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Abstract: Diagnosing and treating many infectious diseases depends on correctly identifying the
causative pathogen. Characterization of pathogen-specific nucleic acid sequences by PCR is the
most sensitive and specific method available for this purpose, although it is restricted to laboratories
that have the necessary infrastructure and finance. Microscopy, rapid immunochromatographic
tests for antigens, and immunoassays for detecting pathogen-specific antibodies are alternative and
useful diagnostic methods with different advantages and disadvantages. Detection of ribosomal
RNA molecules in the cytoplasm of bacterial and protozoan pathogens by fluorescence in-situ
hybridization (FISH) using sequence-specific fluorescently labelled DNA probes, is cheaper than PCR
and requires minimal equipment and infrastructure. A LED light source attached to most laboratory
light microscopes can be used in place of a fluorescence microscope with a UV lamp for FISH. A FISH
test hybridization can be completed in 30 min at 37 ◦C and the whole test in less than two hours. FISH
tests can therefore be rapidly performed in both well-equipped and poorly-resourced laboratories.
Highly sensitive and specific FISH tests for identifying many bacterial and protozoan pathogens
that cause disease in humans, livestock and pets are reviewed, with particular reference to parasites
causing malaria and babesiosis, and mycobacteria responsible for tuberculosis.

Keywords: diagnostic tests; FISH tests; fluorescence in situ hybridization; Babesia duncani; Babesia
microti; LED fluorescence microscopy; Mycobacterium avium; Mycobacterium tuberculosis; pathogen
identification; Plasmodium falciparum; Plasmodium knowlesi; Plasmodium vivax; ribosomal RNA

1. Background

The in-situ hybridization (ISH) technique for examining the formation and detection of
RNA-DNA or DNA-DNA nucleotide complementary hybrids in cells utilizing radioactively
labelled oligonucleotides as probes was first described in 1969 [1,2]. ISH permits the
detection of nucleic acids in individual cells that contain specific nucleotide sequences
among a heterogenous population of cells. It also allows the simultaneous determination
of biochemical and morphological characteristics of the reactive cells. The hybridization
of fluorescently labeled, chromosome-specific, composite DNA probe pools to cytological
preparations, termed chromosome painting, has made major contributions to karyotyping
and identifying chromosomal changes responsible for human pathology [3]. Fluorescence
in situ hybridization (FISH) methods have since been developed to study chromosomal
genomic changes at the kilobase level [4]. ISH was first utilized for bacteriology in 1983
with radioactively labeled DNA probes targeting ribosomal RNA (rRNA) [5]. Fluorescently
labeled probes have subsequently replaced radioactive probes for FISH [6–8]. In 1989,
DeLong and colleagues demonstrated that oligodeoxynucleotide probes, complementary
to 16S rRNA, labelled with different fluorescent molecules used in FISH can detect single
microbial cells and differentiate closely related organisms [9,10]. Shah et al. in 1990
established that FISH can detect and differentiate Pneumocystis carinii strains in sputum
and tissue from patients [11]. FISH assays for detecting pathogens in clinical samples now
use either peptide nucleic acid (PNA) probes (in which the sugar phosphate backbone is
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replaced with a more hydrolysis-resistant polyamide chain), locked nucleic acid (LNA)
probes (where greater stability is achieved by a methylene bridge linking the 2′ oxygen to
the 4′ carbon of the pentose) or, more commonly, DNA probes [12–20].

The application of FISH assays for detecting and identifying microbial pathogens
has advanced considerably since the turn of the century [21]. FISH techniques have
been applied to investigate the localization of viral nucleic acids within infected tissues
and organs, e.g., for SARS-CoV-2 [22,23] and HIV [24], and rarely for identifying the
infecting virus [25]. PCR tests, and the detection of viral antigens and specific antibodies
to viral antigens, are more commonly and effectively used for diagnosing viral infections.
In contrast, FISH tests have proved useful for identifying bacterial, fungal and protozoan
disease-causing pathogens, particularly at the species level. Recent examples are listed
in Table 1.

Table 1. FISH Tests for Identifying Pathogens.

Pathogen Type Test Targets References

1. Bacteria

Mycobacterium tuberculosis complex (MTBC)
& genus Mycobacterium

Cultures, biopsied tissue
and sputum [12–14,16,26–29]

Mycobacterium avium complex (MAC) Cultures and
biopsied tissue [15,28–30]

Mycobacterium leprae Skin and other
biopsied tissue [16,31]

Gardnerella vaginalis & Lactobacillus species Cultures and tissue [18,32]

Bartonella species including B. berkhoffii,
B. henselae, B. quintana, and B. vinsonii Blood smear [33]

2. Fungi

Pneumocystis carinii Bronchoalveolar lavage
and sputum [11]

Candida albicans Blood cultures [17]

3. Protozoa

Cryptosporidium parvum Insect tissue * [34]

Giardia lamblia Insect tissue * [34]

Trypanosoma brucei gambiense and related
Trypanozoons Blood and tissue smears [35]

Leishmania species

Slit skin smear and
formalin-fixed,

paraffin-embedded
tissues

[36,37]

Trichomonas vaginalis Vaginal fluid [38]

Plasmodium falciparum Blood smear [39]

Plasmodium vivax Blood smear [39]

Plasmodium genus Blood smear [39–41]

Plasmodium knowlesi Blood smear [42]

Babesia species Blood smear and
kidney tissues [43–46]

* The same FISH test can potentially be applied to human tissues.

Ribosomal RNA molecules possess genus, species and strain-specific regions. Hence,
16S rRNA sequences have been used to establish phylogenetic relationships among bacte-
ria [47]. The binding of rRNA-targeting probes can be visualized without nucleic acid-based
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amplification (NAA) of the target rRNA sequence because rRNA is present in each of the
numerous ribosomes in the cytoplasm. Many FISH tests listed in Table 1 are based on DNA
or PNA probes that hybridize to specific rRNA sequences in suitably permeabilized cells.
Due to the complex three-dimensional structure of rRNA, not all nucleotide sequences
within an rRNA molecule are equally accessible for hybridizing with FISH probes. Loop
and hairpin formation as well as rRNA-protein interactions hinder hybridization and
produce differential binding sensitivity with oligonucleotide probes [48,49]. It is therefore
necessary to evaluate and optimize every newly designed probe with the respective ref-
erence organism and appropriate negative controls, before it is applied to test samples.
Self-annealing and hairpin formation occurring within an oligonucleotide probe itself can
lead to low signal intensities, and hence newly designed oligonucleotides also need to be
checked for internal complementarity using appropriate software.

The World Health Organization estimated 241 million cases of malaria and 627,000 resulting
deaths worldwide in 2020 [50]. Infection with Mycobacterium tuberculosis (MTB), which
is primarily responsible for human tuberculosis, caused an estimated 1.4 million deaths
worldwide in 2020 [51]. Malaria and tuberculosis can manifest as latent infections that
rapidly become fulminant diseases with fatal consequences. Babesiosis is a potentially
fatal, tick-borne, globally emerging human disease, that also afflicts livestock and domestic
pets [52]. While the principle of FISH tests remains the same, their application to identify
different pathogens can vary considerably. Recently developed FISH tests that can be easily
used in resource-limited laboratories worldwide for identifying causative pathogens in
malaria, tuberculosis and babesiosis are therefore selected for detailed consideration in this
article. These FISH tests for malaria, tuberculosis and babesiosis have the following shared
characteristics: (i) the assays are performed on thin smears on glass microscope slides,
(ii) cells in the smear are rapidly permeabilized for hybridization which is then performed
with fluorescently labelled DNA probes at 37 ◦C for 30 min, (iii) fluorescence can be viewed
under LED illumination in common light microscopes as shown in Supplementary Figure S1,
(iv) the test is completed in less than two hours, and (v) only living cells are labelled
because rRNA is rapidly degraded in dying cells. Supplementary Figure S2 summarizes
the published work–flow for tuberculosis FISH tests [28,29].

2. FISH Tests for Malaria
2.1. Background

Plasmodium falciparum is responsible for most of the annual 241 million global malaria
infections, together with an estimated 4.5 million cases of Plasmodium vivax and fewer
cases of Plasmodium malariae and Plasmodium ovale [50]. Plasmodium knowlesi, which nor-
mally infects macaque and leaf monkeys, causes a significant number of dead-end human
infections in Southeast Asian countries [53]. Plasmodium knowlesi is difficult to differen-
tiate from human malaria parasites in Giemsa-stained blood smears that are commonly
used for diagnosing malaria in endemic areas [53]. Occasional zoonotic infections with
Plasmodium cynomolgi and Plasmodium inui have also been reported in Southeast Asia [53].
Plasmodium brasilianum and Plasmodium simium infect platyrrhine monkeys in South and
Central America, are genetically almost identical to the human malaria parasites P. malariae
and P. vivax respectively, and likely to have been derived from the human parasites by
anthroponosis [53]. P. simium and P. brasilianum can also infect humans by zoonosis but
their differentiation from P. vivax and P. malariae respectively in stained blood smears is not
possible [53].

There were 2171 US cases of malaria reported to the US Centers for Disease Control
and Prevention (CDC) in 2017 according to the latest available CDC report [54]. Plasmodium
falciparum accounted for 70.5%, P. vivax 10.0%, P. ovale 5.5%, and P. malariae 2.6% of the
infections, all of which had been acquired outside the US [54]. Infections with two or
more Plasmodium species were responsible for 1.0% of infections [54]. The identification of
malaria parasites for diagnosis is therefore also needed in the US and other countries with
no indigenous transmission of malaria.
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Giemsa-stained thick and thin blood smear microscopy has been the most widely used
technique globally for diagnosing malaria. It however requires time and an experienced
microscopist for optimal sensitivity of detection and for identifying the infecting species
of parasite. A sensitivity of >150 parasites per µL is typically achieved during routine
microscopy [39,55]. Rapid diagnostic tests (RDTs), based on the immunochromatographic
detection of antibodies to the histidine rich protein 2 of P. falciparum (PfHRP2) and pan
Plasmodium-specific lactate dehydrogenase and aldolase, have more recently proved help-
ful in resource-limited locations [55]. However, selection for PfHRP2 gene deletions in
P. falciparum in malaria-endemic areas of Africa has lately increased the false negativity
rates for P. falciparum [55]. PCR-dependent NAA diagnostic tests have the best sensitivity
and specificity and are able to identify Plasmodium at the species level, but the procedure is
not suitable for resource-poor settings and field use [56]. The Loop-Mediated Isothermal
Amplification (LAMP) technique has the desired sensitivity and specificity but is not widely
utilized for routine malaria diagnosis and species identification [57]. Flow cytometric detec-
tion of malaria parasites in blood have also been recently described although details of its
limit of detection and ability to identify different species remain to be established [58,59].

2.2. Genus-Specific FISH Test That Identifies All Common Human Malaria Parasites

Simple, rapid and specific FISH tests for malaria, that can be easily performed in
resource-constrained diagnostic laboratories, have many advantages [39,42]. These FISH
tests for malaria employ a similar protocol to FISH tests for tuberculosis shown in Figure S2.
A standard laboratory microscope with a LED fluorescence unit attached to it can be used to
read the processed smears on the slide (Figure S1). Results from a Plasmodium genus-specific
FISH test utilizing a DNA probe hybridizing to 18S rRNA [39] are reproduced in Figure 1.
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(E) P. malariae; and (N,N1) negative controls. Alexa 488 green was used to label the Plasmodium ge-
nus-specific probe in the FISH test. Only Plasmodium parasites fluoresce green in the assay. Scale 
bars represent approximately 5 µm. Figure reproduced with permission under the creative com-
mons license from reference 39. 
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performed on thin blood smears in patients from Peru and Kenya infected with: (A) P. falciparum; 
(B) 1. P. malariae and 2. P. falciparum; (C) P. ovale; (D) P. vivax. The P. falciparum-specific probe and 
Plasmodium genus-specific probe fluoresce green and red, respectively, in the same field when 
viewed with appropriate light filters. The scale bars represent approximately 5 µm. Figure repro-
duced with permission under the creative commons license from reference 39. 

2.4. FISH Test for Specifically Identifying Plasmodium Vivax 
In a second complementary FISH test, termed the PV-FISH test, a mixture of DNA 

probes that hybridize only to the 18S rRNA of P. vivax were labeled with the Alexa 488 

Figure 1. Plasmodium genus-specific FISH test identifying all human malaria parasites. Photographs
showing Plasmodium genus-specific FISH test results with blood smears from patients with confirmed
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P. falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi infections. Fluorescence was viewed in
(1)—fluorescence microscope with a UV light source, and (2)—microscope with LED light source
illustrated in Figure S1. Green fluorescence demonstrated the presence of Plasmodium rRNA. (A,A1)
P. falciparum including a crescent shaped gametocyte; (B,B1) P. vivax; (C,C1) P. knowlesi; (D) P. ovale;
(E) P. malariae; and (N,N1) negative controls. Alexa 488 green was used to label the Plasmodium
genus-specific probe in the FISH test. Only Plasmodium parasites fluoresce green in the assay. Scale
bars represent approximately 5 µm. Figure reproduced with permission under the creative commons
license from Reference [39].

The Plasmodium genus-specific FISH test identified all common species of human
malaria parasites with 100% specificity when compared with several other common human
blood-borne pathogens [39].

2.3. FISH Test for Specifically Identifying Plasmodium Falciparum

A PF-FISH test that complements the Plasmodium genus-specific FISH test, and designed
to specifically identify P. falciparum, utilized a mixture of P. falciparum 18S rRNA-specific
probes labeled with Alexa 488 green and the Plasmodium genus-specific probe labeled with
a Texas Red in a multiplex format. Plasmodium falciparum fluoresced green (Figure 2), while
all Plasmodium parasites, including P. falciparum, fluoresced red with appropriate light filters
in the PF-FISH test [39].
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Figure 2. P. falciparum-specific PF-FISH test. Photographs showing results from the PF-FISH test
performed on thin blood smears in patients from Peru and Kenya infected with: (A) P. falciparum;
(B) 1. P. malariae and 2. P. falciparum; (C) P. ovale; (D) P. vivax. The P. falciparum-specific probe and
Plasmodium genus-specific probe fluoresce green and red, respectively, in the same field when viewed
with appropriate light filters. The scale bars represent approximately 5 µm. Figure reproduced with
permission under the creative commons license from Reference [39].

2.4. FISH Test for Specifically Identifying Plasmodium Vivax

In a second complementary FISH test, termed the PV-FISH test, a mixture of DNA
probes that hybridize only to the 18S rRNA of P. vivax were labeled with the Alexa 488 green,
and used in a multiplex format with the Plasmodium genus-specific probe labeled with
Texas Red. Only P. vivax fluoresced green, and all Plasmodium species fluoresced red, with
appropriate filters in the PV-FISH test [39] as shown in Figure 3.

The two FISH tests for specifically identifying P. falciparum and P. vivax had greater
analytical sensitivity, and also higher clinical sensitivity and specificity, compared to micro-
scopic examination of Giemsa-stained blood smears [39].
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Figure 3. P. vivax-specific FISH test.Photographs showing PV-FISH test results on patient blood
samples with independently confirmed malaria infections from Peru (A), India (B) and Kenya (C–E).
Patient blood positive for (A,B) P. vivax; (C) P. ovale; (D) P. malariae; (E) P. falciparum. Green and red
fluorescence are due to hybridization with the P. vivax-specific probe and Plasmodium genus-specific
probe, respectively, in the same field when viewed with appropriate light filters. The scale bars
represent approximately 5 µm. Figure reproduced with permission under the creative commons
license from Reference [39].

2.5. FISH Test for Specifically Identifying Plasmodium Knowlesi

Zoonotic P. knowlesi infections in Southeast Asia are commonly misidentified as
P. malariae or P. falciparum in Giemsa-stained human blood smears because of morpho-
logical similarities between the blood stages, so that PCR-based tests were needed for
confirming P. knowlesi infections [60–65]. Correct diagnosis of P. knowlesi malaria is essential
for two reasons: (i) understanding its epidemiology, and (ii) its pathogenicity and drug
treatment options can differ from human malaria caused by P. falciparum, P. malariae, P. ovale
and P. vivax that also occur in Southeast Asia. Reliable RDTs for specifically detecting
P. knowlesi are not yet available [66]. However, a simple and specific FISH test using DNA
probes targeting P. knowlesi 18S rRNA (termed the PK-FISH test) specifically identified
P. knowlesi in blood smears [42], as shown in Figure 4.
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Figure 4. Specificity of the PK-FISH test for P. knowlesi. Photographs showing PK-FISH test results
with the P. knowlesi-specific probe (green fluorescence) and the Plasmodium genus-specific probe (or-
ange fluorescence) in blood smears containing P. knowlesi from monkey blood (Pk), and from human
blood with confirmed infections of P. falciparum (Pf), P. malariae (Pm), P. ovale (Po) and P. vivax (Pv).
Each set of paired photographs shows fluorescence in the same field when viewed in a LED fluores-
cence microscope with appropriate light filters (Figure S1). The scale bars represent approximately
5 µm. Reproduced with permission under the creative commons license from Reference [42].
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The PK-FISH test, like the analogous Plasmodium genus-specific test and the PF-FISH
and PV-FISH tests [39], identified all asexual blood stages, i.e., rings, trophozoites and sch-
izonts, as shown in Figure 5 for P. knowlesi [42]. The PK-FISH test also detected P. knowlesi
at the low limit of 16 P. knowlesi parasites per µL, even in the concomitant presence of
P. falciparum at approximately 500 parasites per µL [42], which is superior to that pos-
sible with routine microscopic examination of Giemsa-stained thin blood films [39,55].
This property is very useful in Southeast Asia where mixed infections of P. knowlesi and
other human malaria parasite species are common [60,63]. The highly specific and sen-
sitive PK-FISH therefore meets a widely—recognized diagnostic need of peripheral and
district-level clinical laboratories in areas of Southeast Asia where P. knowlesi zoonosis is
prevalent [53,60–66].
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Figure 5. Detection of ring, trophozoite and schizont stages of P. knowlesi in the PK-FISH test.
Photographs showing results from the PK-FISH test with the P. knowlesi-specific probe (green fluores-
cence) and the Plasmodium genus-specific probe (orange fluorescence) on R—rings; T—trophozoites;
S—schizonts. Dual colour fluorescence in the same field is shown in paired photographs R1 and
R2, T1 and T2, and S1 and S2. Fluorescence was viewed in a LED fluorescence microscope with
pertinent light filters (Figure S1). The ring, trophozoite and schizont-stage parasites were produced
from synchronised in vitro cultures of P. knowlesi. Parasites stained with Giemsa from smears pre-
pared in parallel to the corresponding smears used in the PK-FISH test are shown in R3, T3 and S3
respectively. The scale bars represent approximately 5 µm. Reproduced with permission under the
creative commons license from Reference [42].

2.6. Conclusions

A large number of malaria tests are performed for diagnostic and screening purposes
in malaria-endemic countries. Tests in malaria-free countries are utilized for (i) screen-
ing passengers arriving from malaria-endemic countries to prevent the reintroduction of
malaria if mosquito vectors are present in the country of arrival, and (ii) confirming malaria
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in arriving travelers who have malaria-like symptoms. FISH tests are more costly and
complex to perform than Giemsa-stained blood smear microscopy and RDTs, but signifi-
cantly less so than NAA-dependent PCR and LAMP, for detecting Plasmodium infections
(table in Section 5 below). FISH tests are particularly useful for identifying the species of
infecting parasites, as illustrated here for P. falciparum, P. vivax and P. knowlesi. Therefore,
the clinical diagnostic characteristics and simple methodology of the newly described FISH
tests for malaria parasites, suggest that they can (i) usefully complement Giemsa-stained
blood smear microscopy and RDTs for routine diagnosis and screening for malaria, and
(ii) identify the species of infecting Plasmodium (including in mixed infections), in both
endemic and non-endemic countries.

3. FISH Tests for Babesiosis
3.1. Background

Babesia are apicomplexan protozoan parasites, like Plasmodium, that infect and replicate
within red blood cells to cause babesiosis in humans, livestock and pets [52,67–69]. Ticks
acquiring Babesia from animal reservoirs function as vectors to transmit infections to
humans [52,67–69]. Infections can also be transmitted congenitally and through blood
transfusion [69,70]. The CDC recorded 2418 cases of babesiosis in 2019 in the 40 US
states and the District of Columbia where babesiosis was a notifiable disease [70]. Babesia
microti, B. duncani and B. divergens are largely responsible for human infections in the
US [67–70]. Babesia microti, B. divergens, B. venatorum and B. crassa are responsible for
human babesiosis in Eurasia [52,68–70]. Human babesiosis is also prevalent in Africa, South
America and Australia [68,69]. Moreover, Babesia infect cattle (e.g., B. bovis, B. divergens,
B. bigemina), horses (e.g., B. caballi), dogs (e.g., B. canis), cats (B. felis), deer (e.g., B. odocolei,
B.venatorum), mice (e.g., B. microti, B. rodhani) and other animals [52,69]. The hard ticks,
Ixodes scapularis, I. ricinus, I. persulcatus and Dermacentor albipictus are vectors that transmit
Babesia to humans [69–71].

Laboratory tests commonly used for diagnosing babesiosis involve the detection of
(i) parasites in stained blood smears by microscopy, (ii) serum antibodies to Babesia by
immunoassays, and (iii) Babesia-specific nucleic acid sequences by PCR [69,70]. Babesiosis
and borreliosis (a tick vector-borne disease caused by spirochete Borrelia bacteria), share
many clinical manifestations, and occur as coinfections [72–76]. They have an overlap-
ping geographical distribution [67–71,77,78], underscoring the importance of diagnostic
laboratory tests for differentiating babesiosis and borreliosis. Early intra-erythrocytic
stages of human—infecting Babesia species are not readily distinguished from the ring and
trophozoite stages of P. falciparum by microscopy in areas where babesiosis and malaria are
co-endemic [69]. Furthermore, the antibody assays for diagnosing human and veterinary
babesiosis cannot easily differentiate between active and resolved Babesia infections [67–70].
PCR tests for babesiosis have high sensitivity [79–81] and are recommended for screening
donor blood for babesiosis in the US [82]. However, cost and infrastructure requirements
make PCR-based tests impractical for use in resource-limited laboratories and field settings.

3.2. Babesia Genus-Specific FISH Test

A FISH test that identifies all common species of Babesia parasites, with many ad-
vantages for use in resource-limited laboratories, has been developed [43,44]. Termed the
Babesia genus FISH test, it is based on DNA probes that specifically hybridize to the multiple
copies of Babesia 18S rRNA present in the parasite cytoplasm. Like other rRNA-directed
FISH tests, the Babesia genus FISH test does not require NAA—a process that is sensitive to
NAA inhibitors sometimes present in blood [83].

The Babesia genus-specific FISH test detects B. microti, B. duncani and B. divergens, as
well as the two important parasites causing bovine babesiosis, B. bovis and B. bigemina [43],
as illustrated in Figure 6.

The Babesia genus-specific FISH test, in conjunction with an IFA test for detecting
serum antibodies to B. duncani and B. microti, on clinical samples originating from USA,
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Australia, Europe and elsewhere, showed that the global prevalence of B. duncani infections
had hitherto been under-estimated [44]. Furthermore, the Babesia genus-specific FISH test
was highly specific and did not detect other pertinent pathogens found in human blood [43],
including different species of Borrelia and Plasmodium [43], as well as various species of
Bartonella that infect humans and domestic pets [33,84].
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Figure 6. Babesia genus-specific FISH test on different Babesia species. Parasites stained with Giemsa in
smears used for FISH tests are shown in the case of (A1) B. microti; (B1) B. duncani; and (C1) B. divergens.
Fluorescence observed in FISH tests on corresponding smears from the same preparations are shown
in (A2) B. microti (from hamster blood); (B2) B. duncani (from hamster blood); (C2) B. divergens (from
culture). Other FISH test results on smears of (D) B. bovis (from bovine blood); (E) B. bigemina (from
bovine blood) are also shown. Fluorescence in FISH tests on blood smears from two patients with
the infecting species confirmed by DNA sequencing are shown in (A3) for B. microti and (B3) for
B. duncani. Scale bars represent approximately 5 µm. Reproduced with permission under the creative
commons license from Reference [43].

3.3. Conclusions

The prevalence of human babesiosis has probably been underestimated throughout
the world [44]. Babesiosis also afflicts livestock and pets [52]. The clinical diagnostic
characteristics and simple methodology of the FISH tests show that they can complement
existing diagnostic methods to meet an increasing need to specifically and easily identify
Babesia infections in patients and animals. FISH tests can be used in mixed infections. FISH
is also useful for histopathological investigations to identify Babesia parasites sequestered
in tissues [45]. Species-specific Babesia FISH tests, that are presently being developed, can
address more precise diagnostic requirements in babesiosis.

4. FISH Tests for Tuberculosis
4.1. Background

Pulmonary mycobacterial infections in humans are caused mostly by Mycobacterium
tuberculosis (MTB) and the closely related species Mycobacterium bovis, both of which belong
to the Mycobacterium tuberculosis complex (MTBC) [51]. Infections with non-tuberculous
mycobacteria (NTM), including the Mycobacterium avium complex (MAC), M. kansasii,
M. fortuitum, M. xenopi, M. abscessus, and M. simiae also occur worldwide, making their
differential diagnosis important for clinical purposes [51,85–87]. Infections with MAC are
common in late-stage human immunodeficiency virus infections, where the mycobacteria
are often restricted to lymphoid tissue. FISH provides a sensitive and specific method
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for detecting MAC by in biopsied tissues, which is important because the management
and treatment of patients with MTBC and NTM infections are different [30]. Norcardiosis,
caused by related Norcadia species widely distributed in the environment, also needs to be
differentiated from MTB during lung infections [88].

Microscopic examination for acid-fast staining (AFS) bacilli, e.g., with the Ziehl-
Neelsen stain, in sputum or tissue plays an important role in the diagnosis of tuberculo-
sis [89]. AFS does not differentiate between mycobacterial species. It also lacks sufficient
sensitivity with sputum smears and tissue samples. Sensitivity is increased in sputum
smears and biopsied tissue by staining with auramine and detecting fluorescence in a
LED fluorescence microscope [90], similar to that used for FISH tests (Figure S1). The
Xpert® MTB/RIF system or Xpert (Cepheid, Sunnyvale, CA, USA), is a PCR-based nucleic
acid amplification (NAA) technique that detects specific DNA sequences of MTB [91–93].
Xpert is recommended by the WHO for identifying MTB and rifampicin resistance in the
sputum of adults and children presumed to have tuberculosis [91–93]. It is approximately
100 times more sensitive for detecting MTB than conventional AFS, but Xpert identifies
only MTB, and its use in many resource-constrained endemic countries is limited by cost.
Culturing clinical specimens continues to have an important role in identifying infecting
mycobacteria in tuberculosis-like disease, especially in smear negative, pediatric or extra
pulmonary infections and resource-limited laboratories. Culture techniques that signifi-
cantly reduce culture times for identifying mycobacteria are becoming available to facilitate
diagnosis [94]. Immunochromatographic tests to detect specific proteins produced by
MTBC are more cost-effective than PCR tests, but, as yet, do not have the desired specificity
and sensitivity [92,93].

4.2. FISH Tests for Identifying the Genus Mycobacterium as Well as the Mycobacterium
Tuberculosis and Mycobacterium Avium Complexes in Culture

A simple and rapid test for directly identifying MTB and NTM in sputum and tissues
that can be used by resource-limited laboratories in endemic countries is therefore expected
to greatly aid tuberculosis control worldwide [92,93]. Two dual color FISH tests, with
simple protocols (Figure S2), and requiring only a LED fluorescence microscope (Figure S1),
meet this need [28–30]. The MN Genus-MTBC FISH test used an orange fluorescent
DNA probe that specifically hybridizes to the 23S rRNA of the Mycobacterium tuberculosis
complex (MTBC) and a green fluorescent probe specific for the Mycobacterium and Nocardia
genera (MN Genus) 16S rRNA to detect and distinguish MTBC from other mycobacteria
and Nocardia species. A complementary MTBC-MAC FISH test used green and orange
fluorescent probes for 23S rRNA that respectively differentiate MTBC and MAC [28–30].

All Mycobacterium species from reference cultures, except M. wolinskyi, reacted pos-
itively with the MN Genus-specific probe and only the M. tuberculosis complex species
reacted positively with the MTBC- specific probe in the MN Genus—MTBC FISH test. Only
the M. tuberculosis complex species reacted positively with the MTBC-specific probe and
only the M. avium complex species reacted positively with the MAC–specific probe in the
MTBC-MAC FISH test [28]. Nocardia reacted positively with the MN Genus probe but not
with the MTBC- and MAC-specific probes in the MN Genus-MTBC and the MTBC-MAC
tests [28]. The estimated specificity of the two FISH tests for MTBC and MAC in reference
cultures was 100%, with a limit of detection of 1.5–5.1 × 104 bacteria per ml [28]. Results
from the two FISH tests with reference strain cultures of M. tuberculosis, M. avium and
M. kansasii [28] are reproduced in Figure 7.

4.3. FISH Tests for Identifying MTBC and MAC in Sputum

The FISH tests used for culture identification can also be used for directly detecting my-
cobacteria in sputum [29]. Figure 8 reproduces results obtained with the MN Genus-MTBC
FISH test performed directly on a sputum smear containing MTBC which reacted with the
MN Genus- and MTBC-specific probes and a different smear containing M. abscessus, an
NTM, that reacted only with the MN Genus-specific probe.
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Figure 7. Dual color fluorescence reactivity of Mycobacterium tuberculosis, Mycobacterium avium and
Mycobacterium kansasii in the MN Genus-MTBC FISH and MTBC-MAC FISH tests. Paired photographs
showing dual colour fluorescence in the same microscopic field with A-MN Genus- specific probe
(green fluorescence) and B-MTBC-specific probe (orange fluorescence) in the MN Genus-MTBC
FISH test; and C-MTBC- specific probe (green fluorescence) and D-MAC-specific probe (orange
fluorescence) in the MTBC-MAC FISH test. Mycobacteria used in the FISH tests were reference
cultures of M. tuberculosis, M. avium, and M. kansasii, as well as an artificially mixed culture of
M. tuberculosis and M. avium. Scale bars represent approximately 50 µm. Reproduced with permission
under the creative commons license from Reference [28].
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Figure 8. Sputum smears in the MN Genus-MTBC FISH test. Photographs showing dual colour
fluorescence reactivity of sputum smears from patients with Mycobacterium tuberculosis and Mycobac-
terium abscessus infections in the MN Genus-MTBC FISH test. A shows Ziehl–Neelsen staining for
acid-fast bacilli in sputum from a patient with Mycobacterium tuberculosis infection. MN Genus-MTBC
FISH test results with the MN Genus- and MTBC-specific probes on the sputum of the same patient
are shown in B (green fluorescence) and C (orange fluorescence), respectively. Reactions with the MN
Genus- and MTBC-specific probes in the same field in a sputum smear from another patient with
Mycobacterium abscessus infection are shown in D (green fluorescence) and E (orange fluorescence),
respectively. Scale bars represent approximately 5 µm. Reproduced with permission under the
creative commons license from Reference [29].



Diagnostics 2022, 12, 1286 12 of 18

4.4. Other FISH Tests for Tuberculosis

Another FISH test specific for MTBC in sputum targeting the rpoB gene coding for
the β subunit of RNA polymerase has been described [95]. The rpoB FISH test however
required enzyme digestion of sputum, concentration of mycobacteria by centrifugation,
hybridization overnight and a UV fluorescence microscope for visualizing results [95].
Other PNA or DNA probe-based FISH tests described for MTBC and MAC [12–16] also
require long and more stringent hybridization procedures, and a UV fluorescence mi-
croscope for viewing test results. They have not been used yet for routine diagnosis in
endemic countries. The MN Genus-MTBC and MTBC-MAC FISH tests on the other hand,
cost < US$5 per test, provide results in <2 h after sputum collection, do not require enzyme
treatment and centrifugation, can use LED fluorescence microscopy (Figure S1), and utilize
reagents that are stable at ambient temperature [29]. They are used in India [30]. All FISH
assays have the advantage that they are unaffected by inhibitors in respiratory samples
which reduce sensitivity and require elaborate controls for NAA tests [96,97].

4.5. Conclusions

FISH tests for tuberculosis meet internationally-expressed needs for diagnosing tuber-
culosis in respiratory samples [92,93]. They can complement AFS microscopy and NAA
methods to detect and differentiate MTBC from MAC and other NTM in sputum and
cultures. FISH is also useful in detecting MTB and MAC in biopsied tissues [30]. Table in
Section 5 below compares NAA and FISH tests for tuberculosis.

5. Comparison of NAA and FISH Tests for Diagnosing Malaria and Tuberculosis

Tests that depend on amplifying specific nucleic acid sequences of pathogens and
the subsequent detection and/or sequencing of the amplified nucleic acids are widely
regarded as the gold standard for diagnostic tests because of their high sensitivity and
specificity. Two NAA techniques that can be used for RNA and DNA, are based on PCR [98]
and LAMP [99]. Diagnostic test needs vary considerably for different pathogens and the
diseases caused by them. Malaria and tuberculosis are parasitic and bacterial diseases
respectively of great global clinical concern [50,51]. The use of PCR and LAMP tests for
identifying pathogens causing the two diseases are therefore compared with FISH tests
in Table 2.

Table 2. Comparison of two NAA and FISH tests for malaria and tuberculosis.

NAA Tests–PCR & LAMP FISH

Equipment & Facilities
Comparatively expensive PCR machine with
high maintenance cost. UV light source for
LAMP. Clean room for all NAA.

Light microscope with LED/filter
attachment (Figure S1); 37◦ incubator.
Low maintenance cost.

Test Cost & Reagent Stability
$23–$28 per Xpert test [100] & similar for
LAMP [101–103]. Refrigeration/freezing
needed for reagents.

<$5 per test [42,95]. Reagents stable at 30 ◦C
for several months [42].

Personnel Highly trained operator for PCR and LAMP. Trained microscopist.

Test time <5 h for PCR & LAMP. <2 h

Throughput
Automated for PCR. PCR more economical
for large number of samples. LAMP usually
read manually.

Individual samples and not presently
automated. Amenable to automation by flow
cytometry [24] and fluorescence detection by
digital imaging.
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Table 2. Cont.

NAA Tests–PCR & LAMP FISH

Laboratory and Location
Suitability

(i) Malaria: PCR rarely used for primary
diagnosis except zoonotic malaria. LAMP
rarely used for primary diagnosis of malaria.
(ii) Tuberculosis: LAMP comparable to Xpert
for tuberculosis [101]. Xpert not
advantageous in locations with low levels of
multi drug resistant (MDR) M. tuberculosis
[101–103] or low disease prevalence [103].
LAMP not useful in areas with high levels of
MDR [101].

All types of laboratories, locations and
field use. Does not presently detect MDR
M. tuberculosis.

Species Identification

(i) Malaria: Complex NAA methods can
identify Plasmodium species [56].
(ii) Tuberculosis: Xpert only identifies MTB as
do common LAMP tests.

(i) Malaria: FISH identifies Plasmodium genus
and individual Plasmodium species [39,42].
(ii) Tuberculosis: FISH identifies MTBC and
MAC in culture, sputum [28,29] and biopsied
tissue [30].

Limit of Detection

(i) Malaria: <4 Plasmodium/ µL blood by
PCR [55,56].
(ii) Tuberculosis: 1.3 × 102 cfu/mL for
M. tuberculosis in sputum with Xpert [104].

(i) Malaria: 55–84 Plasmodium/µL
blood [39,42].
(ii) Tuberculosis: 2.2×104 cfu/mL for MTBC
in sputum [29].

Specificity

(i) Malaria: Up to 100% for common
Plasmodium species by PCR [105], 98–99% by
LAMP [106].
(ii) Tuberculosis: ≥96% for MTB with different
Xpert models [107] & >90% with LAMP [108],
in culture confirmed sputum in both cases.

(i) Malaria: For DNA-sequenced clinical
samples >93.4% for important Plasmodium
species [39,42].
(ii) Tuberculosis: 95.5% for DNA-sequenced
MTBC in sputum in India and 100% for
sputum derived cultures from India,
Peru & USA [28,29].

Sensitivity to Inhibitors in
Clinical Samples

PCR and LAMP sensitive to inhibitors in
some tissue and sputum samples [83,96,97]. No FISH inhibitors in clinical samples.

Detection of Live vs. Dead
Pathogens

PCR and LAMP detect DNA in both dead
and live cells because of DNA stability [109].
Cell morphology remains unknown.

Detects live organisms only because rRNA
degrades rapidly in dying cells [39,110]. Cell
morphology visible. Useful for monitoring
drug treatment & disease course

6. Overall Conclusions and Future Prospects

The simplicity, cost, modest infrastructure/equipment/reagent requirements, reagent
stability, good diagnostic parameters, and the ability to identify pathogens at the species
level, suggest that FISH tests can be used in advanced as well as resource-constrained
diagnostic laboratories throughout the world. FISH tests, therefore, can complement
existing diagnostic tests in both disease-endemic and non-endemic countries. FISH tests are
particularly advantageous for identifying pathogens at the species level. Flow cytometry
combined with FISH has been shown able to rapidly identify potentially pathogenic bacteria
present in food, water, air and biofilms formed on various abiotic surfaces [110]. The use
of the Flow-FISH methodology [24,110] for identifying causative pathogens in infectious
diseases therefore merits further investigation. FISH may also be usefully interfaced with
advanced optical and microscopic techniques [22,23,25,111,112] to further expand its scope
for identifying infecting pathogens for research and diagnostic purposes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics12051286/s1, Figure S1: Microscope with LED & filter attachment; Figure S2:
Procedure for TB FISH.
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45. Albertyńska, M.; Okła, H.; Jasik, K.; Urbańska-Jasik, D.; Pol, P. Interactions between Babesia microti merozoites and rat kidney
cells in a short-term in vitro culture and animal model. Sci. Rep. 2021, 11, 23663. [CrossRef] [PubMed]

46. Jiang, J.F.; Zheng, Y.C.; Jiang, R.R.; Li, H.; Huo, Q.B.; Jiang, B.G.; Sun, Y.; Jia, N.; Wang, Y.W.; Ma, L.; et al. Epidemiological, clinical,
and laboratory characteristics of 48 cases of “Babesia venatorum” infection in China: A descriptive study. Lancet Infect. Dis. 2015,
15, 196–203. [CrossRef]

47. Woese, C.R. Bacterial evolution. Microbiol. Rev. 1987, 51, 221–271. [CrossRef]
48. Frischer, M.E.; Floriani, P.J.; Nierzwicki-Bauer, S.A. Differential sensitivity of 16S rRNA targeted oligonucleotide probes used for

fluorescence in situ hybridization is a result of ribosomal higher order structure. Can. J. Microbiol. 1996, 42, 1061–1071. [CrossRef]
49. Fuchs, B.M.; Wallner, G.; Beisker, W.; Schwippl, I.; Ludwig, W.; Amann, R. Flow cytometric analysis of the in situ accessibility

of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 1998, 64, 4973–4982.
[CrossRef]

50. World Malaria Report 2021; World Health Organization: Geneve, Switzerland. Available online: www.who.int/teams/global-
malaria-programme/reports/world-malaria-report-2021 (accessed on 2 April 2022).

51. Global Tuberculosis Report 2021; World Health Organization: Geneve, Switzerland. Available online: https://www.who.int/
publications/digital/global-tuberculosis-report-2021 (accessed on 4 April 2022).
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