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Abstract: Mycobacteria identification is crucial to diagnose tuberculosis. Since the bacillus is very
small, finding it in Ziehl–Neelsen (ZN)-stained slides is a long task requiring significant pathologist’s
effort. We developed an automated (AI-based) method of identification of mycobacteria. We prepared
a training dataset of over 260,000 positive and over 700,000,000 negative patches annotated on scans
of 510 whole slide images (WSI) of ZN-stained slides (110 positive and 400 negative). Several
image augmentation techniques coupled with different custom computer vision architectures were
used. WSIs automatic analysis was followed by a report indicating areas more likely to present
mycobacteria. Our model performs AI-based diagnosis (the final decision of the diagnosis of WSI
belongs to the pathologist). The results were validated internally on a dataset of 286,000 patches and
tested in pathology laboratory settings on 60 ZN slides (23 positive and 37 negative). We compared
the pathologists’ results obtained by separately evaluating slides and WSIs with the results given by
a pathologist aided by automatic analysis of WSIs. Our architecture showed 0.977 area under the
receiver operating characteristic curve. The clinical test presented 98.33% accuracy, 95.65% sensitivity,
and 100% specificity for the AI-assisted method, outperforming any other AI-based proposed methods
for AFB detection.

Keywords: artificial intelligence; tuberculosis; Mycobacterium tuberculosis; Ziehl–Neelsen

1. Introduction

Tuberculosis (“consumption”, “phthisis”, or “white plague”) is one of the ancient
infectious diseases of humankind. It is produced by Mycobacterium tuberculosis, several
other species of mycobacteria are pathogenic in humans (Mycobacterium bovis, Mycobac-
terium avium intracellulare, Mycobacterium leprae and, in special circumstances, a few
others). In 2020, 10 million people had tuberculosis (TB) worldwide, with a yearly death
rate of approximately 1.5 million people, thus it is in the top 13 causes of death and second
cause of death by an infectious disease after COVID-19 [1].
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1.1. Rationale for Automatic Detection of Mycobacteria

Diagnosis of TB relies on several methods; mycobacteria identification is one of the
most important. In histopathology, identification of mycobacteria requires specific acid-
fast stains; the most common one is the Ziehl–Neelsen (ZN) stain, the bacillus appearing
red on a blue background. Fluorescent tests such as auramine (golden bacilli on black
background) may be also performed but they are more expensive and more difficult to
use than ZN [2]. The main problem is that Mycobacterium tuberculosis is a tiny bacillus
(length 2–4/width 0.2–0.5 microns) and it must be searched for in a 2 × 3 cm fragment of
tissue (6,000,000,000,000 square microns) by thoroughly examining hundreds or thousands
of microscopic fields 0.5 mm in diameter.

A pathologist will experience fatigue, diminished attention, and may end by postpon-
ing examination. In fact, a pathologist will not examine the whole slide but those areas with
lesions more suspicious to present bacilli (necrotic areas and epithelioid granulomatous
inflammatory infiltrate with or without Langhans multinucleated giant cells), in order to
reduce the time of examination. Attempts of automatic detection of mycobacteria represent
the logical answer to this problem.

1.2. Literature Review

The first method of artificial intelligence (AI) detection of AFB was developed by
Veropoulos et al., in 1999 on smears stained with auramine [3]. Several other studies propos-
ing methods of automated detection of AFB on ZN stains evaluated smears. Other than
delCarpio et al., and Law et al. (who evaluated scans of slides containing the whole section
present on the slide whole slide images (WSIs)) [4,5], all the other studies evaluated images
captured with cameras (small parts of slides) [6–14]. The specificity and sensibility varied
from study to study as shown in Table 1.

Table 1. Studies of automated detection of AFB on ZN stains on smears.

Studies on Smears Year Precision Sensitivity Specificity

Ayas et al. [6] 2014 N/A * 89.34 96.97
delCarpio et al. [4] 2019 N/A 93.67 89.23

Costa et al. [5] 2008 N/A 76.65 N/A
Costa Filho et al. [7] 2015 N/A 96.8 N/A
El-Melegy et al. [8] 2019 82.6 98.3 N/A
Khutlang et al. [9] 2010 N/A 97.77 N/A

Kuok et al. [10] 2019 N/A 98.06 91.65
Law et al. [11] 2018 N/A 70.4 76.6

Panicker et al. [12] 2018 78.40 97.13 N/A
Vaid et al. [13] 2020 88.4 92.1 N/A

Veropoulos et al. [3] 1999 N/A 94.1 97.4
Zhai et al. [14] 2010 N/A 89.34 96.97

* N/A—not available.

There are other studies published on automatic AFB detection on tissue using WSIs [15–19].
Analyzing tissue is more difficult than analyzing smears. No matter how small a bacillus
is, by the mere sectioning of paraffin blocks the bacillus will be cut in different incidences,
in various relationships with the adjacent cells/structures. Additionally, artifacts created
by sectioning are more complex with a special emphasis on conglomerated red blood
cells—the membranes of adjacent red blood cells compressed one on top of the other is a
very close mimic of AFB in a ZN stain.

Xiong et al. (2018) developed a convolutional neural network (CNN) model pretrained
on the CIFAR-10 dataset [15]. They used a training set of 45 slides (30 positive and
15 negative) digitalized as WSIs with a KF-PRO-005 Digital Section Scanner (Ningbo
Jiangfeng Bio-information Technology Co., Ltd., Ningbo, China). Annotations were made
with ASAP software, the dataset consisting of 96,530 positive and 2,510,307 negative
32 × 32 pixels patches. Several augmentation techniques were used, extending the positive
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dataset to 578,191 patches. The test set consisted of 201 slides (108 positive and 93 negative).
The test slides were divided into 32 × 32 pixels patches that were then fed to the algorithm.
The model analyzed patches from slides and labeled them as positive when the probability
score was over 0.5. Only one positive patch is necessary to label the entire WSI as positive.
Xiong’s et al., method of diagnosis is completely automated—the classification of WSIs
is performed by the algorithm and does not involve a human examiner. The test was
performed twice. After the first run, the false positive and false negative cases (labeled as
such based on human evaluation) were reevaluated by two pathologists; seven cases were
primarily missed by pathologists and six cases were not suitable for analysis due to the
poor quality of the scans. In the end, the performance metrics of the model are 97.94% for
sensitivity and 83.65% for specificity. Based on the data available in their paper, the accuracy
of Xiong et al.’s model is 90.55%. The model has a very good sensitivity, catching most
of the bacilli but the specificity is too low to give many false positive results. The dataset
includes a relatively small number of cases possibly restricting the color variability of the
input space that is modeled.

Yang et al. (2020) [16] constructed a pipeline that consists of combining a CNN model
(Inception-V3) for tile-based classification and a logistic regression (LR) model for WSI
classification. The CNN model was trained to identify tiles (patches) with AFB initially
using a dataset of patches of 256 × 256 pixels originating from 14 WSIs (6 positive and
8 negative slides digitized with an Aperio AT Turbo scanner (LeicaBiosystems, Vista, CA,
USA)). Then, the model was retrained using a semi-supervised active learning framework
that employed the initial dataset completed with new patches originating from 19 negative
WSIs. The models were validated on a separate validation set of patches with F1 scores
of 99.03% and 98.75%. Then, the retrained CNN model was used to classify patches (in
positive and negative) from a set of 134 WSIs (46 positive and 88 negative), the results
being used by the LR model to classify the digitized slides. Yang et al., developed an
AI-assisted diagnostic method. Their pipeline of analysis creating a score heatmap of AFB
probability tiles overlaid onto the WSI. The pathologist examines the areas within the
heatmap and confirms the positivity of the WSI. The WSI-level metrics of the pipeline were
above 80%: sensitivity 87.13%, specificity 87.62%, and F1 80.18%. The analysis produces a
score heat map overlaid on the WSI, guiding the pathologist in the analysis of the probable
positive tiles. However, the low specificity (87.62%) indicates that the model identifies
numerous patches as false negatives and forces the pathologist to examine thousands of
patches suggested as positive. The model yields approximately 4,500 tiles false positive in
a 1 × 1 cm2 section of tissue. In the end, the time and energy spent analyzing the results
might end up more than in the classical (“manual”) microscopic examination. Additionally,
the diversity of the dataset is limited. The patches are selected from 14 cases (only 6 positive)
with a further addition of 19 negative ones.

Lo et al. (2020) [17] developed a CNN model to detect mycobacteria based on a dataset
of 1815 patches (blocks) of 20 × 20 pixels (613 positive and 1202 negative) out of which
80% were randomly selected for training, the remaining 20% being kept for validation. Ad-
ditionally, another 1383 negative patches mimicking AFB (mast cells, background stain, etc.)
were selected. The annotations were performed on nine positive slides digitized with the
help of a ScanScope XT whole-slide scanner (Aperio, Vista, CA, USA). The model used
in the process was a pretrained CNN—AlexNet [20] of five convolution layers. The final
three layers were fine-tuned for the target tasks and the blocks from the dataset were resized
to 227 × 227 pixels to match the AlexNet architecture. The level of cut-off was established
at 0.5. The performance metrics of Lo et al.’s model were 95.3% accuracy, 93.5% sensitivity,
and 96.3% specificity. The dataset is significantly smaller than the one we used and was
extracted from only nine slides. The results on the validation set are reported at patch level;
no WSI analysis is provided.

Pantanowitz et al. (2021) [18] developed an algorithm based on a dataset created
from 441 slides scanned with two types of scanners: Aperio AT2 (Leica Biosystems) and
Hamamatsu Nanozoomer XR. The dataset included 1,117,586 patches (5678 positive and
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1,111,918 negative) selected from 441 WSIs (62 positive and 379 negative) and was separated
in three groups: the dataset used for training consisting of 1,054,395 patches (4629 positive
and 1,049,766 negative) selected from 418 slides (47 positive and 371 negative); the dataset
used for analytical validation (40,957 patches (449 positive and 40,508 negative) selected
from 12 WSIs (9 positive and 3 negative)); and the dataset used for testing (22,244 patches
(600 positive and 21,644 negative) selected from 11 WSIs (6 positive and 5 negative)).
The annotations were made using the aetherSlide application. Two deep CNNs were used
in the process, one with high sensitivity and the other with high specificity. The model with
the highest accuracy (0.960 at the image patch level—calculated as area under the receiver
operating characteristic (ROC) curve (AUC)) in the validation test was selected and used in
further clinical validation. Pantanowitz et al., developed an AI-assisted screening method.
Their tool displays a gallery of patches with their corresponding probability scores and
the WSI to give the possibility of examining the suspicious patches in context. The clinical
validation was performed on 138 slides. It consisted of a blind evaluation performed
by two pathologists with different levels of expertise by classical “manual” microscopic
evaluation of the slides, evaluation of the WSIs, and algorithm-assisted evaluation versus
a gold standard represented by the signed-out assessment. The performance metrics of
Pantanowitz et al.’s model were 84.6% accuracy, 64.8% sensitivity, and 95.1% specificity.

Zaizen et al. (2022) [19] developed an algorithm to detect AFB using a pre-trained
HALO AI CNN. The dataset consisted of 506 AFB annotated on two autopsy cases with TB;
the negative ones including two types of artifacts (nuclei of type I epithelial cells as well
as fibrin and hyaline membrane) originating from 40 negative biopsies. The slides were
digitized using a Motic EasyScan scanner (Motic, Hong Kong, China) and the annotations
were performed using the HALO platform (version 3.0; Indica Lab, Albuquerque, NM,
USA). Zaizen et al., also developed an AI-supported diagnosing method. Each patch
identified as probably positive by the algorithm was evaluated by six pathologists by
consensus. The clinical test included 42 cases, the 16 positive ones were either patients
diagnosed with mycobacteriosis by bacteriological tests performed on material harvested
during bronchoscopy, or patients who developed mycobacteriosis during the follow-up.
The performance metrics of Zaizen et al.’s model were 86% sensitivity and 100% specificity.

There is another study presenting an algorithm of automated AFB detection on tissue,
but it was developed on pictures (24-bit RGB images at a resolution of 800 × 600 pixels
acquired using a digital camera) and not on WSIs. The accuracy obtained was 77.25% [21].

1.3. Novelty of Our Method

We propose an automatic method of identifying AFB using deep neural networks.
These will be trained to process WSIs and indicate the AFB location. The pathologist
analyzes the patches suggested as positive and decides if the slide is positive or not (AI-
assisted diagnosis).

Our algorithm has several advantages compared to previous works. Our dataset is
much larger, more diverse, and more carefully selected than the other datasets.

1.3.1. Dimension

Its positive component is almost 3 times bigger than the next largest one (263,000 posi-
tive patches in ours vs. 96,530 in Xiong et al.’s dataset [15]), which is 429 times bigger than
the smallest ones (506 in Zaizen et al.’s set [20]). Our negative patches are 7 times more
numerous than the second largest one of Pantanowitz et al. [18] (7,000,000 vs. 1,111,918).
Further applied augmentation techniques (both as position—rotations, shifts, crops, etc.—
and in image properties—brightness, contrast, saturation, etc.) expanded our positive
group of patches to more than 2,500,000.

1.3.2. Diversity

Our dataset resulted from annotation of a total of 510 WSIs; 110 WSIs were positive.
The other datasets were constructed based on 2 up to 47 positive WSIs, the variability
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of the positive images being much lower. Additional consideration of the variability in
tinctoriality of ZN staining shows that the diversity of our dataset is significantly increased.
We included bacilli in more numerous and diverse backgrounds and in a greater variety of
ZN stains.

1.3.3. Model and Augmentations

We used a large set of composable augmentations from which we generated both
hard-labeled and soft-labeled training samples. We proposed specific modifications to the
original RegNet-X architecture that was adapted such that it better models the domain task.

1.3.4. Case Selection

Our dataset was built after a strict confirmation of positive cases. Additionally, to pre-
vent the situations when the human examiner is not able to identify few bacilli in a pau-
cibacillar TB, cases with specific TB morphology but with negative ZN stains were excluded.
One author had to reclassify several cases [15] and another reported a very high number of
cases identified as positive after AI-assisted examination (seven newly identified cases out
of a total of nine positive ones) [19].

2. Materials and Methods

We started by selecting ZN-stained slides originating from positive and negative cases.
(Section 2.1). The ZN-stained slides were scanned and annotated, in the end more than
260,000 positive and more than 7,000,000 negative patches of 64 × 64 pixels were selected.
(Section 2.2). The dataset was further expanded by different augmentation techniques.
(Section 2.3). We identified and customized a deep learning architecture suitable for
our task. (Section 2.4). The model was validated on a validation dataset consisting of
286,000 patches (validation set) different from the dataset used for training. (Section 2.5).
The model configuration with the best results in validation was further tested in clinical
trials. (Section 2.6). In this phase, the scanned image of the ZN-stained slide was uploaded
on a platform, divided in 64 × 64 pixels patches, and each patch was analyzed by the
algorithm. The algorithm returned a score for each patch and the pathologist received a
list of patches sorted in descending order by their corresponding score. The pathologist
analyzed the patches, both separately and in context on the slide and decided if the patch
was positive or not. Based on this evaluation, the pathologist decided if the slide was
positive (one single positive patch is sufficient to diagnose the slide as positive) or not
(AI-assisted diagnosis).

The pipeline’s performance was measured twice:

- First evaluation (“validation”) was performed using patches from pre-selected regions
on the slides. On the one hand, the validation gave us the possibility to evaluate
the performance of several architectures and allowed us to choose the best model for
further use. On the other hand, the results obtained on other pre-selected patches
(from slide areas used for active learning) were analyzed one by one by pathologists in
order to establish errors (positive patches labeled as negative and vice versa; negative
ones falsely labeled as positive). The mislabeled patches were correctly re-labeled and
used for re-training and finetuning the model, thus improving its performance.

- Second evaluation (“clinical testing”) was performed using WSIs. Each WSI was
segmented in 64 × 64 pixels patches and all patches were fed to our model for
analysis. The model examined each patch and gave a score of probability (0 to 1)—the
probability of the patch to belong to the positive group of patches used for training
= to present mycobacteria. The results were displayed as a column of patches with
their class score, arranged in descending order of the score (i.e., the patch with the
maximum score was listed first). A threshold must be established for a patch to be
considered positive; the obvious choice should be 0.5. However, in our testing data
we noticed that almost all patches with scores between 0.5 and 0.7 were negative.
Our model was not classifying the WSI as positive or negative, instead it revealed
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to the pathologist the patches that are more probable to harbor bacilli, leaving the
final decision of the diagnosis of WSI to the human examiner. (This is considered
AI-assisted diagnosis).

2.1. Case Selection

We analyzed the archives of the Department of Pathology of Colentina University
Hospital from 2010 to 2022. We selected 2187 cases with ZN stains mentioned in the
histopathology report. Consultation cases were excluded.

All the cases were re-evaluated both on H&E and ZN stains available in the archive by
SZ (a senior pathologist with 23 years of expertise). Cases with discordances between the
initial histopathological report and SZ’s re-evaluation were excluded.

- Positive cases group: cases reported as diagnosed with TB with ZN-stain slides
positive and reconfirmed as such by microscopic reevaluation.

- Negative cases group: cases without AFB bacilli in ZN stain (both primary—at the
moment of diagnosis) and confirmed diagnosis of other illnesses than tuberculosis.
Cases with histopathologic appearance highly suggestive of tuberculosis (epithelioid
granulomatous inflammatory infiltrate with multinucleated giant cells and coagulative
necrosis conserving reticulin network in Gömöri stain—specific morphological aspect
of caseating necrosis) and negative ZN stain were NOT included.

All the cases were tissue fragments (either biopsies or surgical specimens) received
by our department as fresh or formalin-fixed tissue. After the macroscopic examination
(grossing), the fragments were immersed in 10% buffered formalin until the next day
(18–24 h), routinely processed to paraffin (automatic tissue processors Leica ASP 200S (see
Table S1 Supplementary Material) and Leica Peloris 3 (see Table S2 Supplementary Material)
were used), embedded in paraffin blocks (embedding stations ThermoFisher Microm EC
1150 H, Leica EG 1150H, Sakura Tissue Tek and Leica Arcadia), sectioned at 3 microns
thick (semi-automated Rotary Microtome Leica RM2255 and RM2265) and stained with
ZN staining kit (Ziehl–Neelsen for mycobacteria—microbiology, BioOptica Italy) (see Table
S3 Supplementary Material).

H&E slides were used only for analyzing the morphologic lesions, to confirm the
diagnosis in positive cases, and to exclude from the negative group the cases with high-
morphology suggestive of TB but without AFB in the ZN stain. For our study we use only
the ZN-stained slides classified as positive and negative as previously described.

ZN-stained slides were scanned using both manual and automatic scanners, each slide
being entirely scanned as whole slide image (WSI) in “.svs” format. The manual scanner
was provided by Microvisioneer, Esslingen am Neckar, Germany, and consisted of a Camera
Basler Ace 3.2 MP (acA2040-55uc) with Sony IMX265 Sensor and Microvisioneer manual
WSI Software Professional Edition. The automatic scanner was a Leica Aperio GT450.

Finally, we obtained 570 WSIs: 133 positive and 437 negative; 510 WSIs—group A
(110 positive WSIs and 400 negative WSIs)—were used for training purposes while the
remaining 60 WSIs—group B (23 positive WSIs and 37 negative WSIs)—were used for
testing (Table 2).

Table 2. Structure of the study group.

Group Positive Negative Total

A (training) 110 400 510

B (testing) 23 37 60

Total 133 437 570

2.2. Annotation Process

The WSIs from group A were annotated by 7 pathologists with various experience
(Table S4 Supplementary Material) using an in-house platform for annotation and Cytomine
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application (Cytomine Corporation SA, Liège). Positive areas were identified either as
patches (less than 64 × 64 px) in our in-house annotation platform or point-like annotations
of the bacillus in Cytomine platform. Negative samples were drawn either from WSIs
labeled as negative or from manually annotated negative areas inside WSIs labeled as
positive. Patches selection from negative WSIs was performed in two steps: firstly, the WSI
area was filtered to contain a sufficient amount of tissue (versus background); secondly,
a 64 × 64 patch was sampled via a uniform distribution from this area. In the end, we ob-
tained a pool of negative samples containing more than 700 million patches before applying
any augmentations. Examples of positive and negative areas are depicted in Figures S1–S6
(Supplementary Material).

2.3. Image Augmentation Techniques

Even though the dataset obtained via the annotation process contains more than
260,000 positive examples, there is a large diversity that the staining process induces to the
color space of both positive and negative WSIs. In order to mitigate this, we have employed
extensive augmentation techniques to cover a wider variety in WSIs. The augmentation
transformations were applied to all training patches. These included random rotations
in the range of 0 to 90 degrees (clockwise and counterclockwise); random shifts; random
crops; and random brightness, contrast and saturation changes. In addition to these specific
transformations, we also extracted positive patches around the annotated AFBs by shifting
a maximum of 24 pixels in any of the two axes. Since all transformations were applied in a
chain, specific to sample interpolation techniques, we considered that training examples
have diversified by at least one order of magnitude.

2.4. Deep Learning Model Development and Training

Our patch-based classifier for AFB detection is based on RegNetX4 architecture.
This deep convolutional neural network manages to yield state-of-the-art performance
while preserving simplicity and speed. It has the advantage of requiring less hyperparam-
eter tuning, which is an important consideration when dealing with the large amount of
data and data manipulation techniques used in our setting. In order to better fit the task at
hand, we have adapted the architecture through various custom modifications:

• We reduced the kernel size in the stem layer (plausible morphology of bacillus can be
constrained in a 3 × 3 convolution filter or 5 × 5 convolution filter);

• We reduced the number of strided convolutions, as an overall larger receptive field in
the final stages is not necessarily helpful due to the low spatial size of the target class;

• We employed parallel dilated convolutions (i.e., selective kernel convolutions [22],
atrous convolutions [23]) in order to accommodate morphologies that are not necessarily
captured in a 3 × 3 filter while still keeping a reasonable amount of trainable parameters;

• We opted for reflection padding instead of zero padding in all padded convolution
layers to reduce locality bias learned by the network in order to be more robust to
bacillus positioning inside boxes served at inference or testing time.

The network variant we used contains less than 160 million learnable parameters, al-
lowing for adequate inference speed even when not using high-end hardware, without any
degradation of the performance metrics.

We trained our model in a distributed fashion using parameter replicas for each Graph-
ics Processing Unit (GPU) and gradient averaging before broadcasting parameter updates.
We used a batch size of about 2048 per GPU with positive and negative examples roughly
evenly split in order to mitigate the severe class imbalance. We experimented with various
proportions (positive vs. negative) starting from 25–75% up to 75–25% using 5% incre-
ments. We limited our learning procedure to a maximum of 100 million samples seen
(including augmented patches). The optimizer used was AdaBound where the step size α

is provided by a linear warm-up cosine scheduler with periodic restarts [24]. Inference is
performed only on the parts of the WSI containing a relevant amount of tissue. Filtering
the WSI was performed using the same method as for filtering the training areas used for
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extracting patches. Depending on the WSI size and CPU threads used for WSI patch area
extraction our baseline processing pipeline (i.e., 1 CPU thread) manages to process a WSI
in 5 to 15 min.

2.5. Model Validation

We constructed a set of validation patches by annotating several areas collected from
37 WSIs; obviously, none of the areas selected for validation were previously used for
training. The areas thus collected have been divided in non-overlapping patches of
64 × 64 pixels, which were subsequently annotated by the team of pathologists as either
positive or negative. We have obtained 286,000 validation patches of which 15,000 are
positive and 271,000 negatives. The class imbalance is intentional, as it is much more likely
for the model to generate false positives than false negatives and this data distribution is
much closer to real conditions than a balanced one.

2.6. Testing Process

For the testing process four teams of two pathologists each were involved; each team
included pathologists of similar experience (Table S5 Supplementary Material). We com-
pared three types of results: B1—results obtained by examining slides with a bright-field
light microscope; B2—results obtained by examining the WSIs scanned with a Leica Aperio
GT450 automated scanner; and B3—results obtained by algorithm-aided WSIs evaluation.
A wash-out period of 2 weeks between each type of evaluation was respected. For each case,
in each scenario (B1, B2, and B3), the pathologist registered the status (positive or negative)
and the time required to reach the diagnosis. No time limit was established for examination
of either slides or WSIs. All the results were compared with the “gold standard”—the
original histopathological report reconfirmed by H&E and ZN stains reexamination (see
Section 2.1).

2.7. Statistical Analysis

Model validation was performed using the validation set that the team of pathologists
had produced. A receiver operating characteristic (ROC) curve was plotted to describe the
diagnostic ability of the model to classify patches as containing AFB or not. The imbalance
we have imposed between the number of positive and negative patches in the validation
dataset has led us to select the Precision–Recall curve as a useful measure to compute
the area under the receiver operating characteristic curve (AUC) for (AUPR). Due to the
same reason, we also computed the F1 score and Matthew’s correlation coefficient (MCC).
All metrics were computed using Python libraries scikit-learn and matplotlib.

The performance metrics used to evaluate our proposed method in clinical tests are
listed in Table S6 (Supplemental Material).

Statistical significance of the difference between two groups was analyzed using the
χ2 test, where applicable. Statistical significance was defined as p < 0.05, and all statistical
analyses were performed using the EXCEL program.

3. Results
3.1. Internal Validation

We have evaluated the model on the validation set. Accurately validating on entire
WSIs would require slides that are completely annotated (to have each AFB indicated
by an expert). The cost of obtaining such data is prohibitive and requires compromising
on staining diversity, tissue morphology, and artifact types, as opposed to performing
validation on selected interest areas from multiple WSI.

The evaluation of the configurations has been performed on the best checkpoint iden-
tified during the training process. We have obtained an AUC for the ROC curve (Figure 1)
of 0.977 and an AUPR for the Precision-Recall curve of 0.843 (Figure 2). The sensitivity,
specificity, F1-score and MCC curves are described in Figure 2. It is important to note
that the AUC value the model obtained for the ROC curve is considered to be excellent
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for models used in medical testing [25–27]. By setting an arbitrary value of 0.5 for the
decision threshold during validation (patches over the threshold are considered positive
while under the threshold they are negative) we obtained an accuracy of 0.969, a sensitivity
of 0.877, a specificity of 0.974, an F1-score of 0.923, and MCC of 0.745 (Figure 3).
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Most frequent false positive findings during validation (at patch level) were given by
red blood cells, mast cells, and fibrotic septa. Parts of red blood cells mimic AFB (Figure 4).
In fact, even in classical microscopic examination of ZN stained slides, the pathologist
has difficulties in differentiating between bacilli and the periphery of red blood cells,
especially in case of congestion (when several red blood cells are compressed within a
narrow capillary). In addition, since ZN stain has quite important variation, the level of
acid–alcohol discoloration can be low, thus preserving a more intense coloration of red
blood cells (red or bright pink instead of pale pink)—the internal control for a proper ZN
stain is a pale-pink color of red blood cells.
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Granules from the cytoplasm of mast cells are colored in purple in ZN by methylene
blue that is used for staining the background (see Table S3 Supplementary Material for the
protocol of ZN stain). Additionally, parts of a mast cell cytoplasm can be confused for an
AFB when the patch includes a very small part of the cell (Figure 5).



Diagnostics 2022, 12, 1484 11 of 28Diagnostics 2022, 12, x FOR PEER REVIEW 12 of 29 
 

 

 
Figure 4. Patch of 64 × 64 pixels (in green) with a positive score (probability of similarity with posi-
tive dataset used for training) of 0.96 due to the presence in the upper left margin of the green square 
of a red blood cell. Lymph node with toxoplasmosis ZN × 400. 

Granules from the cytoplasm of mast cells are colored in purple in ZN by methylene 
blue that is used for staining the background (see Table S3 Supplementary Material for 
the protocol of ZN stain). Additionally, parts of a mast cell cytoplasm can be confused for 
an AFB when the patch includes a very small part of the cell (Figure 5). 

 
Figure 5. Patch of 64 × 64 pixels (in green) with a positive score of 0.96 due to the presence in the 
inferior right margin of the green square of several purple mast cell granules with linear arrange-
ment mimicking an acid-fast bacillus. Hodgkin’s lymphoma, nodular sclerosis variant. ZN × 400. 

Figure 4. Patch of 64 × 64 pixels (in green) with a positive score (probability of similarity with
positive dataset used for training) of 0.96 due to the presence in the upper left margin of the green
square of a red blood cell. Lymph node with toxoplasmosis ZN × 400.

Diagnostics 2022, 12, x FOR PEER REVIEW 12 of 29 
 

 

 
Figure 4. Patch of 64 × 64 pixels (in green) with a positive score (probability of similarity with posi-
tive dataset used for training) of 0.96 due to the presence in the upper left margin of the green square 
of a red blood cell. Lymph node with toxoplasmosis ZN × 400. 

Granules from the cytoplasm of mast cells are colored in purple in ZN by methylene 
blue that is used for staining the background (see Table S3 Supplementary Material for 
the protocol of ZN stain). Additionally, parts of a mast cell cytoplasm can be confused for 
an AFB when the patch includes a very small part of the cell (Figure 5). 

 
Figure 5. Patch of 64 × 64 pixels (in green) with a positive score of 0.96 due to the presence in the 
inferior right margin of the green square of several purple mast cell granules with linear arrange-
ment mimicking an acid-fast bacillus. Hodgkin’s lymphoma, nodular sclerosis variant. ZN × 400. 
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All patches with scores over 0.7—either positive or negative—were re-evaluated by
pathologists. This analysis revealed that very few patches with a negative score over 0.7 (i.e.,
“more likely similar with negative training data set”) were a false negative. Several patches
with a positive score over 0.7 (i.e., “more likely similar with positive training data set”)
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were erroneously labeled as such. We employed an active learning strategy for training
and fine-tuning the model. To this end, we selected a fine-tuning holdout set consisting
of several areas from the training WSIs that were non-overlapping with the annotations
(either positive or negative). First, the model was trained from scratch with the available
data. Then, inference was performed on the validation set, and the validation metrics were
assessed (e.g., sensitivity, specificity, F1-score, etc.). The model then was used to classify
the areas in the holdout set (which contain both positive and negative patches). The results
obtained for the holdout set classification were analyzed by the pathologist team, and the
mislabeled patches are correctly relabeled as negative or positive. In the end, the model
was retrained for fine-tuning with these new patches. Performance was further improved
by performing several iterations of this active learning cycle for the data. Given this process,
as described in Figure 6, the model can be easily adapted to new conditions and variations
when we obtain new WSIs.
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3.2. Clinical Testing

Our test group included 37 males (61.67%) and 23 females (38.33%) with a median
age of 42.25 years (the youngest patient was 1 year old and the oldest was 80 years old).
The specimens were represented by: lymph nodes—35 cases (58.33%), lung—10 cases
(16.67%), skin—7 cases (11.67%), striated muscle—5 cases (8.33%), and intestine—3 cases
(5.00%). A total of 23 cases were diagnosed as tuberculosis (38.33%) while 37 cases (61.67%)
were inflammation other than tuberculosis or cancer (Figure 7): cat scratch disease 5.00%,
sarcoidosis 6.67%, unspecific granulomatous inflammation 8.33%, Kikuchi 3.33%, toxoplas-
mosis 1.67%, unspecific inflammation 8.33%, reactive lymphadenitis 10.00%, non-Hodgkin’s
lymphoma 6.67%, Hodgkin’s lymphoma 6.67%, and carcinoma 5.00%. All the cases of
tuberculosis had AFB present in ZN stain; obviously, no AFB were present on ZN stain in
the other cases. In order to avoid a possible bias in evaluating AFB presence due to correct
identification of the lesion (i.e., diagnosing other disease than TB based on morphology
alone), all the negative cases were selected to present either necrotizing granulomatous
inflammation (cat scratch disease or unspecific granulomatous inflammation), granulo-
mas (sarcoidosis), epithelioid histiocytes (toxoplasmosis), necrosis (Kikuchi, unspecific
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inflammation, lymphomas, or carcinomas), or florid histiocytosis (reactive lymphadenitis,
or unspecific inflammation). No clinical data were available to the pathologists when
examining either slides or WSIs.
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Figure 7. Repartition of the test group according to diagnosis.

3.2.1. WSIs Analysis

The results of analyzing WSIs by pathologists showed interesting results (Table 3).
Accuracy (capacity to identify closer to the true value) was, with one exception, higher than
0.8333 (varied from 0.6167 to 0.9333). Sensitivity (capacity to identify true positives) varied
from 0.3913 to 0.9565 and specificity (capacity to identify true negatives) varied from 0.7567
to 0.9459.

Table 3. Statistical measures of the pathologists’ performance on whole slide images.

Senior
Pathologist

1A

Senior
Pathologist

1B

Senior
Pathologist

2A

Senior
Pathologist

2B

Pathologist
A

Pathologist
B Resident A Resident B Our model

Sensitivity 0.8261 0.8261 0.9565 1 0.4782 1 0.5652 0.3913 0.9565

Specificity 0.9459 0.9730 0.9189 0.8648 1 0.8378 1 0.7567 1

Precision 0.9048 0.9500 0.8800 0.8214 1 0.7931 1 0.5000 1

Negative
predictive

value
0.8974 0.9000 0.9714 1 0.7551 1 0.7872 0.6667 0.9737

False
negative rate 0.1739 0.1739 0.0435 0 0.5217 0 0.4348 0.6087 0.0435

False
positive rate 0.0541 0.0270 0.0811 0.1351 0 0.1622 0 0.2432 0

Accuracy 0.9000 0.9167 0.9333 0.9167 0.8000 0.9000 0.8333 0.6167 0.9833

F1 0.8636 0.8837 0.9167 0.9019 0.6471 0.8846 0.7222 0.4390 0.9778

Exposure to
WSI (years) 1.5 1.5 1.5 1 0.25 0.5 0 0 -

Experience
(decades) 1.2 1.4 0.7 0.9 0.4 0.4 0 0 -
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The accuracy (p = 0.1), precision (p = 0.09), and specificity (p = 0.06) had a general
tendency to increase as the experience of the pathologist increases, but there was no
uniformity towards an increase in the sensitivity with experience (p = 0.25) (Figure 8a–d).
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Figure 8. Variation of sensitivity, specificity, accuracy, and precision in correlation to pathologists’
experience. (a) Variation of sensitivity in correlation to pathologists’ experience. (b) Variation
of specificity in correlation to pathologists’ experience. (c) Variation of accuracy in correlation to
pathologists’ experience. (d) Variation of precision in correlation to pathologists’ experience.

When looking at sensitivity, specificity, precision, and accuracy in correlation with
experience in analyzing WSI (exposure to WSI) we identify a statistically significant associ-
ation for specificity (P chi test 0.004), precision (P chi test 0.008), and accuracy (P chi test
0.012), but not for sensitivity (P chi test 0.06) (Figure 9a–d).
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Figure 9. Variation of sensitivity, specificity, accuracy and precision in correlation to pathologists’
experience of examining whole slide images. (a) Variation of sensitivity in correlation to pathologists’
experience of examining WSIs. (b) Variation of specificity in correlation to pathologists’ experience of
examining WSIs. (c) Variation of accuracy in correlation to pathologists’ experience of examining
WSIs. (d) Variation of precision in correlation to pathologists’ experience of examining WSIs.

3.2.2. Slide Analysis

Slide analysis (microscopic examination) revealed much better results than those ob-
tained on WSIs (Table 4). The senior pathologists had one to three errors per person (senior
pathologist 1A—2 errors, senior pathologist 1B—3 errors, senior pathologist 2A—3 errors,
senior pathologist 2B—one error; all but one error were false negative); the pathologists
had more errors—pathologist A—12 errors, pathologist B—4 errors; 4 of them were false
positive and 12 false negative) while residents had 29 errors (resident A 12 errors, all false
negative, resident B—17 errors, 2 false positive, 15 false negative). The results were much
better than those obtained by evaluating WSIs but algorithm-assisted evaluation had bet-
ter results than human evaluation either on WSIs or slides. In fact, our model results
(AI-assisted evaluation) were better or similar to pathologists examining slides. Senior
pathologist 2B was identical, with only one false negative result, for the same case. The re-
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sulting accuracy for our model was 98.33% with only one false negative result—sensibility
of 95.65% and no false positives—specificity of 100%.

Table 4. Statistical measures of the pathologists’ performance on glass slides.

Senior
Pathologist

1A

Senior
Pathologist

1B

Senior
Pathologist

2A

Senior
Pathologist

2B

Pathologist
A

Pathologist
B Resident A Resident B Our model

Sensitivity 0.9130 0.8695 0.9130 0.9565 0.5217 0.9565 0.4782 0.3478 0.9565

Specificity 1 1 0.9729 1 0.9729 0.9189 1 0.9459 1

Precision 1 1 0.9545 1 0.9230 0.88 1 0.8 1

Negative
predictive

value
0.9487 0.925 0.9473 0.9736 0.7659 0.9714 0.7551 0.7 0.9737

False
negative rate 0.0869 0.1304 0.0869 0.0434 0.4782 0.0435 0.5217 0.6521 0.0435

False
positive rate 0 0 0.0270 0 0.0270 0.0811 0 0.0540 0

Accuracy 0.9667 0.95 0.95 0.9833 0.8 0.9333 0.8 0.7166 0.9833

F1 0.9545 0.9302 0.9333 0.9778 0.6667 0.9167 0.6471 0.4848 0.9778

Experience
(decades) 1.2 1.4 0.7 0.9 0.4 0.4 0 0 -

3.2.3. Time Analysis

Time dedicated for WSI examination varied from 10 s to 80 min with an average
time of 11.43 min per WSI. The average time of examination varied between examiners
from 5.48 min to 17.06 min with shorter times for positive slides and longer for negative
ones (either true or false negatives). In fact, for every pathologist, the longest time of
examination was recorded for negative cases (true negative for seven examiners and false
negative for the remaining one) and the shortest for true positive ones (Table 5). No relation
with experience or prior exposure to WSI was identified.

Table 5. Time used by pathologists when examining whole slide images.

Time of
Examination

(min)

Senior
Pathologist

1A

Senior
Pathologist 1B

Senior
Pathologist

2A

Senior
Pathologist 2B Pathologist A Pathologist B Resident A Resident B

All WSIs 1–45 1–35 0.08–20 0.16–26 0.5–80 0.33–35 9.5–35 0.1–28

Average
all WSIs 17.07 12.38 5.48 5.78 14.04 13.58 14.95 8.16

True positive 1–18 1–18 0.08–15 0.16–8 0.5–25 0.33–21 0.5–32 0.1–13

Average true
positive 7.26 6.54 4.28 2.47 5.59 7.64 12.54 3.51

False positive 9–14 27 4–15 0.16–8 - 4–30 - 3–21

Average false
positive 11.50 27.00 11.33 4.43 - 10.67 - 7.33

True negative 8–45 2–35 1–20 1–26 0.5–80 7–35 3–35 2–20

Average true
negative 21.37 11.56 5.88 8.38 12.38 18.55 14.14 7.25

False negative 15-36 5-32 1 - 2-52 - 7-29 5-28

Average false
negative 28.75 21.50 1.00 - 26.92 - 21.10 13.50

When examining slides, the pathologists spent less time than for WSIs. The overall
interval varied from 3 s to 49 min with an average of 5.25 min (Table 6).
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Table 6. Time used by pathologists when examining slides by microscope.

Time of
Examination

(min)

Senior
Pathologist

1A

Senior
Pathologist 1B

Senior
Pathologist

2A

Senior
Pathologist 2B Pathologist A Pathologist B Resident A Resident B

All slides 1–20 1–49 0.05–10 0.16–26 0.5–38 0.33–16 0.5–22 0.5–19

Average
all slides 6.13 7.08 2.84 4.25 5.44 5.06 6.15 5.09

True positive 1–19 1–32 0.05–10 0.16–8 0.5–10 0.16–15 0.5–18 0.5–11

Average true
positive 3.71 11.2 3.21 3.42 3.04 5.46 0.92 2.75

False positive 8 0.5 3-16 1-3

Average false
positive - - 8 - 0.5 11.33 - 2

True negative 1–20 1–16 0.05–10 1–26 0.5–38 0.33–11 0.5–12 1–11

Average true
negative 7.46 3.45 2.52 4.76 4.77 3.98 4.42 4.1

False negative 5–9 2–49 1–4 4 1.5–25 13 1–22 2–19

Average false
negative 7 24.33 2.5 4 10.68 13 8.15 9.06

Time used by pathologists in AI-assisted examination varied from 9 s to 2.002 min for
positive slides (average 0.61 min). In most of the cases, the AFB were present in the first
or the second patch in the list. In one case the pathologist examined 25 patches to find a
convincing AFB.

We exemplify two cases that required pathologists 32–33 min for examination (an
average of 12–13 min for classic microscopic examination) (Figures 10 and 11). In negative
cases, a maximum of 4–5 min weas necessary for confirmation of negativity. Average time
needed for AI-assisted examination was 1.85 (1 min 51 s).
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Figure 11. Paucibacillary lesion identified as positive by 6 of 8 pathologists in 1–33 min (medium
of 12.25 min); the time of AI-assisted examination was 9 s (first patch—green square—was convinc-
ingly positive).

3.2.4. Error Analysis

We analyzed the errors made by pathologists when evaluating WSIs. To our surprise,
human examination of WSIs results in an amazing proportion of 31 WSIs of a total of
60 cases that were erroneously interpreted (51.67%) with a total of 71 misinterpretations of
480 evaluations (Table 7, Figure 12a). Even when residents were excluded, errors occurred
for 21 WSIs (35%)—more than one third of the cases (Table S7 Supplemental Material,
Figure 12b).

Table 7. Errors in WSIs evaluation for qualified pathologists and residents.

Qualified Pathologists and Residents (8 Persons × 60 WSI)

Negative Cases Positive Cases Total

No of errors per WSI

0 23 6 29

1 9 3 12

2 1 5 6

3 3 5 8

4 0 3 3

5 1 0 1

6 0 1 1

Cases with errors (of 60 WSIs) 14 17 31

% 37.84% 73.91% 51.67%

No of errors (of 480 examinations) 25 46 71

% 8.45% 25.00% 14.79%
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Figure 12. (a) Errors in WSIs evaluation for all the team (qualified pathologists and residents).
(b) Errors in WSIs evaluation for qualified pathologists.

4. Discussion

Diagnosis of TB can be difficult. A complex interpretation of clinical and radiological
images supported by immunological, bacteriological, histopathological, and molecular
tests is needed. Paucibacillary lesions are particularly difficult to diagnose. Sputum and/or
tissue examination often fail to identify AFB. Bacteriological tests are more successful in
identifying mycobacteria than pathology (up to 50–80% more sensitivity for bacteriology
compared with histopathology) [28] but the main drawback of the method is the time re-
quired by cultures—average of 14–21 days but it is not unusual to take up to 6–8 weeks [29].
PCR and bacteriological tests may also offer divergent results [30]. Immunohistochemistry
for mycobacteria is expensive and due to the small dimensions of the bacillus, can be
difficult to interpret in paucibacillary lesions.

Histopathologically identification of AFB in the appropriate morphological milieu
represents the most precise diagnosis of TB possible because it corroborates the presence of
specific lesions with the presence of the bacteria. TB is a form of “specific chronic inflamma-
tion”, i.e., inflammation with microscopic lesions so characteristic that, by their presence
alone, one can affirm with certitude that the culprit provoking the morphologic alterations
is a species of Mycobacterium. The lesions consists of confluent epithelioid granulomas
with centrally located Langhans multinucleated giant cells and caseating necrosis. In these
cases, the diagnosis requires only a routine H&E stain. However, in different circumstances
(early lesions, associated illnesses such as cancers, immunosuppression or (auto)immune
diseases, simultaneous infection with other microorganisms, etc.), this typical morphologi-
cal picture is altered and several special stains are needed for diagnosis: Gömöri staining
for reticulin and van Gieson Weighert for elastic fibers (to prove the preservation of reti-
culin and elastic fibers in necrotic area); ZN or auramine (to identify AFBs); some other
special stains (Giemsa, Gram, Grochott, Warthin Starry, etc.) to exclude the presence of
other microorganisms; in some cases immunohistochemical tests for mycobacteria; and/or
polymerase chain reaction (PCR) for Mycobacterium tuberculosis are performed. Moreover,
clinical, blood tests (QuantiFERON-TB), and imaging data are corroborated in order to
establish a diagnosis of TB [31,32].
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Understanding the details of the histopathologic diagnosis of TB is mandatory in
order to explain the strict inclusion and exclusion criteria one has to use for constructing
the dataset. A paucibacillary lesion may include very few bacilli easy to miss even by an
experienced pathologist. This is why we excluded from the negative cases group the slides
with morphological appearance highly suggestive of tuberculosis even if the ZN-stained
slides did not reveal any bacilli no matter how thoroughly was the examination both at the
moment of diagnosis and at reexamination. Additionally, in the B group, in the negative set
of cases used for testing, cases with morphology similar to TB but with a clear diagnosis of
diseases other than TB were included. This was conducted in order to avoid an involuntary
bias created when the pathologist examines a ZN-stained slide that he/she is convinced
that the diagnosis is not TB and obviously no bacilli may be present: “it does not look as
TB, for sure no AFB are present; no careful scrutiny is needed”; “it looks as TB, maybe there
are AFP present; and let’s look for them carefully”.

Xiong et al., describe reevaluation of the cases during the process of developing the
algorithm. They reclassified seven cases initially labeled as negative [15].

Zaizen et al., have an interesting approach when constructing the testing group:
the positive cases were those with proven mycobacteriosis either when the biopsy was
performed or during follow-up; based on this perspective, AI-supported pathological
diagnosis identified 11 positive cases versus 2 positive cases in classical pathological
diagnosis, without AI support [19]. It is unusual for a pathologist to miss 9 cases from a
total of 42 (12.5% sensitivity). The algorithm was able to identify 11 positive cases (2 cases
identified as positive by human examiner and 9 more cases) and “missed” 5 cases. Due to
the design of the testing process, these “missed” cases could be real negative ones at the
moment of examination (if a patient is developing an illness in the future he or she is not
mandatory presenting the microorganism months in advance) or, due to the scarcity and
the not uniform distribution of the mycobacteria within the tissue it is possible that the
tissue examined by algorithm did not contain bacilli in the moment of investigation.

Another important advantage of our dataset is represented by the number of the cases
selected for annotation and the number of positive patches. We annotated 110 positive
WSIs obtaining 263,000 positive patches. As it is shown in Table 8, this is the biggest
and most diverse AI training dataset for mycobacteria to date. The number of negative
cases is also important; at first glance, few negative WSIs are necessary for obtaining a
large number of negative patches (one slide with 1 cm2 of tissue can be cut in more than
800,000 patches of 64 × 64 pixels). It is important, however, to have different types of
tissue with different types of lesions to ensure a sufficient variability of the patches in
both structure and color. The absolute number of negative WSIs of our training group is
also the biggest, comparable with Pantanowitz et al., dataset but with several orders of
magnitude higher than the others. The high number of ZN-stained slides is important due
to the fact that it offers a higher diversity of images. ZN stain is a manual stain with high
variability from lab to lab, being almost impossible to standardize. A “good” ZN stain is
one that reveals mycobacteria from light pink to deep red or even purple rods on a light
blue to dark blue background. In fact, its variability is so high that one technician cannot
obtain two identical ZN stains on the same tissue block. This can be “a blessing in disguise”
since the algorithm trained on a sufficiently large dataset (originating from a sufficiently
numerous different WSIs), supplementary extended by augmentation techniques altering
color, contrast, brightness, saturation, etc. will be able to properly recognize ZN-stained
WSIs provided by labs worldwide.
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Table 8. Studies of automated detection of AFB on ZN stains on tissue.

Studies on
Tissue Year

Training
Set

Positive
WSIs

Training
Set Total

WSIs

Patches
Positive

Patches
Negative

Patches
(Pixels) Test Set Accuracy % Sensitivity

(Recall) %
Specificity %

Xiong
et al. [15] 2018 30 45 96,530 2,510,307 32 × 32 201 WSIs 90.55 * 97.94 83.65

Yang
et al. [16] 2020 6 33 18,246 18,246 256 × 256 134 WSIs 87 * 87.13 87.62

Lo
et al. [17] 2020 9 9 613 1202 20 × 20 patches 95.30 93.5 96.3

Pantanowitz
et al. [18] 2021 47 418 5678 1,111,918 32 × 32 138 WSIs 84.6 64.8 95.1

Zaizen
et al. [19] 2022 2 42 506 N/A N/A 42 WSIs N/A 86 100

Our study 2022 110 510 263,000 700,000,000 64 × 64 60 WSIs 98.33 95.65 100

* calculated based on the data provided in the paper.

In the five methods of automatic identification of mycobacteria in ZN-stained slides
described in the literature, one study (Lo et al. [17]) does not evaluate WSI. Its valida-
tion is solely made on patches. Xiong et al. [15] present a completely automated method
of diagnosis while Yang et al. [16], Pantanowitz et al. [18], and Zaizen et al. [19] devel-
oped AI-assisted diagnostic methods as a tool in the hands (and eyes) of pathologists.
In Yang et al.’s method, the pathologist evaluates a score heatmap superposed on the WSI.
In Pantanowitz et al.’s method, the pathologists evaluated a gallery of patches displayed
in reverse order of the probability score in relation with WSI. Both methods allow for the
pathologist to evaluate the suspicious areas in the context of the specific histopathologi-
cal lesion. Zaizen et al., do not describe precisely how the pathologist uses the platform
for diagnosis. Instead, they specify that each probably positive patch was examined by
six pathologists.

Our method is an AI-assisted diagnostic method with a similar approach to
Pantanowitz’s et al.’s design of the platform (analyzing a list of patches displayed in
reverse order of the probability score). However, our solution employs a much larger
dataset (about two orders of magnitude larger) and an active learning approach that further
increases the performance metrics, especially for difficult cases (i.e., artifacts) or WSIs with
peculiar staining.

Our algorithm obtained very good results compared with previous studies. Our testing
method compared the AI-assisted diagnosis with the pathologist’s diagnosis either on
slides (by microscopic examination) or WSIs. Our test set included 60 cases based on
general recommendation for the minimal size required for digital pathology validation [33].
As expected, there is a definite improvement of AFB identification by pathologists when
examining slides other than WSIs. It is known that pathologists are not very keen to change
from conventional microscopy to remote WSI examination as a routine. The diagnostic
concordance between WSI and slide examination varies from 63% to 100% in different
studies [34].

Moreover, pathologist’s experience in examining WSIs affected the accuracy of finding
AFB—the longer the period of exposure to WSIs, the better the pathologist’s results. The ac-
curacy of the diagnosis when our algorithm was used was higher than the accuracy of
every pathologist, even when slides were examined. The algorithm was able to pick more
bacilli than the human examiner alone, thus almost eliminating the false negatives. When
examining slides, pathologists missed a total of 47 cases of TB (false negatives), in average
almost 6 cases per person. Our algorithm helped pathologists improve Mycobacterium
identification on WSIs, but the results were also better with AI-assisted evaluation than
those where pathologists examined slides by microscope. In real life, a pathologist examin-
ing a slide may identify lesions suspicious of TB—epithelioid granulomas with giant cells
and/or coagulative necrosis with reticuline preservation (caseum). When one suspect TB,
he/she will ask for a ZN special stain in order to identify bacilli. AFB presence confirms
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the diagnosis of TB without biunivocal relation (i.e., AFB absence does not exclude TB diag-
nosis). In other words, when a pathologist fails to identify AFB, he/she will not necessarily
miss TB but the positive diagnosis that will finally be obtained in most of the cases will be
obtained with supplementary efforts (several costly techniques) and with some delays in
significant cases. Altogether, both the patients and the medical system will benefit from
implementation of such an algorithm in routine pathology.

Another issue for discussion is the debate about what metric should be preferred:
specificity or sensitivity? A diagnostic method is preferable to be specific while a screening
test is better to be more sensitive. We decided to use a higher specificity (fewer false positive
cases) with the risk of missing some positive cases (false negative). The algorithm selects
patches that are more probable to contain AFB and shows them to the pathologist. If the
algorithm is picks up too many structures, the pathologist will be forced to look to a myriad
of artifacts and he/she will lose a lot of time sorting through them.; In the end, it is more
profitable to examine the slide without AI support.

Last but not least, when discussing our algorithm capabilities in comparison with
human results, we should not forget that our team of pathologists are familiar with ZN
stains and AFB identification on slides; we expect that a pathologist not used to examining
ZN-stained slides would have poorer results with more numerous false negatives, especially
in paucibacillary lesions.

When looking at the errors in analyzing both WSIs and slides, there are huge differ-
ences between qualified pathologists and residents. The residents were in their final year
of residency and are very good and hard-working people. However, we showed that no
exposure to WSIs prior to this test poorly influenced the outcome.

We have a closer look at the cases with the most numerous errors in interpretation.
One negative case had five errors with eight examiners and four errors from six qualified
pathologists (cat scratch disease—suppurative necrotizing granulomatous lymphadenitis).
Some structures looked like AFB, but the overall quality of the stain was poor (slightly
pink–pale red blood cells). In some areas, structures could be mistaken as AFB but the
suspicious structures were not clear-cut bacillar structures (Figures 13 and 14).
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in a good Ziehl–Neelsen stain. ZN × 400 as offered by Aperio ImageScope platform; WSI scanned
with Aperio GT450, 40× magnification.
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A case of tuberculosis in striated muscle had four errors from eight examiners. There 
were many fragments of tissue and almost 5 cm2 of tissue with very few bacilli, which 
were easily missed by examiners (Figure 15). 

 

Figure 14. Cat scratch disease. Centrally, several structures look like AFB but pale blue in color
(green rectangular area); however, enhancement of the image—black contour window in the lower
right corner of the picture (digital magnification offered by Aperio ImageScope software)—shows
improper format of the pink structures. ZN × 400 as offered by Aperio ImageScope platform; WSI
scanned with Aperio GT450, 40× magnification.

A case of tuberculosis in striated muscle had four errors from eight examiners. There were
many fragments of tissue and almost 5 cm2 of tissue with very few bacilli, which were
easily missed by examiners (Figure 15).
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The case with most errors in interpretation was a tuberculous epithelioid granuloma-
tous lymphadenitis with extensive caseation with very few bacilli present in ZN stain—one
to four AFB present in each section. Due to the minute dimensions of Mycobacterium
tuberculosis (one micron thick), a bacillus will be completely enclosed in one section of
tissue and serial sections reveal different bacilli. The slide examined in this test included
two sections of tissue with very few bacilli, one in one section (Figure 16) and two on
the other section. Considering the paucity of the bacilli, it is no wonder that the examin-
ers missed them on WSIs. Interestingly, this was the case the algorithm was not able to
identify bacilli. For this case, the algorithm identified 3 patches with positive scores over
0.7 and 145 patches with positive scores between 0.5 and 0.69. None of them presented
convincing AFBs.
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Figure 16. Tuberculous epithelioid granulomatous lymphadenitis with extensive caseation. One AFB
is present within the center (green circle). Higher resolution is in the right inferior rectangular area
(detail: green arrow). ZN × 400 as offered by Aperio ImageScope platform; WSI scanned with Aperio
GT450, 40× magnification.

In fact, in order to avoid the examiner being biased by the overall picture of the lesion,
the testing set was designed to include lesions with similar appearance to tuberculosis
such as granulomatous inflammation, most of them with necrosis. The cases with reactive
lymphadenitis, unspecific inflammation, or malignancies were not erroneously evaluated
by any examiner.

The most impressive benefit of using the AI-assisted algorithm for AFB identification is
saving time. AI-assisted evaluation was 2.84 times faster than human evaluation. We have
to be aware that the pathologists involved in our clinical test had impressive experience
in diagnosing tuberculosis and analyzing ZN stains. Our department has expertise in
infectious diseases diagnosis. ZN stain is routine for lymph nodes and bronchial biopsies
and, moreover, the pathologists were recently exposed to numerous positive and negative
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ZN-stained WSIs during the annotation period. A “regular” pathologist likely does not
have the same level of exposure, so the time required for a thorough examination of a
ZN-stained slide is usually much longer. We can estimate that our algorithm saves at least
one-third of the pathologist’s time that can be spent on other more complex tasks.

Moreover, considering the inherent bias induced by the level of expertise of our team
of pathologists, the results of our model argue in favor of an overall increase in the quality of
AI-assisted diagnosis. In other words, if the model was able to reach the best performance
of one of our most experienced pathologists (identifying convincing positive patches in
all but one cases), for a less experienced pathologist the algorithm will certainly improve
their performance. It is true that the final labeling of the status of the patch (positive versus
negative) is established by the pathologist. The fact that the model is identifying highly
suggestive areas helps the human examiner to make a final decision.

Situations when AI algorithms performed better than pathologists were reported
during clinical testing for automatic identification of prostate cancer. One case previously
missed by pathologists was suggested as malignant by the algorithm and confirmed as
such by experts [35]. Additionally, algorithms for Mycobacterium tuberculosis detection
identified positive cases with subsequent expert’s confirmation [15,19].

Our algorithm is able to identify bacilli even in cases with a very low density of AFB
and in cases that were missed by pathologists, even when considering experienced pathol-
ogists (AI-assisted diagnosis based on our method has a specificity 100% and sensibility
95.65%). The impact of this achievement is significant. Our automatic method being used to
assist pathologists in identifying AFB is saving time and money that is otherwise required
by other investigations. Therefore, it shortens the interval between the biopsy and the
start of the treatment with major benefits, both for the patient (better results and faster
improvement of health) and for society (faster decrease in the patient’s infectiousness,
diminishing the medical costs for expensive investigations or, longer treatments required
for old lesions, diminishing the social security costs by fewer days of medical leave, etc.).

There are many limitations for our technique. The main important limitations concern
the dimensions and diversity of the dataset and our method of clinical testing.

Our dataset is the largest and most diverse of the datasets for mycobacteria presented
in the literature. It is also the most “correct” one, due to our method selecting cases.
Unfortunately, it is not a “perfect” dataset; to reach this goal, the dataset should include
all the positive slides from all over the world. This is virtually impossible. We applied
several techniques of augmentation to minimize this drawback, but we are aware of this
impossible to overcome drawback.

Our method of clinical testing is also flawed because of the simple fact that the team
of researchers who developed the algorithm also validated it. This forced manner of
designing the test of the algorithm thus biases the validation of all AI-models developed
in medicine. We tried to diminish this risk by separating the people who designed and
selected the test group of cases from the people who actually performed the test. Our most
experienced pathologist tried to further minimize the risk by including in the test group
positive paucibacillary cases and negative cases with similar microscopic appearance to TB
(see the discussions above). We are aware that the bias is not completely overcome due to
the simple fact that the pathologists belong to the same school of pathology with similar
methods of evaluation and routines. The only answer for this limitation is for independent
validation to be performed by pathologists from completely different institutions and from
as many countries as possible, ideally on international cohorts of patients. Overcoming this
problem represents the key towards clinical implementation of the algorithm [36].

5. Conclusions

We developed a model for AI-assisted detection of AFB on WSIs that is able to identify
bacilli with an accuracy of 98.33%, sensitivity of 95.65%, and specificity of 100%. The results
were better than or, for one case, similar to those of a team of pathologists of variable
expertise when examining slides and WSIs, thus reducing human error form fatigue and
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loss of focus. By using our algorithm, pathologists saved at least one-third of the total
examining time.

We intend to annotate the positive WSIs used for clinical testing and retrain our
algorithm with the resulting supplementary patches, thus making use of our active learning
setup. The new product iteration will be further tested in different hospitals to test the
robustness of the algorithm when exposed with different types of ZN stains and to diminish
the inherent subjectivity of the validation.
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