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Received: 14 April 2022

Accepted: 18 May 2022

Published: 21 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Artificial Intelligence for Upper Gastrointestinal Endoscopy:
A Roadmap from Technology Development to Clinical Practice
Francesco Renna 1,2,*, Miguel Martins 1,2, Alexandre Neto 1,3, António Cunha 1,3 , Diogo Libânio 4,
Mário Dinis-Ribeiro 4 and Miguel Coimbra 1,2

1 Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal;
miguel.l.martins@inesctec.pt (M.M.); alexandre.h.neto@inesctec.pt (A.N.); acunha@utad.pt (A.C.);
mcoimbra@fc.up.pt (M.C.)

2 Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
3 Escola de Ciências e Tecnologia, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados,

5001-801 Vila Real, Portugal
4 Departamento de Ciências da Informação e da Decisão em Saúde/Centro de Investigação em Tecnologias e

Serviços de Saúde (CIDES/CINTESIS), Faculdade de Medicina, Universidade do Porto,
4200-319 Porto, Portugal; diogo.monteiro@ipoporto.min-saude.pt (D.L.);
mario.ribeiro@ipoporto.min-saude.pt (M.D.-R.)

* Correspondence: francesco.renna@fc.up.pt

Abstract: Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in
2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic
effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early
diagnosis and, therefore, improved survival rates. On the other hand, human and technical factors
can contribute to misdiagnosis while performing UGIE. In this scenario, artificial intelligence (AI) has
recently shown its potential in compensating for the pitfalls of UGIE, by leveraging deep learning
architectures able to efficiently recognize endoscopic patterns from UGIE video data. This work
presents a review of the current state-of-the-art algorithms in the application of AI to gastroscopy.
It focuses specifically on the threefold tasks of assuring exam completeness (i.e., detecting the presence
of blind spots) and assisting in the detection and characterization of clinical findings, both gastric
precancerous conditions and neoplastic lesion changes. Early and promising results have already been
obtained using well-known deep learning architectures for computer vision, but many algorithmic
challenges remain in achieving the vision of AI-assisted UGIE. Future challenges in the roadmap
for the effective integration of AI tools within the UGIE clinical practice are discussed, namely the
adoption of more robust deep learning architectures and methods able to embed domain knowledge
into image/video classifiers as well as the availability of large, annotated datasets.

Keywords: artificial intelligence; deep learning; upper GI endoscopy (UGIE); computer vision;
convolutional neural networks

1. Introduction

The Global Burden of Disease [1] estimates that approximately 10 million people died
prematurely as a result of cancer in 2017, representing one-sixth of all human deaths in
that year. Stomach cancer is particularly lethal, corresponding to the third deadliest type
of cancer in the world (0.86 million deaths in 2017), and according to IARC [2], in 2035,
a 20% increase will be observed both in incidence and mortality if no countermeasures
are adopted. The key to better gastric cancer management is early detection via effective
screening strategies that can improve patient survival rates. Minimal invasive screening
and endoscopy play a paramount role in early diagnosis and therefore improved survival
rates [3]. Esophagogastroduodenoscopy (EGD), also known as upper gastrointestinal
(UGI) endoscopy (UGIE), is the gold standard for the diagnosis of diseases of the UGI
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tract. However, due to cognitive and technical factors, the risk for misdiagnosis is sig-
nificant [4], with up to 9% of missed lesions. In this scenario, artificial intelligence (AI),
and more specifically machine learning, has recently shown great potential in assisting en-
doscopists in performing UGIE exams and interpreting the corresponding findings. At the
core of this “revolution” lies the adoption of modern computer vision algorithms based
on the deep learning paradigm. These algorithms have been recently adopted to assist
endoscopists in three fundamental tasks: (i) quality assessment, (ii) detection of lesions,
and (iii) their characterization.

Quality assessment of endoscopic procedures is a fundamental component of health
care nowadays to avoid missing lesions and prevent death. By assuring that the en-
tire stomach was observed, endoscopists must complete the observation of all parts or
landmarks [5]. Hereby, AI algorithms can be designed to automatically recognize key
anatomical landmarks of the UGI, thus informing the operator regarding the completeness
of the examination. Secondly, once a complete inspection of the UGI mucosa is guaranteed,
the next question that arises during the examination is if there are any lesions and what is
the histological type of the lesion. Additionally, in this case, computer vision algorithms
can play a fundamental role in providing an answer to these questions, by indicating
the presence of a lesion in a frame or by providing a spatial indication of the portion of
the frame that is affected by lesions (object detection). In fact, when assessing missed
lesions (false negative) in AI studies, up to 18% were missed [6]. Finally, after successful
detection of a lesion, its characterization is fundamental for further patient management.
Artificial intelligence can assist the endoscopist with an ancillary aim for visual endoscopy
assessment which is an optical biopsy.

There are multiple reviews and meta-analyses on the application of AI for UGIE
computer-assisted decision (CAD) in the literature (see, e.g., [7–13]), often focusing explic-
itly on clinical needs and on the impact of the current solutions on the clinical practices.
In contrast, our work will provide an in-depth analysis of the algorithmic details and ex-
perimental methodologies adopted in AI for gastrointestinal endoscopy. It will attempt to
establish a pathway to better understand the full potential of AI-based systems tailored to
the needs of day-to-day UGIE clinical practice described above: (i) ensuring and evaluating
exam completeness via the automatic recognition of standardized UGIE anatomical land-
marks (Section 3.1); (ii) automatic detection of gastric lesions (Section 3.2); (iii) automatic
characterization of gastric lesions (Section 3.3). A discussion on the obtained results is held
in Section 4. Finally, conclusions are drawn in Section 5.

2. Methods

Articles included in this review were searched using a variety of queries in the fol-
lowing databases: Pubmed, Scopus, Google Scholar. Articles had to be written in English
and have a clear methodology outlining the design of experiments and validations of the
proposed models. Data used for the training of the models had to be collected from UGIE
in a real clinical setting. Results from clinical trials were only included for illustrative
purposes when they measured the performance of humans with and without AI. Since
this paper emphasizes the algorithmic procedures, we do not elaborate on the outcomes
of these trials. Concerning UGIE exam quality assessment (Section 3.1), we enforced a
minimum of 4 anatomical landmark classes for the UGI. As such, we excluded the body
of work pertaining to the 2017 MediaEval’s Multimedia for Medicine task (3 anatomical
landmarks) [14,15]. Regarding stomach lesion detection in UGIE (Section 3.2), we only
consider deep learning-based solutions for gastric lesions. Thus, we discarded [16–20] since
they focused on esophageal lesions. Finally, with regard to lesion characterization in the
UGIE (Section 3.3), we only included articles published from 2018 onwards that included
gastric lesion characterization. Consequently, we excluded [21–23] from this review since
their analysis was only relevant for anatomical regions different from the stomach.
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3. Findings

In this section, we will provide an exposition of our findings given the above-mentioned
criteria (Section 2). We start by providing a brief motivation for each problem, followed
by (i) a critical elaboration on the algorithmic solutions reviewed. We then follow up with
(ii) an analysis of the datasets collected to support the AI solutions (number of frames,
modalities, number of classes, etc.) and close by (iii) reporting the results as measured by
the authors. The outcomes of this review are summarized in Tables 1–4.

3.1. UGIE Exam Quality Assessment

Human factors can impair the effectiveness of UGIE in the early detection of gastric
lesions [4]. In particular, poor patient tolerance, quick inspection, operator distraction,
and anatomically challenging areas (blind spots) can contribute to the failure of observing
the entire stomach. Thus, avoiding blind spots is a fundamental prerequisite for the efficacy
of UGIE in detecting early-stage gastric cancer [24,25].

Photodocumentation can guarantee complete examination. Photodocumentation and
quality guidelines have been issued. Increasing the photodocumentation completion rate
was set forth as one of the top priorities [26,27] of both the European society of gastroin-
testinal endoscopy (ESGE) [28,29] and the American Society of Gastrointestinal Endoscopy
(ASGE) [30]. The British Society of Gastroenterology (BSG) and the ESGE recommend the
inclusion of at least 10 photos from 8 anatomical locations in the UGIE report [31,32] (See
Figure 1). Since the lesion detection rate has been shown to correlate with the number of
photos taken [33], the Japanese Society of Gastroenterological Cancer Screening (JSGCS)
recommends a more complete protocol [34]. However, due to its complexity, this protocol
was put into practice only in Japan [24]. In 2013, Kenshi Yao [24] proposed a simplification
of the Japanese protocol in the form of the Systematic Screening Protocol for Stomach
(SSS), with the objective of leveraging adequate complexity with sufficiently high-quality
mapping of the stomach (22 anatomical sites) [24]. An extended version of the protocol
with two additional landmarks was shown to be also effective for screening lesions in
the stomach [35]. In 2020, the World Endoscopy Organization (WEO) issued a position
statement [36] where a new standard for UGIE examination was proposed, the systematic
alphanumeric coded endoscopy (SACE). This standard expanded on the SSS protocol
by requiring that endoscopists document 28 unique anatomical locations, including key
anatomical sites from the hypopharynx to the second portion of the duodenum. Examples
of normal anatomical landmarks are reported in Figure 1.
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Figure 1. Examples of key anatomical landmarks, containing (from left to right, top to bottom):
the middle esophagus, gastroesophageal (GEJ) junction and Z-Line, second portion (D2) of duodenum,
antrum, pylorus, the transition from the antrum in the gastric body, the incisura, fundus and cardia
in retroflexed view (R) and the body in retroflex view (R).
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AI solutions based on anatomical landmark detection have been developed to assist
in the generation of UGIE photodocumentation and evaluation of exam completeness.
This task has recently gathered the interest of the computer vision and machine learning
communities, as testified by the organization of events such as the MediaEval’s 2017 Multi-
media for Medicine task [37], where 3 anatomical classes gathered from real UGIE data had
to be correctly classified, together with diseased tissue, from the Kvasir dataset [38]. Several
solutions for automatic anatomical landmark detection have been proposed, the majority
of which are based on the application of different deep convolutional neural network
(CNN) architectures.

We group the UGIE landmark detection methodologies into two groups: single and
multi-frame algorithms (Figure 2). In the former (Section 3.1.1), the task of anatomical
site detection is treated as a simple multi-class image classification problem. The latter
(Section 3.1.2) addresses computer-assisted tools for blind spot mitigation, where multiple
frames are considered, thus leveraging the sequential nature of the UGIE videos in the
classification task.
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Figure 2. (Top) Convolutional single-frame algorithm versus (Bottom) recurrent multi-frame algo-
rithm. In single-frame algorithms, frames sampled from UGIE images are processed independently.
In multi-frame approaches, the frames sampled from UGIE videos are processed in sequence.

3.1.1. Anatomical Landmark Detection UGIE—Single Frame

A first series of approaches that appeared in the literature for anatomical landmark
detection in UGIE were based on the application of deep learning techniques that classified
each frame of an UGIE video independently from the others. Such approaches were based
on the adaptation and fine-tuning of existing image classification models in order to identify
anatomical landmarks.

A summary of the works that have proposed single-frame anatomical landmark
detection approaches can be found in Table 1.
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Table 1. Single-frame algorithms for anatomical landmark detection.

Authors
Data

Annotation
Protocol

Dataset Classes Algorithm Pre-Processing Validation Average
Performance

AI Impact (Clinical
Setting)

Takiyama et al.,
2018 [39] Undefined

(Private Dataset)
44,416 UGIE

images (optimal
view WLI)

4 sites + 3
gastric sites GoogleLeNet Black frame

cropping
Holdout

set

(4 anatomical
classes)

Accuracy:
99%

Sensitivity:
94% (from 87%

to 99%)
96% (from 96%

to 97%)

(3 gastric
sub-classes)
Sensitivity:

97% (from 96%
to 97%)

Specificity:
98% (from 98%

to 99%)

N/A

Wu et al.,
2019 [40]

2 experts with
>10 years of
experience

(Private Dataset)
24,549 WLI

images
10 or 26 sites VGG16-

Resnet50
CNN filters

blurry frames
Holdout

set

Accuracy:
90% (10 sites)
66% (26 sites)

(Single-center,
retrospective trial)

[40] ****
Endoscopist accuracy:
90% (10 sites, experts)
63% (26 sites, experts)
87% (10 sites, seniors)
59% (26 sites, seniors)
83% (10 sites, novices)
46% (26 sites, novices)

Zhang Xu et al.,
2019 [41]

2 expert
endoscopists

(years of
experience
unknown)

(Private Dataset)
75,275 UGIE

images
(including non-

informative
and NBI
frames) *

10 sites +
uninformative

+ NBI

Muli-Task
Custom CNN

+ SSD
None Holdout

set

Average
precision
(mAP):

94%

N/A

He et al.,
2019 ** [42]

1 doctoral
student

1 clinical gas-
troenterology

research
fellow

3704 UGIE
images

(WLI+LCI
frames)

optimal views

11 sites + N/A Inception-v3 Data-driven
ROI cropping

5-fold
C.V.

Accuracy:
83%

F1: 80% (from
53% to 94%)

N/A

Igarashi et al.,
2020 [43]

1 expert with
>30 years of
experience

1 endoscopists
with >4 years
of experience

(Private Dataset)
85,246 upper

GI images

10 sites from
UGIE + 4

classes
pertaining to

specimens and
other

examinations

AlexNet None Holdout
set

Accuracy:
97% N/A

Sun et al.,
2021 *** [44]

>1 endoscopist
with >5 years
of experience

(Private Dataset)
10,474 UGIE

images
including NBI

11 sites + NBI Custom
CNN+RCF

ROI extraction
+ bilinear

interpolation

5-fold
C.V.

Accuracy:
99%

Precision: 93%
F1 score: 92%

N/A

Chang et al.,
2021 [27] Unclear

(Private Dataset)
15,723 frames

from
asymptomatic

patients

8 classes ResNeSt None Holdout
set

Accuracy:
97% N/A

* Addressed in different classification tasks. ** We only consider the protocol with all the landmarks and N/A
classes in this article. *** We considered only the values for the first ResNeSt, since the ampulla was divided into
two categories and trained with a second model and different dataset. **** Only findings concerning blind spots
were considered.

Algorithms

Standard, well-known deep convolutional neural networks were used by five of the
works considered in this review, including the seminal AlexNet architecture [43,44], VGG
architectures [40,42], Inception architectures [39,42,44], and ResNet [40,42,44]. Two works
considered more recent CNN models, including the DenseNet [42] and a split-attention
network (ResNeSt) [27]. DenseNet approaches aim to improve the generalization of the
model and reduce the problem of vanishing gradients via the use of multiple, dense
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connections between each layer and the following layers in the network. On the other
hand, the ResNeSt [41] applied channel-wise attention mechanisms on different network
branches to leverage their success in capturing cross-feature interactions and learning
diverse representations. The authors of [44] also considered a more sophisticated approach
that combined standard CNN architectures with richer convolution features (RCF) [45].
In particular, the RCF hierarchy was used to extract feature maps from each convolution
using 12 convolutional filters with 1 × 1 kernels. The feature maps from each stage of the
CNN were then aggregated by summation, thus establishing a one-to-one correspondence
between the channel and the landmark site. Of particular relevance and in contrast with
all the remaining approaches considered within this section, [41] was not limited to the
task of frame classification. It considered an object detection problem, thus providing as
output also a bounding box defining the region of the image associated with the landmark.
This was achieved by using a single-shot multibox detector (SSD) model.

In three cases, frames extracted from UGIE were classified directly using deep learning
models with almost no preprocessing steps. Exceptions to this are represented by [44],
which identifies the region of interest (ROI) of each frame before classification using image
clipping, and [39], which cropped the black frame surrounding each image. Instead of
applying standard preprocessing, two of the considered works included a “filtering” step
where a CNN is trained to first select the frames of interest from the video data stream.
This step aims at discriminating between informative and non-informative images [41] or
filtering out blurry images [40] (see Figure 3).
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Figure 3. The single-frame classifier pipeline proposed by Wu et al. [40]. Note that there are two
separate classification objectives with respect to anatomical locations: one considering 10 anatomical
sites and another considering 26 anatomical sites (adapted from [40]).

Data augmentation has also been explicitly considered in two works by applying
random transformations to the training images. Such transformations included random
brightness and contrast enhancement [44], random rotations, and zooms [39].

Few efforts have been made so far to provide explainable and interpretable models
for anatomical landmark detection. Namely, only class activation maps (CAM) methods
have been applied in two cases [40,44] to highlight which parts of the image were mostly
responsible for the output class provided by the model.

From the analysis of the algorithmic approaches currently used for single-frame
anatomical landmark detection, it is possible to conclude that standard CNN architectures
have the potential to correctly recognize anatomical landmarks in UGIE video frames.
On the other hand, the existing solutions are mainly focused on the adoption of CNN
models that have been proposed to the computer vision community almost a decade
ago. In this sense, further explorations could be directed to a more systematic use of data
augmentation approaches and towards the design of more interpretable models, able to
provide more reliable outputs to the endoscopist. Finally, the current solutions seem not to
push for the integration of domain knowledge into the adopted data-driven models.
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Datasets

All the considered works used private data to train and validate the models. The datasets
varied considerably in terms of size, the types of imaging modalities, and the number of
classes associated with different anatomical landmarks (see Table 1). Dataset size ranged
from a few thousand (e.g., 2459 in [40]) to tens of thousands (e.g., 85,246 in [43]).

The total number of classes (anatomical landmarks) changed from a reduced number
in preliminary studies to complete protocols. Namely, [39] focused on the classification of
only the four main organs in the upper GI tract, i.e., larynx, esophagus, stomach, and duo-
denum. It also tested a further splitting of the class of stomach into three further regions:
upper, middle, and lower stomach. Other custom protocols were adopted, some with
10 anatomical locations [41], 11 anatomical locations [42], 10 and 26 landmarks [40], 12 land-
marks [44], and 14 locations [43]. The official photodocumentation protocol put forward
by the ESGE was considered in [27]. Four works also introduced explicitly a class named
N/A, which contained frames that were considered noisy or not informative [27,42,43],
or that included different imaging modalities [41], or pathological findings that could alter
the appearance of anatomical structures [42].

Three works considered only non-magnified white light imaging (WLI) frames [39–41].
One work considered WLI, narrow band imaging (NBI) and Blue Laser Imaging (BLI)
data [44]. Linked colored imaging (LCI) data was considered in [34]. Furthermore, one work
included in the analysis images obtained with local coloring techniques, such as indigo
carmine (IC) or iodine [43].

The analysis of the datasets used to train and validate models for single-frame anatomi-
cal landmark detection suggests a large variability in the definition of these studies. This fact
prevents to perform a fair comparison between the different approaches, thus limiting
the validity of conclusions derived from such comparisons. First, it is important to note
that all datasets are private, leading to limited reproducibility of the proposed results and
raising potential concerns in terms of the introduction of bias in the data (e.g., selection bias,
spectrum bias, overfitting bias [10]). In addition, the definition of anatomical landmark
classes is largely non-uniform, which implies that the classification problems addressed
by the different proposed models can have different degrees of complexity. This again
prevents to draw strong conclusions from a comparative analysis.

Results

In general, it is not possible to draw statistically significant conclusions regarding the
comparison of the performance obtained by the different methods considered for single-
frame anatomical landmark detection due to the significant differences in the datasets
used for training and validations. These differences involve the number of images used,
the number of anatomical landmarks considered, restrictions in the imaging modalities
adopted, and pre-selection of informative frames. Thus, the performance of the different
classification tasks cannot be directly compared.

On the other hand, as supported by Table 1, the considered works report an average
classification performance with sensitivity and specificity values often in excess of 90%,
which is a positive indicator of the relevance of AI algorithms for anatomical landmark
detection. Nevertheless, some limitations can be registered when classifying some of the
anatomical landmarks due to their resemblance and shared features. For example, [39]
observed classification errors in the discrimination of images belonging to the larynx
and esophagus, even if the morphological structure observed is sufficient to be distin-
guished by the human eye. Other errors involved misclassification of contiguous landmarks
(e.g., esophagus and upper stomach, lower stomach, and duodenum [39]). Furthermore,
images not contained in the N/A class were often wrongly assigned to this class, due to its
high intra-class variability [43].

It is also worth mentioning that, in three cases, video frames from UGIE videos were
preventively excluded, for example, when they focused on pathological findings [39],
contained food residue or bleeding [39,42], when they were not considered in focus
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or were affected by blurring effects [39]. In this sense, the results showcased by such
works might not reflect directly the performance that is possible to achieve in real-world
clinical scenarios.

3.1.2. Anatomical Landmark Detection in UGIE—Multiple Frames

Although deep learning classifiers have shown very promising results when detecting
anatomical sites in the UGI, they do not account for temporal correlations among the frames.
In fact, the problem of segmenting frames in the temporal dimension to a set of classes
provides a closer description of the task of mapping the UGI tract to a set of key anatomical
locations given an UGIE video. Algorithms that take this modality into consideration have
become the new standard for anatomical landmark detection in UGIE videos.

A summary of the works that have proposed multi-frame anatomical landmark detec-
tion approaches can be found in Table 2.

Table 2. Multi-frame algorithms for anatomical landmark detection.

Authors
Data

Annotation
Protocol

Dataset Classes Algorithm Augmentation Validation Average
Performance

AI Impact (Clinical
Setting)

Wu et al.,
2019 [45]

2 seniors 1–5
years of

experience

3 experts > 5
years of

experience

2 doctoral
students **

(Private Dataset)
34,513 UGIE

images
107 UGIE

videos

26 sites +
N/A

VGG-16 +
DRL None 10-fold C.V.

Accuracy:
90% (from

70% to 100%)

Sensitivity:
88% (from

63% to 100%)

Specificity
95% (from

75% to 100%)

(Single-center randomized
controlled trial) [45] ***

Blind spot rate
(#Landmarks)

Humans+Algorithm:
5.86 ± 6.89

Humans (control):
22.46 ± 14.38

(Mean performance
improvement: 15.39 from

19.23 to 11.54)

(Multicenter Randomized
Controlled Trial)

Wu et al., 2021 [46]

Blind spot rate
(#Landmarks):

Humans+Algorithm:
5.38 ± 4.32

Humans (control):
9.82 ± 9.82

(Prospective, single-blind,
3-parallel-group,

randomized,
single-center trial)

Chen et al., 2019 [47] ***

Blind spot rate
(#Landmarks):

Humans+Algorithm:
3.42 ± 5.73

Humans (control):
22.46 ± 14.76

Choi et al.,
2020 [26]

5 blinded
seniors with
>3 years of
experience

(Private Dataset)
2599 images

from 250
UGIEs

8 sites
SENet +

positional
loss

Random
scaling,

cropping,
rotation and

horizontal flip

10-fold C.V.

Accuracy:
98% (from

94% to 99%)

Sensitivity:
97% (from

94% to 99%)

Specificity:
~100%

N/A
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Table 2. Cont.

Authors
Data

Annotation
Protocol

Dataset Classes Algorithm Augmentation Validation Average
Performance

AI Impact (Clinical
Setting)

Ding et al.,
2021 [48]

UGIE images
from clinical

reports

(Private Dataset)
3605 UGIE
anatomical
site frames

2346
background
class frames

6 sites +
back-

ground

EfficientNet-
b3 +

thresholded
sliding win-
dow with

exponential
decay

Random shear,
scaling and
translation

Holdout
set and

weighted
oversam-

pling

Accuracy:
88% *

Precision:
89% * (from
65% to 95%)

Recall:
88% * (from
69% to 99%)

N/A

Yan-Dong Li
et al., 2021

[47]

3 blinded
seniors with
5–10 years of
experience

1 expert >
10 years of
experience

170,297 UGIE
(Private Dataset)

images
5779 UGIE

videos

31 sites Inception-v3
+ LSTM

Random HSV
jittering

and corner
cropping

Holdout set

Accuracy:
95% (from

88% to 100%)

Sensitivity:
96% (from

81% to 100%)

Specificity:
99% (from

99% to 100%)

N/A

* Measured on isolated still frames that do not necessarily belong to the same UGIE video. Background class
included. ** Doctoral students only classified unqualified frames in the N/A class for the anatomical site
classification task. *** Only findings regarding blind spots in conventional EGD were included; human level of
expertise unknown.

Algorithms

Two different main classes of algorithmic approaches were observed when including
temporal correlation in anatomical landmark detection approaches: (i) sequential classifica-
tion [26,48] and (ii) temporal deep learning models [45,49]. In particular, [26] focused on the
task of predicting if the UGIE was complete or not. This problem has been tackled by first
training a CNN, more specifically, a squeeze-and-excitation network (SENet), to classify
single frames into the corresponding anatomical landmark classes. Then, the output se-
quence of prediction probabilities was processed in order to determine the completeness of
the procedure. A slightly more sophisticated approach for the combination of CNN outputs
was implemented in [48]. Additionally, in this case, the first step in this method consists
of the training of a CNN model for single-frame classification. In particular, the Efficient-
Net [50] model was adopted. Then, a sliding window with exponential decay was used to
weigh the prediction probabilities of 5 neighboring frames, thus providing a smoothing
effect able to mitigate the impact of noisy frames.

More sophisticated temporal deep learning models also include a first step for training
single-frame CNNs classification. On the other hand, their outputs are then combined using
more complex statistical approaches that integrate other neural networks architectures.
In particular, the seminal work [45] proposed a system that implements deep reinforcement
learning (DRL), which was dubbed WISENSE. A VGG-16 model was trained to classify
frames independently. Its predictions were used to compute the landmark class proba-
bility for each subsequent frame (see Figure 4). Such predictions were used to generate
a 10 × 26 matrix that represented the current state of the DRL system by including in-
formation about the probability of the last ten frames being associated with each of the
26 anatomical landmarks considered. The DRL algorithm then take some action based on
the current state, thus lighting one of the 26 sites or remaining silent. During the training
phase, correct actions are rewarded while incorrect ones are penalized, thus encouraging
the system to classify correctly frames containing anatomical landmarks on the basis of
the last 10 frames visited. Finally, [48] combines the single-frame classification outputs
provided by an Inception-v3 CNN using a long short-term memory (LSTM) neural network.

Transfer learning strategies were adopted in two works by pre-training the CNNs
used to classify the UGIE frames using images from the ImageNet dataset [48,49], thus pro-
viding enhanced robustness against overfitting. In addition, data augmentation techniques
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were applied by transforming the training frames using random cropping, rotations, and
flips [26], translation, shears, and flips [48], as well as random jittering [49].
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A simple preprocessing technique was adopted by [26] which consisted in cropping the
surrounding black frames of the UGIE. As for the case of single-frame classifiers, some of
the approaches consisted of a first CNN used to discriminate between frames collected
outside or inside the patients [45,49].

Insights on the functioning of the deployed deep learning models have been inspected
in two works by using CAM-based saliency methods for explainable AI [26,48].

It is possible to observe that the set of algorithmic solutions adopted to harness the
information contained in the temporal dimension of UGIE videos for anatomical landmark
detection is also quite heterogeneous and characterized by different attempts in combining
CNN outputs with sequential models. The most promising results seem to be obtained
when considering deep learning architectures specifically designed to cope with temporal
sequences (see Table 2), as the LSTM model used in [49]. Efforts towards more interpretable
and explainable modes are mainly limited to the adoption of CAMs for the CNN outputs,
thus ignoring possible methods able to shed light on the inner operations of the models
that also consider the temporal dimension. Finally, generalization issues are mitigated via
the common adoption of data augmentation and transfer learning schemes.

Datasets

As it can be seen in Table 2, all the considered works used private data to train and
validate the models. As for the case of single-frame anatomical landmark classification,
the datasets used to train and validate multi-frame approaches showcased significant
differences among them. Regarding the size of the datasets, those range from a minimum
of 2599 labeled frames [26] to a maximum of 170,297 frames [49].

Moreover, different levels of complexity in the recognition of anatomical locations
were considered, starting from approaches limited to the classification of a few landmarks
(e.g., 6 landmarks in [48]), to compliance with the ESGE standard [26] and the Japanese
systematic screening protocol (26 landmarks) [45], up to a maximum of 31 landmarks
of a custom protocol [49]. A N/A class was also added to include background or non-
informative frames in three works [45,48,49].

All four considered works were trained to detect and classify anatomical landmarks
from WLI frames and occasional NBI images were relegated to the N/A class [48]. Although
trained with WLI frames, the system described in [49] was shown to be able to classify
anatomical landmarks collected with NBI during testing. Even though it is not explicit
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in their exclusion criteria, the work by Choi et al. [26] does not display results regarding
non-WLI data.

As observed for the case of single-frame anatomical landmark detection, the datasets
used to train and test the proposed models differ significantly in terms of the definition of
classes and image modalities adopted. On the other hand, multi-frame approaches reflect more
mature research efforts in anatomical landmark detection. These seem to converge to a more
comprehensive and stable definition of the classification problems addressed, including an
increasing number of landmarks that clearly reflect photodocumentation protocols.

Results

A comparative analysis of the raw performance results obtained by the four considered
approaches is not possible, due to the diversity of the classification tasks considered.
However, it is possible to observe a clear trend testifying that the exploitation of time
correlation models in multi-frame classification approaches leads to better classification
performance also in the presence of a higher number of anatomical landmark classes
when compared to single-frame approaches. As an example, the IDEA system described
in [49] achieves an average accuracy of 95% in classifying 31 different anatomical landmarks.
In general, methods based on temporal deep learning systems outperform simple sequential
classification models. These are affected by significant classification errors regarding the
esophagus and the gastroesophageal junction [26]. In some cases, they were shown to base
their classification output on non-relevant image features, for example when the weights of
the CNN were almost exclusively associated with the presence of the endoscope itself in
the retroflex view [48].

3.2. Lesion Detection in UGIE

The detection of all existing lesions is the goal of UGIE. Since early lesions are often
subtle and difficult to detect for human eyes, the exposure of all the mucosa may not suffice
to guarantee that every lesion is detected, and AI can also have a role in improving lesion
detection. An example is reported in Figure 5, which shows an early gastric cancer lesion
missed by an endoscopist and correctly identified by the convolutional neural network
algorithm presented in [51,52]. If we distinguish between lesion detection (Are there any
lesions in this UGIE exam? If so, where are these lesions?) and lesion characterization (How does
each lesion contribute to a diagnostic decision?), and accept that non-visualized lesions are part
of the exam quality challenge and not the lesion detection challenge, what is the clinical
motivation for this AI challenge? In fact, expert gastroenterologists typically exhibit very
good performance in a lesion detection task if the lesion is correctly visualized.
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Figure 5. (Left) An early gastric cancer lesion missed by an endoscopist and (Right) correctly
identified by the convolutional neural network by bounding box regression model by [52,53]. Note
that, not only is the CNN’s prediction cued from subtle textural changes in the mucosa, but also
that the output is a plausible bounding box around it. (Adapted from data kindly provided by
Ishioka et al. [52]).
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However, by thinking further into the future, success in this challenge can definitely
pave the way for enhancing the responsibility and support of physicians in training,
and also create tools for more cost-effective screening strategies for GI cancer management.
Besides, assistance in lesion detection may be important for community endoscopists
outside expert centers [54]. Examples of these include the creation of the role of CAD-
assisted gastroenterology technicians or, more ambitiously, fully automated screening using
capsule endoscopy. Highly qualified endoscopists are short in supply [40] and are costly
to train [26,54].

Given such a motivation, this section will revise current state-of-the-art approaches
implemented in CAD systems that support lesion detection. A summary of the works that
have proposed lesion detection approaches can be found in Table 3.

Table 3. Lesion detection algorithms.

Authors Classes Algorithm Dataset Image Modality Results AI Impact
(Clinical Setting)

Zhang et al.,
2020 [55]

Non atrophic
gastritis

Atrophic gastritis
DenseNet121

(Private Dataset)
3042 atrophic

gastritis images
2428 normal images

WLI
Accuracy:94%

Sensitivity: 95%
Specificity: 94%

N/A

Hirasawa et al.,
2018 [53] EGC SSD (Private Dataset)

13,584 EGC images

WLI
NBI

Indigo carmine

Sensitivity: 92%
PPV: 31% N/A

Yoon et al.,
2019 [56]

non-EGC
EGC VGG-16

(Private Dataset)
1705 EGC images

9834 non-EGC images
WLI Specificity: 98%

sensitivity: 91% N/A

Yan et al.,
2020 [57]

Intestinal
Metaplasia (IM)

Xception
NASNet

EfficientNetB4

(Private Dataset)
1048 IM images

832 non-IM

NBI
Magnifying NBI

EfficientNetB4:
Sensitivity: 93%
Specificity: 85%
Accuracy: 88%

N/A

Wu et al.,
2021 [58]

neoplastic lesions
non neoplastic

lesions

YOLO v3 and
ResNet50

(Private Dataset)
For YOLO v3:

15,341 lesion images
9363 non-lesion

images
For ResNet50:
4442 gastric

neoplastic images
3859 non-neoplastic

images

WLI
Accuracy: 89%;
Sensitivity 92%;
Specificity 88%

(Multi-center
prospective

controlled trial)
Experts (n = 8):
Sensitivity: 81%
Specificity: 75%
Accuracy: 78%

Seniors (n = 19):
Sensitivity: 84%
Specificity: 77%
Accuracy: 80%

Juniors (n = 19):
Sensitivity: 84%
Specificity: 66%
Accuracy: 73%

ENDOANGEL:
Sensitivity: 88%
Specificity: 93%
Accuracy 91%

3.2.1. UGIE Lesion Detection in the Stomach

Most common pathological forms of gastric cancer are intestinal-type gastric cancers
commonly associated with the presence of Helicobacter pylori-induced chronic inflamma-
tion, gastric atrophy (GA), and intestinal metaplasia (IM). These precancerous conditions
correlate with a higher risk of cancer formation [59–62]. In this section, we will review
state-of-the-art algorithms able to identify gastric lesions from UGIE videos.
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Algorithms

The two main methodologies for the task of stomach lesion detection are: (i) event
detection, classifying an UGIE video frame/image according to the presence of gastric lesion;
(ii) object detection, extending these methods to also include information about the spatial
location of the lesion in the image by means of a bounding box, in an object detection
paradigm. Event detection algorithms are commonly based on the use of well-known
deep convolutional neural networks such as the DenseNet [54], the VGG-16 [56], and the
ResNet50 model. The authors of [57] trained Xception, NASNet, and EfficientNetB4 models
to detect gastric IM achieving the best performance with the last model. Of particular
relevance and in contrast with the other works considered, [56] proposed two different
learning frameworks to train a VGG-16 CNN. In the first one, a standard cross-entropy loss
between the predicted class and the ground truth label was adopted. A second learning
approach defined a novel loss function that included a term accounting for the values of
gradient-weighted class activation maps (Grad-CAMs), thus promoting the use of fine-
grained features by the model when attempting to detect the presence of early gastric
cancer (EGC) lesions.

No specific image preprocessing steps are explicitly described for the methods in [56,58].
In contrast, [55] used a specific algorithm to remove the patient information present in the
UGIE videos, such as personal information and watermarks, that could be used by the
CNN as a feature for lesion detection.

In order to increase the interpretability and explainability of model results, [56,57]
used Grad-CAMs responsible for highlighting fine-grained features of the EGC lesions.
The authors of [55] used class activation maps to indicate the features of the lesion that the
CNN focused on.

Transfer learning techniques are largely used in both the event detection and object
detection approaches. Namely, the CNN architectures used in all the three works mentioned
are pre-trained using images from the ImageNet and COCO datasets, providing a good
initialization of weights and enhanced robustness against overfitting.

Concerning object detection methodologies, lesion localization often adopts standard
algorithms and architectures, such as the YOLO v3 [58] and the SSD [53] (see Figure 5) for
detecting EGC. Both algorithms are one-stage detectors.

Datasets

All the considered works used private data to train and validate the models. The authors
of [55] used a dataset of a total of 5470 gastric antral images from 1699 patients focusing
only on atrophic gastritis images. Similarly, the dataset used by [56] included 11,686 images
of healthy mucosa or containing lesions associated with EGC. On the other hand, the lesion
detector developed in [58] used a dataset of more than 24,000 labeled images containing dif-
ferent kinds of lesions, including gastric neoplastic and non-neoplastic images. The authors
of [53] collected more than 13,000 EGC images and [57] acquired more than 1000 IM images.

Image selection processes were adopted to generate the datasets used in [55,56].
In particular, [55] excluded the images affected by artifacts created by mucus, poor focus,
insufficient contrast, motion-blurring, and gastric cancer. Similarly, images affected by
motion-blurring, out of focus, halation, or poor air insufflation were excluded from the
dataset used in [56]. The authors of [55,56,58] acquired only white-light endoscopy images.
The authors of [57] only used NBI images (both magnified and non-magnified), and [53]
selected WLI, NBI, and indigo-carmine images.

As previously observed in Sections 3.2 and 3.3, pre-selected datasets can possibly link
to sources of bias and limitations to the practical application of the developed methods of
lesion detection.
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Results

Heterogeneity in the kinds of gastric lesion classes considered in the different works
considered makes it difficult to perform a fair comparison of their performance. The reduced
intra-class variability associated with a dataset that considers only lesions of a single kind,
for example, is bound to represent a simpler classification or object detection problem to be
solved with a deep architecture.

Two of the three works presented only use classification models [55,56]. On the other
hand, a recent work [58] considers both an object detection architecture and a classifier.
An interesting strategy proposed in this work was that of training the classifier separately
from the object detection module. This allowed the integration of the features extracted
by the fine-tuned classifier in the object detection module. This approach seems especially
promising as it shows highest detection performance (sensitivity of 96%) in the detection
of gastric lesions within the surveyed body of work even when tested in an external
dataset. The specificity, accuracy, and positive predictive value (PPV) achieved by this
system were significantly higher (93%, 91%, and 90%) than those of the endoscopists (72%,
76%, and 71%), whereas the sensitivity and negative predictive value (NPV) were slightly
higher compared with those of the endoscopists. Additionally, this system also reached an
accuracy, sensitivity, and specificity of 89%, 90%, and 89%, respectively, when tested over
an external dataset, proving the robustness of the model.

3.3. Lesion Characterization in UGIE

After successfully detecting that a lesion is present in a UGIE exam, we need to
understand its relevance for the clinical decisions that will follow. This task is much more
challenging than the previous one for a clinician since it depends on subtle visual changes
that our human visual system is not fully prepared for. These include very subtle changes
in color, texture, shape, and other visual structures that may only be identified using
special lighting modalities such as NBI or by applying IC solutions to enhance the visual
characteristics of the villi in the UGI walls. On a typical UGIE exam, the gastroenterologist
is required to decide, in real-time, if the lesion is relevant and should be included in the
report, and if he will extract a biopsy of the lesion or not. Deep learning support for this
task can lead to at least two benefits: firstly, enabling the expert to have a second opinion
in real-time if no other expert or telemedicine structure is available at that time. Secondly,
creating a virtual biopsy that is instantaneous, thus enabling dense sampling of the tissue
and reducing the number of unnecessary invasive interventions.

The same structure from the previous sections is followed: we will revise current state-
of-the-art approaches implemented in CAD systems that support lesion characterization
in UGIE exams. A summary of the works that have proposed lesion characterization
approaches can be found in Table 4.
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Table 4. Lesion characterization algorithms.

Authors Classes Algorithm Dataset Image
Modality Results AI Impact (Clinical Setting)

Wu et al.,
2021 [58]

Invasion depth:
mucosal and
submucosal

Differentiation
Status:

Differentiated and
undifferentiated

ResNet-50

(Private Dataset) *
3407 images of
gastric cancer

1131 differentiated
type images

1086
undifferentiated

type images

WLI
Magnifying

NBI

EGC invasion WLI:
Accuracy: 88%;
Sensitivity: 91%;
Specificity: 85%

EGC differentiation
M-NBI:

Accuracy of 86%;
Sensitivity: 79%;
Specificity: 89%

(Multi-center prospective
controlled trial)

EGC invasion Experts(n = 8):
Sensitivity: 57%%
Specificity: 76%
Accuracy: 69%

EGC invasion Seniors (n = 19):
Sensitivity: 60%
Specificity: 66%
Accuracy: 64%

EGC invasion Juniors (n = 19):
Sensitivity: 61%
Specificity: 61%
Accuracy: 61%

EGC invasion AI predictions:
Sensitivity: 70%
Specificity: 83%
Accuracy 79%

EGC differentiation Experts(n = 8):
Sensitivity: 47%
Specificity: 83%
Accuracy 72%

EGC differentiation Seniors (n = 19):
Sensitivity: 53%
Specificity: 74%
Accuracy: 67%

EGC differentiation Juniors (n = 19):
Sensitivity: 56%
Specificity: 60%
Accuracy: 59%

EGC differentiation AI predictions:
Sensitivity: 50%
Specificity: 80%
Accuracy 71%

Yoon et al.,
2019 [56]

T1a
T1b

Non-EGC
VGG-16

(Private Dataset)
1097 T1a-EGC
1005 T1b-EGC
9834 non-EGC

WLI Specificity: 75%
Sensitivity: 82% N/A

Nagao et al.,
2020 [63]

M-SM1
SM2 or deeper ResNet-50

(Private Dataset)
10,589 M-SM1 images

6968 SM2 or
deeper images

WLI
NBI

Indigo

WLI Accuracy: 95%
NBI Accuracy: 94%

Indigo Accuracy: 96%
N/A

Zhu et al.,
2019 [64]

P0 (M or SM1)
P1 (deeper
than SM1)

ResNet-50
(Private Dataset)
545 P0 images
245 P1 images

WLI
Accuracy: 89%
Sensitivity: 76%
Specificity: 96%

CNN
Accuracy: 89%
Sensitivity:76%
Specificity: 96%

Experts(n = 8):
Accuracy: 77%
Sensitivity: 91%
Specificity: 71%

Junior (n = 9):
Accuracy: 66%
Sensitivity: 85%
Specificity: 57%
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Table 4. Cont.

Authors Classes Algorithm Dataset Image
Modality Results AI Impact (Clinical Setting)

Xu et al.,
2021 [65]

GA
IM VGG-16

(Private Dataset)
2149 GA images
3049 IM images

Magnifying
NBI

Magnifying
BLI

GA
Accuracy: 90%
Sensitivity: 90%
Specificity: 91%

IM
Accuracy: 91%
Sensitivity: 89%
Specificity: 93%

(Multi-center Prospective
blinded trial)

GA classification

CAD System:
Accuracy: 87%
Sensitivity: 87%
Specificity: 86%

Experts(n = 4):
Accuracy: 85%
Sensitivity: 91%
Specificity: 72%

Non experts (n = 5):
Accuracy: 75%
Sensitivity: 83%
Specificity: 59%

IM classification:
CAD System:

Accuracy: 89%
Sensitivity: 90%
Specificity: 86%

Experts(n = 4):
Accuracy: 82%
Sensitivity: 83%
Specificity: 81%

Non experts (n = 5):
Accuracy: 74%
Sensitivity: 74%
Specificity: 73%

* An external dataset of 1526 images has been used to test the performance of the model.

3.3.1. UGIE Lesion Characterization in the Stomach

Gastric lesion characterization using deep learning techniques is extremely important
in order to provide vital information to the endoscopist regarding the necessity of further
actions to be performed during the examination (e.g., endoscopic resection, need for
endoscopic surveillance) and to assist in diagnosis. This section focuses on algorithms that
have been developed to provide information regarding gastric lesions, in terms of their
invasion depth and differentiation status.

Algorithms

The tasks associated with gastric lesion characterization in the three works considered
in this section involve the assessment of the invasion depth and the differentiation status.
In particular, [58] developed two approaches for different types of EGC characterization,
namely, predicting EGC invasion depth in WLI and predicting EGC differentiation status
in magnifying NBI. Two works proposed a method for predicting gastric cancer invasion
depth [63,64] (see Figure 6). In addition, [56] applied the same methods described in
Section 3 for lesion detection to predict the invasion depth of EGC as well.
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Additionally, one study predicted precancerous gastric conditions by classifying
lesions as GA and IM in magnifying NBI and BLI [65].

All these works made use of the well-known ResNet models to implement image clas-
sification, with weights obtained by pre-training over the ImageNet dataset [66]. Exception
to this were [56,65] which used a pre-trained VGG-16 model.

Regarding preprocessing, [64] resized all the available images for training to a di-
mension of 224 × 224 pixels to fit the original input size designed for the ResNet model.
After this, training images were augmented using random vertical and horizontal flips and
scaling. Standard preprocessing steps were also adopted by [64,66], which applied mean
subtraction and normalization to each image before passing it to the network. Then, simple
data augmentation was applied via random image rotations and flips.

Regarding the interpretability of the proposed classification models, [64] performed an
occlusion analysis to find which area of the images was most important to the classification
output. Occlusion regions of dimension 60 × 60 were slid from top-left to bottom-right with
a stride of six pixels to generate a new dataset with different patches occluded. Heatmaps
were produced showing the output classification probabilities of the different regions of
the image.

Commonly adopted algorithmic approaches for gastric lesion characterization rely
on the use of standard ResNet models that do not represent the current state-of-the-art in
several computer vision tasks. Multi-task and joint end-to-end learning frameworks are
not considered, thus revealing a potential margin for the exploration of more sophisticated
deep learning approaches in this area. On the other hand, the occlusion analysis performed
by [64] provides an interesting contribution towards model interpretability, without relying
only on CAM-based explainable AI solutions, that can deal with functions that are flat,
without or only with very small gradients.

Datasets

All the datasets in the considered works are private. Dataset sizes vary from a few
hundred (790 in [64]) to several thousand (16,558 in [63]).

Regarding invasion depth estimation, both [63,64] define two classes based on group-
ing over standard clinical characterizations of gastric lesions. They start from a characteriza-
tion of invasion depths defined over five classes: mucosa (M), submucosa (SM), Muscularis
propria, subserosa, and serosa. The SM can be further subclassified as SM1 (invasion depth
of <0.5 mm of the Muscularis mucosae) or SM2 (invasion depth of ≥0.5 mm of the Mus-
cularis mucosae). Then, the two classes considered by the algorithms were defined as P0,
corresponding to an invasion depth restricted to M or SM1, and P1, corresponding to an
invasion depth deeper than SM1. A binary characterization of invasion depth is considered
in [58], where one class is associated with lesions whose invasion is limited to the mucosa
and another class is attributed to lesions whose invasion reaches the submucosa.

For the GA and IM classification, [65] collected an internal dataset for training the
model (2149 GA images and 3049 IM images) from two different hospitals, plus one external
test set to evaluate the model (344 GA images and 708 IM images) from three different
hospitals. In addition, a prospective video test set was acquired (37 GA videos and 61 IM
videos) and the AI-based system performance was compared to that of the endoscopists.

Concerning frame selection, images affected by poor observation conditions, such as
blurring, food retention, bleeding, and insufficient air insufflation were discarded in all
considered articles. In addition, ref. [64] excluded images from patients who underwent
gastrectomy, lesions that were considered difficult to see in magnifying NBI, cases of
pathologically confirmed gastric cancer, and abnormalities in the submucosa. Moreover,
ref. [63] also excluded images with gastric adenocarcinoma of fundic gland type, images
from patients with a historic treatment for the target lesion, and multiple lesions that were
seen simultaneously in the same endoscopic picture. The authors of [65] excluded images
without pathological diagnosis, esophageal lesions, duodenal lesions, cancers, high grade
dysplasia, low grade dysplasia, polyps, and blurred or not clear images.
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All the considered works used WLI data. In addition, ref. [58] also included magnify-
ing NBI images in the analysis of the differentiation status, and [63] used non-magnifying
NBI images and indigo carmine dye contrast imaging. The authors of [64] only used
magnifying imaging, namely magnifying NBI and BLI.

Results

The works describing the characterization of gastric lesions employ deep learning
methods designed for classification purposes. ResNet architectures are common throughout
all the surveyed articles. This architecture implements skip connections that allow for the
gradient to be more efficiently backpropagated, which is of special importance when the
number of hidden layers is high. The success of [58,63,64] serves as an indicator of the
reliability of the ResNet design. The ResNet-50 model achieved accuracy levels above 85%
when classifying invasion depth in the mucosa and submucosa layers (M-SM1 and SM2).
An analysis is made by [63] using the separate invasion depth classifications results on
WLI, NBI, and indigo carmine modalities. Different features are highlighted within each
modality experiment, with indigo carmine reaching the highest accuracy of 96%, followed
by the WLI with 95% and NBI with 94%.

The authors of [64] conducted a thorough analysis in the validation of their model for
the tasks of GA and IM classification. They used 3 independent sets: the first one, collected
from two institutions, was split into a train, validation and (internal) test sets, and was used
to develop the model. The second one, collected from 3 institutions, served as an external
test set. Finally, a prospective single-center external test dataset containing 71 precancerous
and 36 control images served as a benchmarking for the comparison of the algorithm with
trained endoscopists. Concerning the GA task, the system measured an accuracy of 90%,
sensitivity of 90%, and specificity of 91% in the internal test set. In the external test set,
the DNN measured 86% accuracy, 90% sensitivity, and 79% specificity. Compared to the
measurements of the internal test set, there was a significant decrease in specificity (11%),
thus serving as evidence that the model is prone to output false positives. This was also
reflected in a variation of accuracy of approximately 6%. Regarding IM, 91% accuracy,
89% sensitivity, and 93% specificity were observed in the internal test set. When evaluated
in the external test set, the measurements were 86% accuracy, 97% sensitivity, and 72%
specificity. Contrary to the proportions observed on the internal test set, the system shows
disparate measures from the internal test set, outputting predictions that are more sensitive
but less specific. This apparent contradiction in the experiment can potentially be caused
by data drift from the internal to the external dataset, which in turn can be explained by
data collection or labeling mistakes. Another hypothesis is a lack of representative data
in the internal dataset, thus resulting in overfitting to the internal test set. Finally, in the
benchmarking external test set, 5 non-expert and 4 expert endoscopists enrolled in the
tasks of classifying GA and IM. For both tasks the model achieved a performance similar to
clinical experts. Concerning the GA task, the model outperformed non-expert clinicians,
measuring 75% accuracy, 59%, specificity, and 80% PPV. The same trend was observed for
the IM classification task, where the system outperformed non experts in all the measured
metrics, displaying 74% accuracy, 74% specificity, 85% PPV, and 59% NPV. Again, although
the results when benchmarking with humans are favorable to the algorithm, there is a
clear discrepancy in performance in the different datasets for each experiment. Since the
algorithm showed decent performance in the internal test set, the most probable explanation
for this mismatch in performance is likely due to bias in the internal dataset used to develop
the model.

4. Discussion

Based on the findings reported in Section 3, in this section, we describe the main
trends revealed by the analysis of the works reviewed for exam quality assessment, lesion
detection, and lesion characterization. Moreover, for each of these areas, we set the pillars
for a roadmap towards the application of AI-assisted UGIE in clinical practice.
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4.1. UGIE Exam Quality Assessment

Artificial intelligence methods for automatic UGIE exam quality assessment have
mainly been focused on assessing the completeness of the exam by leveraging the defini-
tions of different photodocumentation protocols. They consisted mainly in the implemen-
tation of algorithms able to automatically detect standardized anatomical landmarks and
provide real-time information about the regions of the upper GI tract that have been visited
during the examination.

The methods applied for these tasks have seen a rapid evolution in their performance
when shifting from a single-frame to a multi-frame paradigm with the ability to leverage
information contained in correlated frame sequences. Most of the approaches considered
deep learning solutions based on well-known CNN architectures and recurrent neural net-
works for time sequence modeling. Multi-frame classification methods have demonstrated
high accuracy in recognizing larger numbers of anatomical landmarks (e.g., 26 in [39],
31 in [42]). The machine learning solutions adopted by the current state-of-the-art mainly used
deep learning techniques that have been adopted in several computer vision and machine
learning problems for almost a decade now. In addition, further efforts could be made to
improve model generalization and explainability, which are addressed only partially in the
UGIE exam quality assessment literature, as observed in Sections 3.1.1 and 3.1.2. Moreover,
the datasets used to train and validate the models are all private and significantly heterogeneous
in terms of both definitions of anatomical landmarks and imaging modalities.

In this sense, there is a clear opportunity for the application of more modern and
sophisticated architectures that could be able to provide increased robustness against
non-idealities in the video collection as well as different image quality levels. Novel
contributions in the development of machine learning algorithms for anatomical landmark
detections can be envisioned in the following four directions:

1. Beyond CNNs: The adoption of novel deep learning architectures for visual under-
standing, as the recently proposed visual transformers [67], could provide a significant
improvement at the backbone of the multi-frame classification approaches. This is
due to their improved capacity in automatically selecting relevant features from the
imaging data as well as better capacity in transferring efficiently information from a
larger receptive field into deep layers.

2. Hybrid models: The sequential nature of UGIE examinations and, in particular,
the strong priors associated with the expected order in visiting the different anatomical
landmarks open up the possibility of pairing highly discriminative deep learning
models with robust time sequence statistical models able to model more explicitly
time evolution [68]. These techniques are then expected to provide models that are
more robust to input perturbation than purely data-driven methods, while at the same
time requiring a lower amount of training data to generalize well.

3. Enhanced explainability: Efforts to provide explainable and interpretable models
for anatomical landmarks detection have focused mainly on the use of CAM-based
approaches able to highlight which part of the considered frame is mostly responsible
for the output of the CNN classifier. Increased explainability should be pursued,
by starting with the inclusion of the temporal dimension in substantiating why a
given landmark is detected by the algorithm at that particular time of the UGIE
procedure. The produced explanations could be also enriched with example-based ap-
proaches able to showcase, in real-time, to the operator to most similar and significant
landmarks encountered in other exams [69].

4. 3D Photodocumentation: Assuming screening protocols are followed, machine learn-
ing algorithms can project the frames of an UGIE video onto a three-dimensional
reconstruction of the UGI tract. These algorithms can potentially be applied to any
photodocumentation protocol since they can in principle construct a complete rep-
resentation of the UGI tract. They also allow one to query a bounded region of the
produced 3D surface and retrieve the original 2-D frames used in the projective step.
Not only is this functionality relevant from a usability perspective, but it can also
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convey a more accurate realization of the mental model required by endoscopists
when interpreting a UGIE report. Blind spots become overwhelmingly evident in
a 3D model, potentiating feedback loops for the physicians. The work of Widya
et al. [70,71], which is based on classical methods for structure invariant feature trans-
forms (SIFT) and structure-from-motion, has been seminal in this direction, leading
towards reconstructing a virtual 3D model of the stomach from unlabeled UGIE data.
More recently, Yuwei Xu et al. [72] introduced a CNN that is able to find more invari-
ant anchor points that enable 3D reconstructions of higher resolution and under more
challenging conditions. Moreover, advancements in the field of light field imaging and
neural radiance fields are likely able to mitigate incomplete reconstructions through
3D view synthesis [73–76].

Regarding datasets and the definition of homogeneous anatomical landmark detection
tasks, the availability of large, public, annotated datasets with information labels regarding
anatomical landmarks in UGIE videos would potentially boost and foster research efforts
in this area. In addition, defining anatomical landmark classification methods that are
more adherent to the official photodocumentation protocols put forward for UGIE quality
control, combined with public datasets, would allow fair and transparent comparisons of
different approaches. This would provide the means for the rapid evolution of the current
approaches towards increased robustness and reliable applicability in clinical practice.

4.2. Lesion Detection in UGIE

Automatic lesion detection in the gastric tract has attracted considerable interest from
the research community, which has produced several efforts in adapting and applying
state-of-the-art deep learning models for image classification and object detection to the
analysis of UGIE videos. The results reported by these approaches are usually characterized
by high accuracy as shown in recent meta-analysis works [5,6]. However, most of the
works are tested only considering UGIE videos containing a small number of different
lesions, which can point to a possible gap to be bridged before the practical adoption
of such algorithms. In addition, using data from institutions/hospitals and validating
the model in the same type of images can create availability bias. To overcome this
problem and train more general models, the data acquisition should be focused on more
representative data and a more heterogeneous collection of samples. There is also a lack
of studies that include endoscopists in the AI experiment loop. Experiments measuring if
a human supported by AI is less likely to miss lesions are an important first step in this
direction. Furthermore, direct comparison of the AI systems alone, especially versus highly
experienced clinicians, can benefit both the development of more sophisticated algorithmic
solutions and potentially highlight systematic mistakes that can still affect specialists in
the field. Regarding the algorithmic design, based on the state-of-the-art works collected,
suitable next steps would be focused on more explainable models that can explicitly
highlight features and attributes correlated to the model decision. In this sense, robust
algorithmic approaches need to be further explored. In particular, the following aspects can
be envisioned as possible pillars of the algorithmic innovation in lesion detection systems:

1. Beyond CNNs: Similar to what has been discussed for anatomical landmark detection,
novel architectures for computer vision tasks can be considered in the design of lesion
detection pipelines, also including visual transformers. As an example, [77] uses self-
attention mechanisms of transformers which enables the models to selectively focus on
certain parts of their input and thus reason more effectively. This type of architecture
that relies on attention mechanisms also helps in improving the interpretability of
the model.

2. Generative models for data augmentation: To overcome the lack of publicly available
data and the representativeness of multiple lesions classes, generative models can
synthesize images of lesions. Generative models can also be used for explaining
the attributes that are highly correlated with the model’s decision; for example, [77]
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trained and highlighted the most relevant attributes for the predictions. StyleGAN [78]
models can learn the classifier-specific style space as explanatory attributes.

3. Unsupervised and semi-supervised approaches: The performance of the deep learning
solutions heavily depends on the quality of the data used for training. Possible new
directions to guarantee better generalization of lesion detection models could lie
in the usage of unsupervised and semi-supervised learning techniques that could
leverage the huge amount of non-labeled UGIE video currently available. These can
be achieved by considering first unsupervised feature extraction approaches based on
the use of autoencoders or generative adversarial networks.

4. Use spatial information: A possible approach to provide more reliable detection perfor-
mance is envisioned by embedding prior spatial information into the lesion detection
algorithm. For example, CAD systems that provide automatic photodocumentation
assistance via anatomical landmark detection could use such detailed information
regarding the UGI navigation process, thus providing context information to the
lesion detection algorithms.

A fundamental challenge to overcome in this area is data availability. Public, large,
representative datasets will allow the quality of the different lesion detection approaches
proposed in the literature to be properly assessed.

4.3. Lesion Characterization in UGIE

Automatic gastric lesion characterization is particularly important since it enables to
assess invasion depth, dimension, and differentiation status before performing endoscopic
resection. The main research regarding this problem leverages deep learning techniques
for image classification and region segmentation. Reported results are promising, but some
limitations can still be observed. As for the case of lesion detection, the data collection can
be biased since most datasets are collected from single centers. Moreover, the images are
sampled from a reduced number of patients/cases. Explainability efforts should continue
to be made to validate the prediction from the black box models dominant in the literature.

There is also room for improvement concerning the algorithmic approaches. Below
we list a set of possible innovations for lesion characterization systems:

1. Explainable CNNs: Model explainability is one of the main focal points for future
research, due to the clear necessity of interpretable and transparent models when
applied to sensitive applications domains, such as healthcare. Visual transformers can
naturally enable model interpretability by leveraging self-attention layers.

2. Generative models: The lack of available data and the representation of each class
of interest is also a common problem pointed out in several sections of this review.
Generative models can overcome this issue by creating synthetic images that en-
hance the representativeness of classes within the dataset. Beyond that, styles can
be transferred from, for example, different image modalities, thus creating synthetic
NBI images from WLI or synthetic indigo carmine dye contrast images from WLI,
and so on. To this end, conditional generative adversarial approaches, such as the
StyleGAN [78] can be used.

3. Beyond 2D Characterization: Segmentation models can be used to precisely character-
ize the extension of the region of mucosa affected by a lesion. A possible evolution to
this approach would be that of providing a description of the 3D volumetric charac-
teristics of the abnormal tissue, which can give more information about the invasion
depth throughout the lesion volume, thus providing a further step towards the actual
implementation of what could be interpreted as a sort of 3D visual biopsy.

5. Conclusions

AI support for UGIE exams represents a rapidly evolving area that has been able to
attract the attention of the clinical community in gastroenterology with unprecedented
results. Research approaches surveyed in this work have mainly focused on three fun-
damental areas of UGIE examination: exam completeness, lesion detection, and lesion
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characterization. Regarding quality control, automatic anatomical landmark detection
systems able to harness the information contained in the temporal dimension of UGIE
videos represent currently the most successful approaches. Several systems have also
focused on lesion detection, thus providing information about which frames of the UGIE
video contain lesions and about their spatial localization, by leveraging different deep
learning architectures for object detection. Promising approaches able to combine both
spatial and temporal features have been presented for this task. Current examples of lesion
characterization systems also provide information regarding the extension of such lesions
(via image segmentation), their invasion depth, and status.

Although the results reported in the literature often show a high potential of these
approaches, algorithmic limitations common to the approaches in all three mentioned areas
can still be observed. These include the adoption of mainly standard CNN architectures
without significant design adaptations to the specific tasks at hand and reduced efforts
in providing interpretable models, which are mainly limited to saliency methods, such as
CAMs. In addition, from a data point of view, the constant adoption of only private datasets
and their selection criteria point to potential sources of different kinds of bias that can
invalidate in part the validity of the high accuracy values reported. This fact can possibly
hinder a fully reliable adoption of CAD-assisted endoscopy in clinical practice.

Future research directions have been identified in the roadmap towards more reliable
and robust CAD UGIE algorithms. These include the exploration of more recent deep
learning architectures, e.g., transformer models and hybrid model-based/data-driven ap-
proaches, as well as the use of unsupervised and semi-supervised learning frameworks, etc.
Methods able to combine efficiently domain knowledge (possibly coming from anatomical
landmark detectors) in lesion detection/characterization tasks are expected to better mimic
the ability of expert endoscopists in coping also with highly non-ideal imaging conditions.
In addition, the availability of large publicly available UGIE datasets, with annotations
aligned to standard protocols, is expected to foster new research efforts and boost further
the evolution of the field. Finally, more disruptive future lines of research have been
suggested, such as one involving the evolution of current methods for dynamic 3D re-
construction of the gastric internal surface from UGIE video, thus presenting a potential
paradigm shift in anatomical landmark detection and UGIE exam control.
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