
lowest scores with full features and selected features.

Figure 6. The best models for applying models with full features for Dataset 1.

4.4.2. Cleveland Dataset

Figures 8 and 9 show the best models for applying models with full features and
selected features. We can see that the proposed model has achieved the highest scores with
full features at ACC = 98.17%, PRE = 98.42%, REC = 98.17%, and F1 = 98.15% compared to
other models with full features and selected features, and it improves ACC by 3.41, PRE by
3.46, REC by 3.41, and F1 by 3.4 compared to CNN-LSTM. In addition, it has the highest
scores with selected features at (ACC = 91.22%, PRE = 91.29%, REC = 91.22%, F1 = 91.22%,
and it improves ACC by 4.88, PRE by 4.88, REC by 4.88 and F1 by 4.88 compared to CNN-
LSTM. RF has the lowest scores with full features, and LR has the lowest scores with the
selected features.
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Figure 7. The best models for applying models with selected features for Dataset 1.

Figure 8. The best models for applying models with full features for Dataset 2.
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Figure 9. The best models for applying models with selected features for Dataset 2.

4.4.3. Comparison with Literature Studies

By assessing the developed model against the current models we could observe that
our approach enhanced the scores more than other models. We compared our approach
with the approach by authors who used the Cleveland Dataset, as shown in Table 7. The
authors of Ref. [17] used a hybrid model combining DT and RF, which recorded 88.7% of
ACC. The authors in Refs. [20,22–24,29], used various models, none of which were accurate
to more than 90%, which recorded 85%, 88.34%, 87.41%, 84.85%, and 85.71%, respectively.
While in Ref. [18,21,28], the authors achieved an accuracy of over 90%. The proposed model
has achieved the highest ACC at 98.41% compared to the ACC values in these studies.

Table 7. Comparison between previous studies and the proposed model for the Cleveland dataset.

Papers Models Datasets Accuracy

[17] hybrid model that
combines DT and RF Cleveland Dataset. 88.7%

[18] DT, AdaBoost, LR, SGD, RF, GBM,
ETC, GNB, SVM Cleveland Dataset. 92.62%

[20]

BayesNet, LR, SGD,
IBK(k = 21), AdaB(DS),

AdaB(Logistic), RF

Cleveland Dataset. 85%

[21]
LR, KNN, SVM,

RF, DT, DL
Cleveland Dataset. 94.2%

[22] KNN, MLP, SVM, and J48 Cleveland Dataset. 88.34%

[23] K-NN, DT, NB, LR, SVM, NN, Vote Cleveland Dataset. 87.41%

[24] DT, LR, RF, NB,
LR (SVM) Cleveland Dataset. 84.85%

[28] Ensemble Voting, Cleveland Dataset. 96.43%
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Table 7. Cont.

Papers Models Datasets Accuracy

[29] Hard Voting Ensemble Model Cleveland Dataset. 85.71%

Our work The proposed model Cleveland Dataset. 98.41

5. Conclusions

The study proposed a deep staking ensemble to improve the performance of heart
disease prediction. The proposed model was based on the integration of two pre-trained
and optimized deep hybrid models: CNN-LSTM and CNN-GRU. The SVM classifier has
been used as the meta-learner model. The first hybrid model was the CNN-LSTM model,
which combined CNN and LSTM layers. The second hybrid model was the CNN-GRU
model, which combined CNN with GRU models. RFE was used to choose the most
important features from two heart disease datasets. The proposed models were compared
with five classical ML models, including LR, RF, K-NN, DT, NB, and hybrid models (i.e.,
CNN-LSTM and CNN-GRU). Results were collected with the full feature set and a selected
feature set. Compared to other models, the result generated by the proposed model had
the optimum performance with all the features. For the first dataset, the proposed model
had the highest ACC of 78.81%, PRE of 78.1%, REC of 78.81%, and F1 of 78.81. For the
Cleveland dataset, the proposed model had the highest ACC of 97.17%, PRE of 97.42%,
REC of 97.17%, and F1 of 97.15%. In addition, the proposed model achieved better results
than the literature. As a result, the proposed model can improve the disease prediction
and can improve the quality of life of the heart disease patients. In the future, we will test
the performance of the proposed model with other datasets. We will extend the model by
adding other modalities such as images and EEG data. We will provide interpretability
features to the proposed model.
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