
����������
�������

Citation: Ni, J.; Yan, Z.; Jiang, J.

TongueCaps: An Improved Capsule

Network Model for

Multi-Classification of Tongue Color.

Diagnostics 2022, 12, 653.

https://doi.org/10.3390/

diagnostics12030653

Academic Editor: Md

Mohaimenul Islam

Received: 18 January 2022

Accepted: 15 February 2022

Published: 8 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

TongueCaps: An Improved Capsule Network Model for
Multi-Classification of Tongue Color
Jinghong Ni 1, Zhuangzhi Yan 2,* and Jiehui Jiang 2

1 School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China;
njh123@shu.edu.cn

2 School of Life Science, Shanghai University, Shanghai 200444, China; jiangjiehui@shu.edu.cn
* Correspondence: zzyan@shu.edu.cn

Abstract: Tongue color is an important part of tongue diagnosis. The change of tongue color is
affected by pathological state of body, blood rheology, and other factors. Therefore, physicians can
understand a patient’s condition by observing tongue color. Currently, most studies use machine
learning, which is time consuming and labor intensive. Other studies use deep learning based on
convolutional neural network (CNN), but the affine transformation of CNN is less robust and easily
loses the spatial relationship between features. Recently, Capsule Networks (CapsNet) have been
proposed to overcome these problems. In our work, CapsNet is used for tongue color research for
the first time, and improved model TongueCaps is proposed, which combines the advantage of
CapsNet and residual block structure to achieve end to end tongue color classification. We conduct
experiments on 1371 tongue images; TongueCaps achieve accuracy is 0.8456, sensitivity is 0.8474, and
specificity is 0.9586. In addition, the size of TongueCaps is 8.11 M, and FLOPs is 1,335,342, which
are smaller than CNN in comparison models. Experiments have confirmed that the CapsNet can be
used for tongue color research, and improved model TongueCaps, in this paper, is superior to other
comparison models in terms of accuracy, specificity and sensitivity, computational complexity, and
size of model.

Keywords: tongue color; capsule network; deep learning

1. Introduction

Tongue diagnosis has been recorded as early as in the classic Chinese medicine book
‘Huangdi Neijing’, which was to diagnose disease by observing the characteristics of tongue,
and then, it made rapid progress in the diagnosis of exogenous fever. Nowadays, tongue
diagnosis has become a unique diagnostic method under the guidance of Traditional
Chinese Medicine (TCM) theory [1]. The content of tongue examination is divided into
two parts: observation of tongue texture and tongue coating. Tongue color is an important
content of tongue texture, and is generally divided into five categories: light red, red,
deep red, light white, cyan [2]. Different colors can reflect different physiological and
pathological states, blood rheology [2], and the attributes of pathogens [3], which is an
important basis for effective clinical diagnosis, guidance of medication, efficacy judgment,
and prognosis [2,4]. In addition, there are many studies on the analysis of the relationship
between disease and tongue color [5–8], such as quantitatively analyzed tongue color in
the case of blood stasis syndrome and non-blood stasis syndrome [5], which found the
value of B chromaticity component of tongue color in breast cancer patients is greater than
the R chromaticity component and the G chromaticity component [6] and quantitatively
analyzed the tongue color of patients with rheumatoid arthritis [7,8]. Therefore, correct
identification of tongue color is of great clinical significance.

With the development of computer-aided diagnosis technology, more and more re-
searchers are committed to using computers to classify tongue color with image processing

Diagnostics 2022, 12, 653. https://doi.org/10.3390/diagnostics12030653 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12030653
https://doi.org/10.3390/diagnostics12030653
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-4917-463X
https://doi.org/10.3390/diagnostics12030653
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12030653?type=check_update&version=1

Diagnostics 2022, 12, 653 2 of 14

technology in order to improve objectification and classification accuracy. Most studies
are based on machine learning [5–17]. In these studies, the researchers will first remove
tongue coating as much as possible, leaving only tongue part as the research object, because
tongue texture and tongue coating are staggered and distributed on the tongue [2], which
makes the tongue coating have a certain influence on analysis of tongue color. There are
two ways to separate tongue texture and tongue coating: one is to manually select pixels of
tongue texture [5,6,9,10], and the other is to use clustering [11–14]. Then, they found that
different methods of separation will obtain different results. In addition, the illumination
of data acquisition environment used in these studies is not the same, which has a certain
impact on results. Yang XY et al. reviewed and summarized 22 studies on tongue color
classification, using CIE Lab and CIELCH color space to uniformly convert tongue color
chromaticity values into L value, a value, b value, C value, and H value, and then found
that there is an overlapping area in chromaticity value ranges between different tongue
color, as well as no clear classification boundary, which makes it difficult to select one of
them as the standard [15].

At present, deep neural network models are gradually being widely used in the field
of image recognition because they can automatically extract complex features through the
training of large amounts of data, without manual intervention, and have better prediction
results for unknown data [18]. The most common framework in deep learning is convolu-
tional neural network (CNN) [19]. Tang, Y.P. et al. used CNN, combined with multi-task
learning, for tongue feature classification, and the final total accuracy rate reached 0.96 [20].
Another model framework, the CapsNet proposed by Professor Hinton [21], which not
only greatly reduces the size of mode, but also makes more effective use of spatial location
information, and it better encodes the relationship between local information and global
goal. In some studies, it has been gradually confirmed to have better performance on
classification tasks, which are of a limited number and low resolution datasets [22–26]
compared to some CNN models, such as AlexNet [27], NDCNN [28], and NPMIL [29].

In conclusion, the above mentioned methods, based on machine learning, need to
separate tongue texture and tongue coating first and then, manually select features, which
is cumbersome and time consuming. We hope to reduce manual intervention via deep
learning, letting the model automatically learn to separate tongue texture and tongue
coating, as well as extract features related to tongue color to achieve end to end classification
of tongue color. In addition, since CapsNet can make full use of spatial features, we choose
CapsNet as our base model. In our work, we propose TongueCaps based on CapsNet.
We will introduce the framework of our model and test performance of the model on our
tongue color RGB images with different size and then, compare our model with CapsNet
and some models based on CNN.

2. Materials and Methods

In this study, we proposed TongueCaps based on CapsNet and then, compared the
performance of this model with other common CNN models on the tongue color classifica-
tion task through experiments. In this section, we present the materials and methods used
in the study, including data acquisition, data preprocessing, data expansion, framework of
TongueCaps and comparison models, hyperparameter tuning methods in model training,
evaluation matrices, and experimental platforms.

2.1. Data Acquisition

The raw images used in this study were provided by Tianjin Huiyigu Technology
Co., Ltd. Image data is acquired by tongue image acquisition equipment. When using the
device to shoot, the face needs to be close to the device to reduce the impact of ambient
light and then, stretch out tongue as much as possible to allow the device to capture the
tongue. Figure 1a is an example of raw image, which is a 24-bit RGB image and includes
two types of size: 1640 × 2460 and 1480 × 2220. Figure 1b is an image containing only

Diagnostics 2022, 12, 653 3 of 14

tongue, which is obtained by using machine to automatically segment raw image, in order
to remove the influence of lip color, face color, etc., on tongue color recognition.

Diagnostics 2022, 12, x FOR PEER REVIEW 3 of 14

light and then, stretch out tongue as much as possible to allow the device to capture the

tongue. Figure 1a is an example of raw image, which is a 24-bit RGB image and includes

two types of size: 1640 × 2460 and 1480 × 2220. Figure 1b is an image containing only

tongue, which is obtained by using machine to automatically segment raw image, in order

to remove the influence of lip color, face color, etc., on tongue color recognition.

(a) (b)

Figure 1. The acquired original image and the corresponding segmented image. (a) Raw image; (b)

Image after segmentation.

There are a total of 1371 cases in experiment data, including five categories: light red

tongue, red tongue, deep red tongue, light white tongue, and cyan tongue. The image

sample of each type of tongue color is shown in Figure 2.

(a) (b) (c) (d) (e)

Figure 2. Samples of five types of tongue images. (a) Light red tongue; (b) Red tongue; (c) Deep red

tongue; (d) Light white tongue; (e) Cyan tongue.

The number of tongue color images in the five categories is shown in Table 1, 382

cases of light red tongue, 312 cases of red tongue, 104 cases of deep red tongue, 304 cases

of light white tongue, and 269 cases of cyan tongue.

Table 1. Sample image data statistics.

Tongue Color Type Light Red Red Deep Red Light White Cyan

Image number 382 312 104 304 269

2.2. Data Reprocessing and Data Division

The first preprocessing is to uniform the size of the image to 128 × 128. The size of the

tongue image data is different. For the convenience of experiment, the image size is fixed

to uniform size by using equal scaling. First, reduce the long side of the image to the spec-

ified size, then reduce the short side with same proportion, and finally, fill the short side

with black pixels to the same size as long side, the procedure as shown in Table 2.

Figure 1. The acquired original image and the corresponding segmented image. (a) Raw image; (b)
Image after segmentation.

There are a total of 1371 cases in experiment data, including five categories: light red
tongue, red tongue, deep red tongue, light white tongue, and cyan tongue. The image
sample of each type of tongue color is shown in Figure 2.

Diagnostics 2022, 12, x FOR PEER REVIEW 3 of 14

light and then, stretch out tongue as much as possible to allow the device to capture the

tongue. Figure 1a is an example of raw image, which is a 24-bit RGB image and includes

two types of size: 1640 × 2460 and 1480 × 2220. Figure 1b is an image containing only

tongue, which is obtained by using machine to automatically segment raw image, in order

to remove the influence of lip color, face color, etc., on tongue color recognition.

(a) (b)

Figure 1. The acquired original image and the corresponding segmented image. (a) Raw image; (b)

Image after segmentation.

There are a total of 1371 cases in experiment data, including five categories: light red

tongue, red tongue, deep red tongue, light white tongue, and cyan tongue. The image

sample of each type of tongue color is shown in Figure 2.

(a) (b) (c) (d) (e)

Figure 2. Samples of five types of tongue images. (a) Light red tongue; (b) Red tongue; (c) Deep red

tongue; (d) Light white tongue; (e) Cyan tongue.

The number of tongue color images in the five categories is shown in Table 1, 382

cases of light red tongue, 312 cases of red tongue, 104 cases of deep red tongue, 304 cases

of light white tongue, and 269 cases of cyan tongue.

Table 1. Sample image data statistics.

Tongue Color Type Light Red Red Deep Red Light White Cyan

Image number 382 312 104 304 269

2.2. Data Reprocessing and Data Division

The first preprocessing is to uniform the size of the image to 128 × 128. The size of the

tongue image data is different. For the convenience of experiment, the image size is fixed

to uniform size by using equal scaling. First, reduce the long side of the image to the spec-

ified size, then reduce the short side with same proportion, and finally, fill the short side

with black pixels to the same size as long side, the procedure as shown in Table 2.

Figure 2. Samples of five types of tongue images. (a) Light red tongue; (b) Red tongue; (c) Deep red
tongue; (d) Light white tongue; (e) Cyan tongue.

The number of tongue color images in the five categories is shown in Table 1, 382 cases
of light red tongue, 312 cases of red tongue, 104 cases of deep red tongue, 304 cases of light
white tongue, and 269 cases of cyan tongue.

Table 1. Sample image data statistics.

Tongue Color Type Light Red Red Deep Red Light White Cyan

Image number 382 312 104 304 269

2.2. Data Reprocessing and Data Division

The first preprocessing is to uniform the size of the image to 128 × 128. The size of
the tongue image data is different. For the convenience of experiment, the image size is
fixed to uniform size by using equal scaling. First, reduce the long side of the image to the
specified size, then reduce the short side with same proportion, and finally, fill the short
side with black pixels to the same size as long side, the procedure as shown in Table 2.

The second preprocessing is color space conversion. The original image is in RGB
color space because RGB color space generally does not reflect specific color information
of the object very well, so we choose the HSV color space that is more commonly used in
image processing. This operation can be achieved by using color space conversion function
in the python package cv2.

Each type of tongue color in the data set is divided into training set and test set at
8:2 division situation, as shown in Table 3.

Diagnostics 2022, 12, 653 4 of 14

Table 2. Procedure of image size unification.

Procedure 1 Image Size Unification.

procedure Unification (Imageh×w, L)

Step 1: import cv2

Step 2: calculate the scaling factor k = L
h

Step 3: cv2.resize (Imageh×w, L, w× k)

Step 4: use black pixels on short side to fill length w× k to length L

return ImageL×L
1 Image is the image to be processed, h and w are the length of the long side and the length of the short side of the
original image respectively, L is the size of the processed image.

Table 3. Division situation.

Light Red Red Deep Red Light White Cyan

Train set 244 200 66 196 172
Val set 62 50 17 49 43
Test set 76 62 21 59 54

Total 382 312 104 304 269

Before the experiment, the training data is expended by the methods of horizontal
movement, rotation, vertical movement, and brightness adjustment. First three methods
can be implemented by OpenCV package. Figure 3 is the sample of different ways of data
expansion, Figure 3a is the original image, Figure 3b,c are obtained by rotating the original
image by 90 degrees and 180 degrees, respectively, Figure 3d is obtained by moving the
target horizontally in the original image, and Figure 3e is obtained by moving the target
vertically in the original image.

Diagnostics 2022, 12, x FOR PEER REVIEW 4 of 14

Table 2. Procedure of image size unification.

Procedure 1 Image size unification.

procedure Unification(𝐼𝑚𝑎𝑔𝑒ℎ×𝑤, 𝐿)

Step 1: import cv2

Step 2: calculate the scaling factor 𝑘 =
𝐿

ℎ

Step 3: cv2.resize(𝐼𝑚𝑎𝑔𝑒ℎ×𝑤, 𝐿, 𝑤 × 𝑘)

Step 4: use black pixels on short side to fill length 𝑤 × 𝑘 to length 𝐿

return 𝐼𝑚𝑎𝑔𝑒𝐿×𝐿
1 Image is the image to be processed, h and w are the length of the long side and the length of the

short side of the original image respectively, L is the size of the processed image.

The second preprocessing is color space conversion. The original image is in RGB

color space because RGB color space generally does not reflect specific color information

of the object very well, so we choose the HSV color space that is more commonly used in

image processing. This operation can be achieved by using color space conversion func-

tion in the python package cv2.

Each type of tongue color in the data set is divided into training set and test set at 8:2

division situation, as shown in Table 3.

Table 3. Division situation.

 Light Red Red Deep Red Light White Cyan

Train set 244 200 66 196 172

Val set 62 50 17 49 43

Test set 76 62 21 59 54

Total 382 312 104 304 269

Before the experiment, the training data is expended by the methods of horizontal

movement, rotation, vertical movement, and brightness adjustment. First three methods

can be implemented by OpenCV package. Figure 3 is the sample of different ways of data

expansion, Figure 3a is the original image, Figure 3b,c are obtained by rotating the original

image by 90 degrees and 180 degrees, respectively, Figure 3d is obtained by moving the

target horizontally in the original image, and Figure 3e is obtained by moving the target

vertically in the original image.

(a) (b) (c) (d) (e)

Figure 3. Data augmentation. (a) Original image; (b) Rotate 90 degrees; (c) Rotate 180 degrees; (d)

Horizontal movement; (e) Vertical movement.

Image brightness adjustment is implemented using Equation (1), I(x,y) and the pixel

value at position (x,y) on the original image, I′(x,y) is the pixel value after adjusting the

brightness, k is the adjustment factor, and the range of values is [0.25,4]. When k < 1, the

image brightness becomes brighter. When k > 1, the image brightness becomes darker.

𝐼′(𝑥, 𝑦) = (
𝐼(𝑥, 𝑦)

255
)

𝑘

∗ 255 (1)

Figure 3. Data augmentation. (a) Original image; (b) Rotate 90 degrees; (c) Rotate 180 degrees;
(d) Horizontal movement; (e) Vertical movement.

Image brightness adjustment is implemented using Equation (1), I(x,y) and the pixel
value at position (x,y) on the original image, I′(x,y) is the pixel value after adjusting the
brightness, k is the adjustment factor, and the range of values is [0.25, 4]. When k < 1, the
image brightness becomes brighter. When k > 1, the image brightness becomes darker.

I′(x, y) =
(

I(x, y)
255

)k
∗ 255 (1)

In our experiment, we choose k to be 0.5 and 1.5, and the processing result image is
shown in Figure 4.

Finally, after data expansion, the data numbers of five class tongue color are basically
balanced. The number of training sets is as follows: light red 976 cases, red 1000 cases, deep
red 924 cases, light white 980 cases, cyan 1032 cases, and 4912 cases in total.

Diagnostics 2022, 12, 653 5 of 14

Diagnostics 2022, 12, x FOR PEER REVIEW 5 of 14

In our experiment, we choose 𝑘 to be 0.5 and 1.5, and the processing result image is

shown in Figure 4.

(a) (b) (c)

Figure 4. This is the tongue image in three different brightness levels. (a) Original image; (b) tongue

when brightness adjustment factor k = 0.5; (c) tongue when brightness adjustment factor k = 1.5.

Finally, after data expansion, the data numbers of five class tongue color are basically

balanced. The number of training sets is as follows: light red 976 cases, red 1000 cases,

deep red 924 cases, light white 980 cases, cyan 1032 cases, and 4912 cases in total.

2.3. Model: TongueCaps

The framework of TongueCaps is shown in Figure 5, including two main layers: con-

volution layer and capsule layer. The convolution layer is used to extract features, and we

consider the problem of gradient disappearance that easily occurs in deep neural net-

works, so we adopt a shortcut connection structure in residual block [28]. The capsule

layer includes Primary Caps and Class Caps. The function of capsule layer is to effectively

combine the extracted features for final classification. In the following, we will introduce,

in detail, the structure of convolution layer, the structure of capsule layer, and the param-

eter update method of capsule layer: dynamic routing algorithm.

Figure 5. This is the framework of TongueCaps. It is composed of two parts, the convolution layer

and the capsule layer, which input an image through these two parts and finally, output the proba-

bility that the input image belongs to five kinds of tongue colors.

When the size of the input image is 128 × 128, the parameters in each layer of Tongue-

Caps are shown in Table 4, and the following describes the numbers in the parameters

column. In the 1–8 lines, the first number represents the number of convolution kernels,

the second parameter represents the size of the convolution kernel, and the third param-

eter represents the stride size. The parameters in the 9th line represent 8 groups of convo-

lution operations. The number of convolution kernels in each group of convolution oper-

ations is 32, the size of the convolution kernel is 3 × 3, and the stride size is 1.

Figure 4. This is the tongue image in three different brightness levels. (a) Original image; (b) tongue
when brightness adjustment factor k = 0.5; (c) tongue when brightness adjustment factor k = 1.5.

2.3. Model: TongueCaps

The framework of TongueCaps is shown in Figure 5, including two main layers:
convolution layer and capsule layer. The convolution layer is used to extract features,
and we consider the problem of gradient disappearance that easily occurs in deep neural
networks, so we adopt a shortcut connection structure in residual block [28]. The capsule
layer includes Primary Caps and Class Caps. The function of capsule layer is to effectively
combine the extracted features for final classification. In the following, we will introduce, in
detail, the structure of convolution layer, the structure of capsule layer, and the parameter
update method of capsule layer: dynamic routing algorithm.

Diagnostics 2022, 12, x FOR PEER REVIEW 5 of 14

In our experiment, we choose 𝑘 to be 0.5 and 1.5, and the processing result image is

shown in Figure 4.

(a) (b) (c)

Figure 4. This is the tongue image in three different brightness levels. (a) Original image; (b) tongue

when brightness adjustment factor k = 0.5; (c) tongue when brightness adjustment factor k = 1.5.

Finally, after data expansion, the data numbers of five class tongue color are basically

balanced. The number of training sets is as follows: light red 976 cases, red 1000 cases,

deep red 924 cases, light white 980 cases, cyan 1032 cases, and 4912 cases in total.

2.3. Model: TongueCaps

The framework of TongueCaps is shown in Figure 5, including two main layers: con-

volution layer and capsule layer. The convolution layer is used to extract features, and we

consider the problem of gradient disappearance that easily occurs in deep neural net-

works, so we adopt a shortcut connection structure in residual block [28]. The capsule

layer includes Primary Caps and Class Caps. The function of capsule layer is to effectively

combine the extracted features for final classification. In the following, we will introduce,

in detail, the structure of convolution layer, the structure of capsule layer, and the param-

eter update method of capsule layer: dynamic routing algorithm.

Figure 5. This is the framework of TongueCaps. It is composed of two parts, the convolution layer

and the capsule layer, which input an image through these two parts and finally, output the proba-

bility that the input image belongs to five kinds of tongue colors.

When the size of the input image is 128 × 128, the parameters in each layer of Tongue-

Caps are shown in Table 4, and the following describes the numbers in the parameters

column. In the 1–8 lines, the first number represents the number of convolution kernels,

the second parameter represents the size of the convolution kernel, and the third param-

eter represents the stride size. The parameters in the 9th line represent 8 groups of convo-

lution operations. The number of convolution kernels in each group of convolution oper-

ations is 32, the size of the convolution kernel is 3 × 3, and the stride size is 1.

Figure 5. This is the framework of TongueCaps. It is composed of two parts, the convolution layer and
the capsule layer, which input an image through these two parts and finally, output the probability
that the input image belongs to five kinds of tongue colors.

When the size of the input image is 128 × 128, the parameters in each layer of Tongue-
Caps are shown in Table 4, and the following describes the numbers in the parameters
column. In the 1–8 lines, the first number represents the number of convolution kernels,
the second parameter represents the size of the convolution kernel, and the third parameter
represents the stride size. The parameters in the 9th line represent 8 groups of convolution
operations. The number of convolution kernels in each group of convolution operations
is 32, the size of the convolution kernel is 3 × 3, and the stride size is 1.

In the following content, we will introduce the model framework in detail, including
the structure of each layer of the model, the calculation principle of forward propagation of
the model, the update method of weight coefficient, and the loss function of the model.

Diagnostics 2022, 12, 653 6 of 14

Table 4. Parameters of TongueCaps.

Layer Parameters Output Shape

Con_BN_ReLU 3, 7 × 7, 1 128 × 128 × 3
MaxPooling 3, 3 × 3, 2 64 × 64 × 3

Residual Block_b1 64, 3 × 3, 2 32 × 32 × 64
Residual Block_a1 128, 3 × 3, 1 32 × 32 × 64
Residual Block_b2 128, 3 × 3, 2 16 × 16 × 128
Residual Block_a2 128, 3 × 3, 1 16 × 16 × 128
Residual Block_a3 256, 3 × 3, 1 16 × 16 × 256
Residual Block_a4 256, 3 × 3, 1 16 × 16 × 256

Primary Caps 32, 3 × 3, 1, units = 8 8 × 6272

2.3.1. Convolution Layer

The convolution layer of the initial capsule network has only one layer. For complex
images, the feature extraction ability of one convolution layer is weak, and the extraction of
low level features such as edges cannot fully learn the semantic information of the image.
With an increasing number of convolution layers, the level of extracted features can be
enriched [30], so we decided to increase the convolutional layer to enhance the feature
extraction ability of the model. However, as the number of convolutional layers increases,
the deeper the model becomes, and the more likely it is that the gradient disappears during
the model training process, which hinders training of models. Therefore, we decided to use
shortcut connection structure of residual block [31] in our convolution layer. The structure
is shown in Figure 6.

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 14

Table 4. Parameters of TongueCaps.

Layer Parameters Output Shape

Con_BN_ReLU 3, 7 × 7, 1 128 × 128 × 3

MaxPooling 3, 3 × 3, 2 64 × 64 × 3

Residual Block_b1 64, 3 × 3, 2 32 × 32 × 64

Residual Block_a1 128, 3 × 3, 1 32 × 32 × 64

Residual Block_b2 128, 3 × 3, 2 16 × 16 × 128

Residual Block_a2 128, 3 × 3, 1 16 × 16 × 128

Residual Block_a3 256, 3 × 3, 1 16 × 16 × 256

Residual Block_a4 256, 3 × 3, 1 16 × 16 × 256

Primary Caps 32, 3 × 3, 1, units = 8 8 × 6272

In the following content, we will introduce the model framework in detail, including

the structure of each layer of the model, the calculation principle of forward propagation

of the model, the update method of weight coefficient, and the loss function of the model.

2.3.1. Convolution Layer

The convolution layer of the initial capsule network has only one layer. For complex

images, the feature extraction ability of one convolution layer is weak, and the extraction

of low level features such as edges cannot fully learn the semantic information of the im-

age. With an increasing number of convolution layers, the level of extracted features can

be enriched [30], so we decided to increase the convolutional layer to enhance the feature

extraction ability of the model. However, as the number of convolutional layers increases,

the deeper the model becomes, and the more likely it is that the gradient disappears dur-

ing the model training process, which hinders training of models. Therefore, we decided

to use shortcut connection structure of residual block [31] in our convolution layer. The

structure is shown in Figure 6.

Figure 6. The structure of residual block.

When multiple layers are stacked, the output is not only a simple direct mapping F(x)

that satisfies the input x, but it also satisfies another mapping: H(x) − x. Simply put, the

input of a latter layer is the addition of the output of a previous layer and the input x of a

previous layer: H(x) = F(x) + x. The residual block structure we used has two specific

forms, residual block a and residual block b, as shown in Figure 7a,b, in addition,

Conv_BN_ReLU (k, m, s) is shown in Figure 7c, and the bracket indicates the parameters

of convolution layers, meaning that the number of convolution kernels is k, kernel size is

m × m, strides is s, and convolution form takes type ‘same’. BN is Batch Normalization

layer, and ReLU is nonlinear activation layer.

Figure 6. The structure of residual block.

When multiple layers are stacked, the output is not only a simple direct mapping F(x)
that satisfies the input x, but it also satisfies another mapping: H(x) − x. Simply put, the
input of a latter layer is the addition of the output of a previous layer and the input x of a
previous layer: H(x) = F(x) + x. The residual block structure we used has two specific forms,
residual block a and residual block b, as shown in Figure 7a,b, in addition, Conv_BN_ReLU
(k, m, s) is shown in Figure 7c, and the bracket indicates the parameters of convolution
layers, meaning that the number of convolution kernels is k, kernel size is m ×m, strides is
s, and convolution form takes type ‘same’. BN is Batch Normalization layer, and ReLU is
nonlinear activation layer.

Diagnostics 2022, 12, 653 7 of 14Diagnostics 2022, 12, x FOR PEER REVIEW 7 of 14

(a) (b)

(c)

Figure 7. Two types of residual block used in TongueCaps. (a) Residual Block_a; (b) Residual

Block_b; (c) Conv_BN_ReLU (k, m, s). The difference between residual blocks_a and b is whether

one of the two branches needs to convolve the input. Conv_BN_ReLU is composed of a convolu-

tional layer, a batchnormalization layer, and a ReLU activation layer.

2.3.2. Primary Caps

The function of the Primary capsule layer is to map the output obtained by the con-

volutional layer into a vector as the input vector of Class Caps. Primary Caps consists of

two parts of operation: convolution and capsule. For example, the size of the input feature

maps is 256 × 16 × 16 (channels, width, height), the Primary Caps has 8 units, every unit

has 32 channels convolutional layer, and every convolutional layer with 3 × 3 kernel size

has strides 1. Then, the output of all channels feature maps with a size of 14 × 14 × 32, and

output is 8 × 14 × 14 × 32, as shown in Figure 8. Every channel converts feature maps to a

vector, so the output of Primary Caps are 8 vectors, with dimensions of each vector as 14

× 14 × 32 = 6272.

Figure 8. Convolution of Primary Caps.

Figure 7. Two types of residual block used in TongueCaps. (a) Residual Block_a; (b) Residual Block_b;
(c) Conv_BN_ReLU (k, m, s). The difference between residual blocks_a and b is whether one of the
two branches needs to convolve the input. Conv_BN_ReLU is composed of a convolutional layer, a
batchnormalization layer, and a ReLU activation layer.

2.3.2. Primary Caps

The function of the Primary capsule layer is to map the output obtained by the
convolutional layer into a vector as the input vector of Class Caps. Primary Caps consists of
two parts of operation: convolution and capsule. For example, the size of the input feature
maps is 256 × 16 × 16 (channels, width, height), the Primary Caps has 8 units, every unit
has 32 channels convolutional layer, and every convolutional layer with 3 × 3 kernel size
has strides 1. Then, the output of all channels feature maps with a size of 14 × 14 × 32, and
output is 8 × 14 × 14 × 32, as shown in Figure 8. Every channel converts feature maps to
a vector, so the output of Primary Caps are 8 vectors, with dimensions of each vector as
14 × 14 × 32 = 6272.

Diagnostics 2022, 12, x FOR PEER REVIEW 7 of 14

(a) (b)

(c)

Figure 7. Two types of residual block used in TongueCaps. (a) Residual Block_a; (b) Residual

Block_b; (c) Conv_BN_ReLU (k, m, s). The difference between residual blocks_a and b is whether

one of the two branches needs to convolve the input. Conv_BN_ReLU is composed of a convolu-

tional layer, a batchnormalization layer, and a ReLU activation layer.

2.3.2. Primary Caps

The function of the Primary capsule layer is to map the output obtained by the con-

volutional layer into a vector as the input vector of Class Caps. Primary Caps consists of

two parts of operation: convolution and capsule. For example, the size of the input feature

maps is 256 × 16 × 16 (channels, width, height), the Primary Caps has 8 units, every unit

has 32 channels convolutional layer, and every convolutional layer with 3 × 3 kernel size

has strides 1. Then, the output of all channels feature maps with a size of 14 × 14 × 32, and

output is 8 × 14 × 14 × 32, as shown in Figure 8. Every channel converts feature maps to a

vector, so the output of Primary Caps are 8 vectors, with dimensions of each vector as 14

× 14 × 32 = 6272.

Figure 8. Convolution of Primary Caps.

Figure 8. Convolution of Primary Caps.

Diagnostics 2022, 12, 653 8 of 14

2.3.3. Class Caps

Class Caps receives the output vector from the Primary Caps layer. Output of Class
Caps are k vectors, and k is the number of tongue the color category. In the above example,
Primary Caps finally outputs 8 vectors. Then, the number of input vectors of Class Caps
is 8, and each vector is the input vector of a capsule unit. Each capsule unit corresponds to
an ‘entity’ of the image, the direction of output vector represents attribute of the ‘entity’,
and the length of output vector represents probability of the ‘entity’ existing on the image.
The capsule unit calculates the output through forward propagation. Moreover, the input
of the capsule unit is a vector, and the output of capsule unit is also a vector. The following
describes how forward propagation process of the capsule is realized. Figure 9 shows the
structure of a capsule, ui is the output of capsule i in layer l, and uj is the output of capsule
j in layer (l + 1). First, transform the input, as shown in Equation (2), multiply the ui by
the weight wij to get the prediction vector ûj|i.

ûj|i = Wijui (2)

Diagnostics 2022, 12, x FOR PEER REVIEW 8 of 14

2.3.3. Class Caps

Class Caps receives the output vector from the Primary Caps layer. Output of Class

Caps are k vectors, and k is the number of tongue the color category. In the above example,

Primary Caps finally outputs 8 vectors. Then, the number of input vectors of Class Caps

is 8, and each vector is the input vector of a capsule unit. Each capsule unit corresponds

to an ‘entity’ of the image, the direction of output vector represents attribute of the ‘entity’,

and the length of output vector represents probability of the ‘entity’ existing on the image.

The capsule unit calculates the output through forward propagation. Moreover, the input

of the capsule unit is a vector, and the output of capsule unit is also a vector. The following

describes how forward propagation process of the capsule is realized. Figure 9 shows the

structure of a capsule, 𝑢𝑖 is the output of capsule 𝑖 in layer 𝑙, and 𝑢𝑗 is the output of

capsule 𝑗 in layer (𝑙 + 1). First, transform the input, as shown in Equation (2), multiply

the 𝑢𝑖 by the weight 𝑤𝑖𝑗 to get the prediction vector �̂�𝑗|𝑖.

 �̂�𝑗|𝑖 = 𝑊𝑖𝑗𝑢𝑖 (2)

Figure 9. The figure of Capsule.

Then, perform a weighted sum on the prediction vector, according to Equation (3),

to get 𝑠𝑗. Among them, 𝑐𝑖𝑗 is the weight coefficient, which is updated by the dynamic

routing algorithm.

𝑠𝑗 = ∑ 𝑐𝑖𝑗 �̂�𝑗|𝑖
𝑖

 (3)

Finally, use Equation (4) to operate nonlinear activation and ensure the length of out-

put 𝑉𝑗 in the interval [0,1].

𝑉𝑗 =
‖𝑠𝑗‖

2

1 + ‖𝑠𝑗‖
2

𝑠𝑗

‖𝑠𝑗‖
 (4)

2.3.4. ‖𝐿2‖ Layer

This is the last layer of TongueCaps, receiving 𝑘 vectors from Class Caps, where 𝑘

is the number of tongue color category. This layer uses Equation (5) to calculate the length

of each vector. Among it, 𝑛 means dimension of vector, and 𝑥1 represents the value of

each dimension. Length of each vector represents probability that image belongs to each

tongue color category, and finally, it determines tongue color category of input image as

the tongue color category corresponding to vector that length is maximum.

𝐿𝑒𝑛𝑔𝑡ℎ = √𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2 (5)

2.3.5. Dynamic Routing Algorithm

When the capsule forward propagation was introduced in the previous section, it

was mentioned that 𝑐𝑖𝑗 is updated through dynamic routing algorithm. This algorithm is

Figure 9. The figure of Capsule.

Then, perform a weighted sum on the prediction vector, according to Equation (3),
to get sj. Among them, cij is the weight coefficient, which is updated by the dynamic
routing algorithm.

sj = ∑i cij ûj|i (3)

Finally, use Equation (4) to operate nonlinear activation and ensure the length of
output Vj in the interval [0, 1].

Vj =
‖sj‖2

1 + ‖sj‖2

sj

‖sj‖
(4)

2.3.4. ‖L2‖ Layer

This is the last layer of TongueCaps, receiving k vectors from Class Caps, where k is
the number of tongue color category. This layer uses Equation (5) to calculate the length of
each vector. Among it, n means dimension of vector, and x1 represents the value of each
dimension. Length of each vector represents probability that image belongs to each tongue
color category, and finally, it determines tongue color category of input image as the tongue
color category corresponding to vector that length is maximum.

Length =
√

x1
2 + x22 + . . . + xn2 (5)

2.3.5. Dynamic Routing Algorithm

When the capsule forward propagation was introduced in the previous section, it
was mentioned that cij is updated through dynamic routing algorithm. This algorithm is
introduced in Figure 10, and among them, wij is affine transform matrix, which is updated

Diagnostics 2022, 12, 653 9 of 14

by back propagation, bij in the table is a parameter that needs to be initialized, and then,
use Equation (6) to calculate cij,

so f tamax(bi) : cij =
exp

(
bij
)

∑j exp
(
bij
) (6)

Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 14

introduced in Figure 10, and among them, 𝑤𝑖𝑗 is affine transform matrix, which is up-

dated by back propagation, 𝑏𝑖𝑗 in the table is a parameter that needs to be initialized, and

then, use Equation (6) to calculate 𝑐𝑖𝑗,

𝑠𝑜𝑓𝑡𝑎𝑚𝑎𝑥(𝑏𝑖): 𝑐𝑖𝑗 =
exp(𝑏𝑖𝑗)

∑ exp(𝑏𝑖𝑗)𝑗

 (6)

Figure 10. Procedure of Dynamic routing algorithm.

In fact, the direction of the update of the weight 𝑐𝑖𝑗 is to give a large weight to the

output vector of the capsule neuron in the layer 𝑙 that has a large contribution to the final

recognition.

2.3.6. Loss Function

The capsule network uses the vector length to represent the probability of the exist-

ence of each entity. When the entity appears in the image, it is hoped that the loss will be

small, and when the entity does not exist, it is hoped that the loss will be large, so the

marginal loss is used in Equation (7),

𝐿𝑘 = 𝑇𝑘 max(0, 𝑚+ − ‖𝑉𝑘‖)2 + 𝜆(1 − 𝑇𝑘) max(0, ‖𝑉𝑘‖ − 𝑚−)2 (7)

Among them, 𝑇𝑘 is the classification indicator function (class k exists, the value is 1,

otherwise it is 0); 𝑉𝑘 is the output vector of the net; 𝑚+ is used to punish false positives,

the value is 0.9; 𝑚− is used for false negatives, and the value is 0.1; 𝜆 is the proportional

coefficient, adjust the proportion of the two punitive, the value is 0.5.

2.4. Experimental Comparison Model

The base model is CapsNet [21]. Other comparison models include VGG16, Res-

Net18, ResNet50, ResNet101, Inception V3, and CNN + Caps. Where CNN + Caps is as

shown in Figure 11, the CNN module selects two forms: the convolution module in liter-

ature [22] and the convolution module in the TongueCaps model, which removes the

shortcut connection structure for the convenience of the following description. The former

is recorded as CNN1 + Caps, and the latter is recorded as CNN2 + Caps.

Figure 11. The framework of CNN + Caps.

Figure 10. Procedure of Dynamic routing algorithm.

In fact, the direction of the update of the weight cij is to give a large weight to the
output vector of the capsule neuron in the layer l that has a large contribution to the
final recognition.

2.3.6. Loss Function

The capsule network uses the vector length to represent the probability of the existence
of each entity. When the entity appears in the image, it is hoped that the loss will be small,
and when the entity does not exist, it is hoped that the loss will be large, so the marginal
loss is used in Equation (7),

Lk = Tkmax
(
0, m+ − ‖Vk‖

)2
+ λ(1− Tk)max

(
0, ‖Vk‖ −m−

)2 (7)

Among them, Tk is the classification indicator function (class k exists, the value is 1,
otherwise it is 0); Vk is the output vector of the net; m+ is used to punish false positives,
the value is 0.9; m− is used for false negatives, and the value is 0.1; λ is the proportional
coefficient, adjust the proportion of the two punitive, the value is 0.5.

2.4. Experimental Comparison Model

The base model is CapsNet [21]. Other comparison models include VGG16, ResNet18,
ResNet50, ResNet101, Inception V3, and CNN + Caps. Where CNN + Caps is as shown in
Figure 11, the CNN module selects two forms: the convolution module in literature [22] and
the convolution module in the TongueCaps model, which removes the shortcut connection
structure for the convenience of the following description. The former is recorded as
CNN1 + Caps, and the latter is recorded as CNN2 + Caps.

Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 14

introduced in Figure 10, and among them, 𝑤𝑖𝑗 is affine transform matrix, which is up-

dated by back propagation, 𝑏𝑖𝑗 in the table is a parameter that needs to be initialized, and

then, use Equation (6) to calculate 𝑐𝑖𝑗,

𝑠𝑜𝑓𝑡𝑎𝑚𝑎𝑥(𝑏𝑖): 𝑐𝑖𝑗 =
exp(𝑏𝑖𝑗)

∑ exp(𝑏𝑖𝑗)𝑗

 (6)

Figure 10. Procedure of Dynamic routing algorithm.

In fact, the direction of the update of the weight 𝑐𝑖𝑗 is to give a large weight to the

output vector of the capsule neuron in the layer 𝑙 that has a large contribution to the final

recognition.

2.3.6. Loss Function

The capsule network uses the vector length to represent the probability of the exist-

ence of each entity. When the entity appears in the image, it is hoped that the loss will be

small, and when the entity does not exist, it is hoped that the loss will be large, so the

marginal loss is used in Equation (7),

𝐿𝑘 = 𝑇𝑘 max(0, 𝑚+ − ‖𝑉𝑘‖)2 + 𝜆(1 − 𝑇𝑘) max(0, ‖𝑉𝑘‖ − 𝑚−)2 (7)

Among them, 𝑇𝑘 is the classification indicator function (class k exists, the value is 1,

otherwise it is 0); 𝑉𝑘 is the output vector of the net; 𝑚+ is used to punish false positives,

the value is 0.9; 𝑚− is used for false negatives, and the value is 0.1; 𝜆 is the proportional

coefficient, adjust the proportion of the two punitive, the value is 0.5.

2.4. Experimental Comparison Model

The base model is CapsNet [21]. Other comparison models include VGG16, Res-

Net18, ResNet50, ResNet101, Inception V3, and CNN + Caps. Where CNN + Caps is as

shown in Figure 11, the CNN module selects two forms: the convolution module in liter-

ature [22] and the convolution module in the TongueCaps model, which removes the

shortcut connection structure for the convenience of the following description. The former

is recorded as CNN1 + Caps, and the latter is recorded as CNN2 + Caps.

Figure 11. The framework of CNN + Caps.
Figure 11. The framework of CNN + Caps.

Diagnostics 2022, 12, 653 10 of 14

2.5. Model Training

First is to determine hyperparameters of model training. The hyperparameters tuned
in this experiment include learning rate, optimizer, and batchsize. The learning rate
value is (0.1, 0.001, 0.0001), the optimizers are SGD and Adam, and the batchsize value is
(8, 16, 32, 64, 128). Then, use the method of grid search to choose the value of hyperpa-
rameters. When each setting determines the learning rate, optimizer, and batchsize, use
five-fold cross validation to calculate the average accuracy of the 5 models on the validation
set. Then, use the hyperparameter corresponding to the highest average accuracy as the
final hyperparameter value to train the entire training set.

2.6. Metrices

Our work uses the accuracy, sensitivity, and specificity to evaluate the performance of
the model. In the calculation of three assessment criteria, as shown in Equations (8)–(10),

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Sensitivity =
TP

TP + FN
(9)

Speci f icity =
TN

TN + FP
(10)

where TP is the number of positive samples correctly predicted by the model, TN is
the number of negative samples correctly predicted by the model, FP is the number of
positive samples incorrectly predicted by the model, FN is the number of negative samples
incorrectly predicted by the model. For multi-classification, take one of the classes as
positive samples and the rest as negative samples. From this, the accuracy, specificity, and
sensitivity of each class can be calculated, and the average can be calculated to evaluate the
overall performance of the model. In addition, we also use training time, size, and FLOPs
to evaluate the model. Model size represents the size of parameters, and FLOP represent
the computational complexity of the model.

2.7. Experimental Platform

The operating system used in this experiment is the Ubuntu 16.04 system, and the
integrated development environment is PyCharm 2020.2. The deep learning framework
is tensorflow1.13 and keras2.2.4. The version of other packages are as follow: python3.6,
h5py2.10.0, numpy1.19.5, scipy1.5.4, opencv-python4.5.4, and matplotlib3.3.4. The hard-
ware central processing unit used in this experiment is Intel (R) Core (TM) i9-9900K CPU at
3.6 GHz, the running memory is 16.00 GB, and the image processor is GeForce RTX 2080.

3. Results

The loss curve of each model are shown in Figure 12. The figure includes the loss
curve of the training set and the loss curve of the validation set, which are represented
by the blue curve and the orange curve, respectively. The horizontal axis represents the
numbers of training epoch, and the vertical axis means the loss of the train and validation
set. In Figure 12, Figure 12a is the loss curve of CapsNet, Figure 12b is the loss curve of
CNN1 + Caps, Figure 12c is the loss curve of CNN2 + Caps, Figure 12d is the loss curve of
VGG16, Figure 12e–g are the loss curve of ResNet18, ResNet50, and ResNet101 respectively,
and Figure 12h is the loss curve of TongueCaps.

In addition, after model testing is performed using a data set containing different
brightness, while the accuracy, sensitivity, and specificity are obtained by calculating the
confusion matrix of each model. The results are shown in Table 5. In addition, the training
time, size, and FLOPs of each model are also given in Table 5.

Diagnostics 2022, 12, 653 11 of 14Diagnostics 2022, 12, x FOR PEER REVIEW 11 of 14

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12. The loss curve of each model. (a) CapsNet; (b) CNN1 + Caps; (c) CNN2 + Caps; (d)

VGG16; (e) ResNet18; (f) ResNet50; (g) ResNet101; (h) TongueCaps.

In addition, after model testing is performed using a data set containing different

brightness, while the accuracy, sensitivity, and specificity are obtained by calculating the

Figure 12. The loss curve of each model. (a) CapsNet; (b) CNN1 + Caps; (c) CNN2 + Caps;
(d) VGG16; (e) ResNet18; (f) ResNet50; (g) ResNet101; (h) TongueCaps.

Diagnostics 2022, 12, 653 12 of 14

Table 5. Results of each model.

Model Accuracy Sensitivity Specificity Time Size FLOPs

CapsNet 0.2108 0.2181 0.8086 20 h 13 min 322.21 KB 51,340
CNN1 + Caps 0.2569 0.2580 0.8184 3 h 55 min 2.09 MB 1,249,882
CNN2 + Caps

ResNet18
0.4130
0.7537

0.3227
0.7597

0.8390
0.9365

28 h 22 min
10 h 8 min

12.84 MB
134.29 MB

1,307,322
23,439,481

ResNet50 0.7316 0.7438 0.9309 5 h 52 min 306.58 MB 53,317,922
ResNet101 0.7573 0.7761 0.9387 8 h 15 min 525.34 MB 91,302,331

VGG16 0.7255 0.7622 0.9306 29 h 14 min 385.05 MB 67,231,786
TongueCaps 0.8456 0.8474 0.9586 5 h 45 min 8.11 MB 1,335,342

Judging from the loss curve, the model proposed in this paper can achieve better
convergence during training, and the final loss is close to the limit. From the results, it can
be seen, compared to the other models, TongueCaps shows the highest accuracy, sensitivity,
and specificity, while having a small size and FLOPs.

4. Discussion

From the loss curve and test results in Figure 11, the original CapsNet exhibits an
underfitting situation. The possible reason is that the CapsNet has only one convolutional
layer, thus for tongue images that are more complex than digital images, the ability to
extract features is weak. In addition, the two models of CNN + Caps both increase the
number of convolutional layers on the basis of the CapsNet. From the perspective of the
loss curve, the problem of underfitting is alleviated to a certain extent, but there is still
a problem of overfitting. The possible reason is that the complexity of the model cannot
match the complexity of the image and the limitation of the amount of data. Therefore,
the residual block structure is added on the basis of CNN2 + Caps to increase the com-
plexity of the model and relieve the problem of underfitting and overfitting. From the
comparison of Figure 12c,h, it is shown that, after residual block structure is added to the
CNN2 + Caps, the TongueCaps can effectively alleviate the phenomenon of overfitting. In
addition, TongueCaps performed better than other models based on CNN, the possible
reason is that CNN will lose the characteristics of spatial location information [32] due
to the pooling layer, while CapsNet can learn spatial features between local and global
through a dynamic routing algorithm. Moreover, from the Table 5 it can be seen, compared
to the other CNN models, TongueCaps has the smallest model parameters. The main reason
is that, compared with convolution layer, Primary Caps and Class Caps have reduced a lot
of parameters. Primary Caps compresses input features into vector, and the Class Caps
uses forward propagation of the capsule to obtain output from the input vector, which has
reduced many parameters.

5. Conclusions and Future Work

In this paper, we used the Capsule Network for tongue color classification, for the first
time, to realize the end to end classification of light red tongue, red tongue, deep red tongue,
light white tongue, and cyan tongue. Furthermore, we improved the Capsule Network and
proposed TongueCaps, which combine the advantages of both Residual block and Capsule
network. The model has the advantages of both the capsule network and the residual block
structure. Our model inherits the original characteristics of the capsule network, is more
robust to image affine transformation, is suitable for small sample data sets, and retains
the spatial relationship between features. In addition, our model has been improved in the
feature extraction stage, increasing the number of convolutional layers and introducing a
residual block structure to alleviate the over fitting phenomenon and enhance the model’s
ability to extract features. The proposed model is verified through experiments, and the
classification performance of the capsule network model in tongue color classification is
improved. In addition, compared with the more commonly used CNN models, such as
VGG16, ResNet18, etc., it can obtain higher accuracy, specificity, and sensitivity, and at the

Diagnostics 2022, 12, 653 13 of 14

same time, it can also maintain a small model size and a low model complexity, which
provides the possibility for the subsequent realization of the high performance and light
weight of the tongue color classification model. Due to the small size of the model, the
follow-up work can be to deploy the model to the mobile terminal or the web terminal,
and then, input the image to be tested and output the tongue color result, to provide a
basis for clinical tongue diagnosis and facilitate the realization of portable tongue diagnosis.
However, the features related to tongue color that are extracted by this model are poor in
interpretability, and further research can be done in this area.

Author Contributions: J.N. was responsible for data preprocessing, implementation methods, and
drafting the manuscript. Z.Y. and J.J. were responsible for supervision. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China under Grant No 2018YFC1707704.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from
Tianjin Huiyigu Technology Co., Ltd (Tianjin, China). Restrictions apply to the availability of
these data, which were used under license for this study. Data are available from Tianjin Huiyigu
Technology Co., Ltd. with the permission of Tianjin Huiyigu Technology Co., Ltd. The data cannot be
shared at this time as the data form part of an ongoing study.

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Deng, T.T. Chinese Medicine Diagnostics, 5th ed.; Shanghai Science and Technology Press: Shanghai, China, 1991; pp. 30–33.
2. Xu, J.Y.; Cui, J.; Zhang, Z.F. Clinical Illustration of Traditional Chinese Medicine Tongue Diagnosis; Chemical Industry Press:

Beijing, China, 2017; pp. 2–16.
3. Li, N.M.; Zhang, D.P.; Wang, K.Q. Tongue Diagnosis; Xueyuan Press: Beijing, China, 2006; pp. 93–95.
4. Li, Z.Y.; Yu, Z.C.; Liu, W.X.; Xu, Y.; Zhang, D.Q.; Cheng, Y. Tongue image segmentation via color decomposition and thresholding.

Concurr. Comput. Pract. Exp. 2019, 31, e4662. [CrossRef]
5. Weng, W.; Huang, S.M. Objective study on tongue diagnosis of traditional Chinese Medicine. Eng. Sci. China 2001, 3, 79–81.
6. Xu, Z.P.; Zhang, B.L.; Yao, Q. Study on chromaticity of tongue in patients with breast cancer. Sci. Technol. Chin. Med. 2000, 7, 67.
7. Chen, Y.Q.; Xie, L.P. Study on the relationship between tongue appearance and activity index of rheumatoid arthritis with

dampness heat obstruction syndrome. Liaoning J. Tradit. Chin. Med. 2013, 40, 1068–1070.
8. Fu, X.Y. Quantitative analysis of tongue color in patients with rheumatoid arthritis and its clinical application. Beijing Univ. Tradit.

Chin. Med. 2018, 1, 33–43.
9. Zhang, S.H.; Guo, A.Y.; Liu, M. Chromatic characteristics of tongue color in tongue diagnosis of traditional Chinese Medicine. J.

Guangzhou Univ. Tradit. Chin. Med. 2005, 7, 323–325.
10. Xu, Z.W.; Chen, Q.; Zhang, S.H. A new research on chromaticity quantitative characteristics of cyan and purple tongue color. J.

Tradit. Chin. Med. 2004, 22, 1374–1375.
11. Kawanabe, T.; Kamarudin, N.D.; Ooi, C.Y.; Kobayashi, F.; Mi, X.; Sekine, M.; Wakasugi, A.; Odaguchi, H.; Hanawa, T. Quantifica-

tion of tongue colour using machine learning in Kampo medicine. Eur. J. Integr. Med. 2016, 8, 932–941. [CrossRef]
12. Li, Q.; Liu, Z. Tongue color analysis and discrimination based on hyperspectral images. Comput. Med. Imaging Graph. 2009, 33,

217–221. [CrossRef]
13. Wang, X.Z.; Zhang, B.; Yang, Z.M.; Wang, H.Q.; Zhang, D. Statistical analysis of tongue images for feature extraction and

diagnostics. IEEE Trans. Image Processing 2013, 22, 5336–5347. [CrossRef]
14. Kamarudin, N.D.; Ooi, C.Y.; Kawanabe, T.; Odaguchi, H.; Kobayashi, F. A Fast SVM-Based Tongue’s Color Classification Aided

by k Means Clustering Identifiers and Color Attributes as Computer-Assisted Tool for Tongue Diagnosis. J. Healthc. Eng. 2017,
2017, 7460168. [CrossRef]

15. Yang, X.Y.; Liang, R.; Wang, Z.P.; Ren, Y.J.; Zhang, Y. Research status and analysis of tongue color classification based on
chromatics. J. Beijing Univ. Tradit. Chin. Med. 2012, 35, 539–542.

16. Jiao, W.; Hu, X.J.; Tu, L.P.; Zhou, C.L.; Qi, Z.; Luo, Z.Y.; Zheng, L.Z.; Ma, X.X.; Pai, C.H.; Fu, X.Y.; et al. Tongue color clustering and
visual application based on 2D information. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 203–212. [CrossRef]

17. Zhang, Y.F.; Hu, G.Q.; Zhang, X.F. Research on tongue color recognition algorithm of acne patients based on support vector
machine. J. Beijing Biomed. Eng. 2016, 35, 7–11.

http://doi.org/10.1002/cpe.4662
http://doi.org/10.1016/j.eujim.2016.04.002
http://doi.org/10.1016/j.compmedimag.2008.12.004
http://doi.org/10.1109/TIP.2013.2284070
http://doi.org/10.1155/2017/7460168
http://doi.org/10.1007/s11548-019-02076-z

Diagnostics 2022, 12, 653 14 of 14

18. Wu, X.J.; Chen, H.M.; Wu, X.L.; Wu, S.J.; Huang, J.B. Burn image of medical images based on deep learning: From CNNs to
advanced nerworks. Neural Processing Lett. 2021, 53, 2439–2456. [CrossRef]

19. Zhu, Z.Y.; Peng, G.L.; Chen, Y.H.; Gao, H.J. A convolutional neural network based on a capsule network with strong generalization
for bearing fault diagnosis. Neurocomputing 2019, 323, 62–75. [CrossRef]

20. Tang, Y.P.; Wang, L.R.; He, X.; Chen, P.; Yuan, G.P. Tongue image classification based on multi task convolution neural network. J.
Comput. Sci. 2018, 45, 255–261.

21. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing Between Capsules. In Proceedings of the 31st Annual Conference on Neural
Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017.

22. Perez, E.; Ventura, S. Melanoma Recognition by Fusing Convolutional Blocks and Dynamic Routing between Capsules. Cancers
2021, 13, 4974. [CrossRef]

23. Liu, H.; Jiao, Z.C.; Han, W.J.; Jing, B. Identifying the histologic subtypes of non-small cell lung cancer with computed tomography
imaging: A comparative study of capsule net, convolutional neural network, and radiomics. Quant. Imaging Med. Surg. 2021, 11,
2756–2765. [CrossRef]

24. Sudharshan, P.J.; Petitjean, C.; Spanhol, F.; Oliveira, L.E.; Heutte, L.; Honeine, L. Multiple instance learning for histopathological
breast cancer image classification. Expert Syst. Appl. 2018, 117, 103–111. [CrossRef]

25. Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Li, J.; Pla, F. Capsule Networks for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote Sens. 2019, 57, 2145–2160. [CrossRef]

26. Jiang, X.F.; Liu, W.B.; Zhang, Y.; Liu, J.R.; Li, S.Y.; Lin, J.Z. Spectral Spatial Hyperspectral Image Classification Using Dual-Channel
Capsule Networks. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1094–1098. [CrossRef]

27. Wang, P.; Wang, J.X.; Li, Y.M.; Li, P.F.; Li, L.Y.; Jiang, M.F. Automatic classification of breast cancer histopathological images based
on deep feature fusion and enhanced routing. Biomed. Signal Processing Control. 2021, 65, 102341. [CrossRef]

28. Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. Breast cancer histopathological image classification using convolutional
neural networks. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada,
24–29 July 2016.

29. Kumar, K.; Rao, A.C.S. Breast cancer classification of image using convolutional neural network. In Proceedings of the 4th IEEE
International Conference on Recent Advances in Information Technology, Dhanbad, India, 21 June 2018.

30. Zhang, Z.; Ye, S.W.; Liao, P.; Liu, Y.; Su, G.P.; Sun, Y. Enhanced capsule network for medical image classification. In Pro-
ceedings of the 42nd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC),
Montreal, QC, Canada, 20–24 June 2020.

31. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016.

32. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional neural networks. Eur. Conf. Comput. Vis. 2014, 8689,
818–833.

http://doi.org/10.1007/s11063-021-10459-0
http://doi.org/10.1016/j.neucom.2018.09.050
http://doi.org/10.3390/cancers13194974
http://doi.org/10.21037/qims-20-734
http://doi.org/10.1016/j.eswa.2018.09.049
http://doi.org/10.1109/TGRS.2018.2871782
http://doi.org/10.1109/LGRS.2020.2991405
http://doi.org/10.1016/j.bspc.2020.102341

	Introduction
	Materials and Methods
	Data Acquisition
	Data Reprocessing and Data Division
	Model: TongueCaps
	Convolution Layer
	Primary Caps
	Class Caps
	L2 Layer
	Dynamic Routing Algorithm
	Loss Function

	Experimental Comparison Model
	Model Training
	Metrices
	Experimental Platform

	Results
	Discussion
	Conclusions and Future Work
	References

