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Abstract: Raman Spectroscopy has long been anticipated to augment clinical decision making, such as
classifying oncological samples. Unfortunately, the complexity of Raman data has thus far inhibited
their routine use in clinical settings. Traditional machine learning models have been used to help
exploit this information, but recent advances in deep learning have the potential to improve the field.
However, there are a number of potential pitfalls with both traditional and deep learning models. We
conduct a literature review to ascertain the recent machine learning methods used to classify cancers
using Raman spectral data. We find that while deep learning models are popular, and ostensibly
outperform traditional learning models, there are many methodological considerations which may
be leading to an over-estimation of performance; primarily, small sample sizes which compound sub-
optimal choices regarding sampling and validation strategies. Amongst several recommendations is
a call to collate large benchmark Raman datasets, similar to those that have helped transform digital
pathology, which researchers can use to develop and refine deep learning models.

Keywords: Raman Spectroscopy; medical application; disease screening and diagnosis; machine
learning; cross-validation; deep learning

1. Introduction

Biomedical applications of Raman Spectroscopy (RS) have been steadily growing over
the decades as technology matures. Applications range from the label-free staining of
histology slides to determine the biochemical composition of a sample to classification
tasks to determine the presence and grade of disease, including determining tumour
margins during cancer surgery [1]. RS has the potential to serve two clinical needs in
the domain of oncology. The current standard for cancer diagnosis is the assessment of
excised suspicious tissues by a histopathologist. Despite the high level of training of such
professionals, this assessment contains a degree of subjectivity leading to inter- and intra-
observer variability [2–4]. It is hoped that RS can provide an adjunct to the histopathologist
to reduce this variability. Additionally, most cancers develop through pre-malignant stages
and the treatment of these early pathologies can prevent development into malignant
cases [5]. Such early changes are often subtle and it is hoped that RS may enhance our
ability to detect pre-malignant and early-stage cancers. Both of these needs can be expressed
in terms of a classification task.

Machine learning (ML) has long been used to classify Raman spectral data. The key
feature of ML is that a model in some way learns from data. It can therefore be described as a
data-driven approach to modelling. Although there are many variations, the most common
ML model used in biomedical RS is Principal Component Analysis–Linear Discriminant
Analysis (PCA-LDA) [6]. PCA reduces the dimensionality of the data and removes some
noise; LDA then learns a criterion by which to separate data as belonging to one of several
classes, based on labelled examples. This is one example of a traditional ML model, of
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which there are many. These are held in contrast to deep learning models, which are large
and complex models based on a neural network architecture. In particular, we define a
deep learning model as any model based on a neural network architecture, from artificial
neural networks (ANNs) to more sophisticated structures such as convolutional neural
networks (CNNs). Traditional ML models include all other models, whether they are linear,
such as LDA, or non-linear, such as support-vector machines (SVMs) with an appropriate
kernel function. Deep models could revolutionise the digital healthcare space [7], including
biophotonics [8]. In particular, their ability to capture non-linear complexities in a dataset
allows them to exploit patterns too subtle for traditional methods, making them an ideal
candidate to realise the full potential of RS. An area that has already benefited from deep
learning is digital pathology, which is often applied to oncology [9].

However, ML, traditional or otherwise, is not without its limitations. Just as medical
researchers need to understand something of the statistical science of hypothesis testing,
and the debate and misunderstandings regarding p-values, it is becoming increasingly
important to become literate in ML [10]. One of the barriers to transferring promising ML
results to clinical settings is the reproducibility of results [1]. Indeed, a recent review of
ML applications to diagnose COVID-19 using chest radiographs or CT scans found that of
sixty-two studies, none were of sufficient quality to be clinically relevant [11]. Prominent
among the given reasons were methodological issues that compromise the generalisability
of a model to the target population. Aside from modelling issues, a number of practical
issues remain, such as establishing cost-effectiveness, the choice of substrate on which to
mount ex vivo samples and the miniaturisation of the technology for in vivo testing while
maintaining the signal-to-noise ratio [12]. Though important for RS to become established
in clinical practice, these will not be discussed in this review.

Assessing Model Performance

The pertinent point of interest in how well an ML model performs is how it would
cope with previously unseen data in the clinical setting: its generalisability. It is possible
for a model to simply memorise data, thus giving a perfect classification for data it has
seen with no ability to generalise to unseen data. This is known as over-fitting. Ideally,
performance would be tested with a newly created dataset. However, there are many
practical limitations to collecting new data, particularly in clinical research, which can be
expensive and time-consuming. A common compromise is to split the existing dataset into
a training and a test set; the former being used to create the model, the latter simulating
the process of collecting a new dataset and being used to test the models performance.
This requires holding out a proportion of the data during training. This can compound the
problem of small datasets. Therefore, an extension of single train/test splitting is k-fold
cross-validation (CV). This repeats the training/test split k times such that all of the data are
sequentially used in the test set, thus producing k estimates of the models performance. The
average performance is then given, sometimes with an accompanying measure of variance.
Taken to the extreme is leave-one-out CV (LOOCV), in which the test set comprises a single
data point, thus training the model on the maximum possible amount of data.

In addition to the training/test split, sometimes an additional split is made called
the validation set. The validation set is used to optimise the model hyper-parameters (or
even guide the choice of ML model): choices about the model that a researcher makes
which influence its classification ability. Similar to how a model can over-fit the data, the
hyper-parameters can be selected such that it performs well for a given test set, but fails to
generalise well. This has been described as over-fitting at the second level of inference [13].
The validation set provides an additional set to allow the hyper-parameter space to be
optimised, while preserving the test set for a less biased estimate of the generalisability.

Regular CV splits the data such that the same test data are never used twice. Repeated
CV iterates this process several times such that many permutations of possible test sets
are used (the test set being comprised of multiple samples, except for in LOOCV). It is not
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commonly used as it is computationally expensive, though it can reduce the variance of a
model’s estimated performance when sample sizes are small [14].

2. Materials and Methods
2.1. Literature Search

This literature review follows the principles set out in the PRISMA (Preferred Re-
porting Items for Systematic reviews and Meta-analyses) guidelines [15]. The databases
PubMed and Web of Science were extensively searched by combining the search terms
‘Raman Spectroscopy’ and ‘Learning’ with the AND Boolean operator. Titles and abstracts
in the databases were thus searched, as illustrated in Figure 1, and oncology studies were
identified. Publications were limited to the English language and being published from
January 2018 to the date of the search (October 2021). Potentially relevant studies were
selected for a full text review. Additional studies were identified among the references of
identified studies. Studies were excluded if they did not explicitly classify data or were not
peer reviewed. As the ML methodology was itself the focus of this review, no attempt to
exclude studies based on methodological quality was made and so the PRISMA quality
checklist was not applied. Studies involving surface-enhanced Raman Spectroscopy were
excluded.

Figure 1. Literature search strategy: PRISMA flowchart of the literature selection process. n = number
of studies.

Many studies used several ML models, conducted analyses on different subsets of
their data and/or compared several pre-processing techniques, producing a multitude
of results. For instance, several studies compared the performance of different machine
learning models, often traditional ML models such as LDA against deep learning ML
models, such as CNNs. For ease of comparison, and to mitigate selection bias on our part,
the best-performing model and/or dataset is presented in Table 1; other results are included
when pertinent to a particular discussion. In the vast majority of cases, the accuracy of a
model was the primary reported performance metric: the number of correct classifications
divided by the total number of classification attempts. Although its suitability to prediction
tasks has been questioned, because of its ubiquity in the reviewed literature and its intuitive
interpretation, we report this metric unless otherwise stated.
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Table 1. Literature review results: PCA—Principle Component Analysis, LDA—Linear Discriminant Analysis, QDA—Quadratic Discriminant Analysis, PLS—Partial
Least Squares, SVM—Support Vector Machine, ANN—Artificial Neural Network, CNN—Convolutional Neural Network, RF—Random Forest, GB—Gradient Boost,
CV—Cross Validation, LOOCV—Leave One Out Cross Validation, GA—Genetic Algorithm, NPC—Nasopharyngeal Carcinoma

Authors/Year Pathology
Sample Type Model Validation Strategy

Number of
Subjects/
Samples

Number of Spectra Level of Split Number
of Classes

Accuracy
(Sensitivity/
Specificity)

Aubertin et al.,
2018 [16]

Prostate Cancer
(tissue) ANN LOOCV 32 subjects/

samples 928 Not Stated 2 86% (87%/86%)

Baria et al.,
2020 [17]

Skin Cancer (cell
lines) PCA-ANN 5-fold CV Not Stated 150 Not Stated 3 96.7%

Bury et al.,
2019 [18]

Brain Metastases
(tissue) PCA-LDA Not Stated 21 subjects 525 Not Stated 2 80.2%

Chen et al.,
2022 [19]

Ovarian Cancer
(plasma) ANN ensemble

Outer fold–single
66/33 Inner

fold–5-fold CV
174 subjects 870 Spectra 2 94.8% (95%/95%)

Chen et al.,
2021 [20]

Lung cancer &
glioma (tissue) CNN 5-fold CV 104 subjects/

samples
520 (2700 post
augmentation) Subject 2 99% (all pairwise

comparisons > 95%

Daniel et al.,
2019 [21]

Cervical Cancer
(tissue) PCA-ANN Single 70/30 245 samples Not Stated Not Stated 3 99.0% (87%/86%)

He et al., 2021 [22] Renal Cancer SVM LOOCV 77 subjects/
samples 4860 Subject 3 92.89%

Ito et al., 2020 [23] Colon Cancer
(serum) Boosted Tree Not Stated 184 subjects/

samples
3 spectra per subject.

Average used N/A 2 100%

Jeng et al.,
2019 [24]

Oral Cancer
(tissue) PCA-QDA k-fold CV and

LOOCV
80 subjects/

samples 400 Sample 2 82% (84%/75%)

Koya et al.,
2020 [25]

Breast Cancer
(tissue) CNN Single split

60/20/20
88 subjects/

samples 34,505 Spectra 2 90% (89%—precision,
89%—recall)

Lee et al., 2020 [26] Prostate Cancer
(cell lines) CNN Single split

70/15/15
1 sample per class,

4 classes
300 (1200 post
augmentation) Spectra 4 97%

Ma et al., 2021 [27] Breast Cancer
(tissue) CNN 10-fold CV 20 subjects,

40 samples
600 (5000 post
augmentation) Not Stated 2 92% (98%/86%)



Diagnostics 2022, 12, 1491 5 of 21

Table 1. Cont.

Authors/Year Pathology
Sample Type Model Validation Strategy

Number of
Subjects/
Samples

Number of Spectra Level of Split Number
of Classes

Accuracy
(Sensitivity/
Specificity)

Mehta et al.,
2018 [28]

Brain Meningioma
(serum) PCA-LDA LOOCV +

independent test set
20 subjects,
70 samples

~8 spectra per
subject.

Average used
N/A 2 86%

Qi et al., 2022 [29] Lung Cancer
(tissue) CNN 10-fold CV 77 subjects/

samples
15 spectra per

sample Spectra 2 98% (97%/99%)

Riva et al.,
2021 [30] Glioma (tissue) GB LOOCV 63 subjects/

samples 3450 Subject 2 83% (82%—precision,
82%—recall)

Santos et al.,
2018 [31] Skin (tissue) PCA-LDA Single split 60/40 128 samples 9–19 spectra per

sample Sample 2 62.5%

Sciortino et al.,
2021 [32] Glioma (tissue) SVM LOOCV 38 subjects/

samples 2073 Subject 2 87%

Serzhantov et al.,
2020 [33] Skin (tissue) Gradient with soft

voting
Single split 50/50,

1000 repeats 139 subjects 556 Not Stated 2 91% (93%/88%)

Shu et al.,
2021 [34]

Nasopharyngeal
Cancer (in vivo

tissue)
CNN 10-fold Venetian

Blind CV
418 subjects,
888 samples

15,354 (Augmented,
quantity not

specified)
Sample 2 84% (99%/66%)

Wu et al., 2021 [35] Colon Cancer
(tissue) CNN LOOCV 45 subjects/

samples
233 (2420 post
augmentation)

Spectra AND
Subject 3 94%—by spectra,

81%—by subject

Xia et al., 2021 [36] Tongue Cancer
(tissue) CNN-SVM 5-fold CV 12 subjects,

24 samples At least 216 Not Stated 2 99.5% (100%/100%)

Yan et al.,
2021 [37]

Tongue Cancer
(tissue) CNN ensemble 5-fold CV 22 subjects,

44 samples 2004 Not Stated 2 99% (99%/98%)

Yu et al., 2021 [38] Tongue Cancer
(tissue) CNN 5-fold CV 12 subjects,

24 samples 1440 Not Stated 2 97% (99%/94%)

Zhang et al.,
2021 [39]

Breast Cancer
(cell lines) PCA-SVM Single split 6 cell line

900 cells 4500 Not Stated 2 99.0% (100%/96%)

Zuvela et al.,
2019 [40]

Nasopharyngeal
Cancer (in vivo

tissue)
GA- PLS-LDA LOOCV 62 subjects,

113 samples 2126 Sample 2 98% (93%/100%)
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2.2. Data Collection

From each study, we extracted: (1) authors, institution and year of publication; (2) type
of cancer and sample substrate; (3); ML models used; (4) validation strategy; (5) number of
patients and samples; (6) number of spectra; (7) how the data were split during validation;
(8) number of classes classified; (9) performance metrics.

3. Results

A total of 25 studies were identified (Table 1), 18 of which interrogated tissues, 5 blood
serum and 2 studied cell lines. All of these studies classified Raman spectra into at least
two groups, usually healthy and cancerous. The cancers explored in the literature included
brain (5), tongue (3), breast (3), skin (3), lung (2), prostate (2), nasopharyngeal (2), colon (2),
oral (1), cervical (1), ovarian (1) and kidney (1).

3.1. Oral and Nasopharangeal Cancers

Xia et al. [36] probed tongue squamous cell tissues using a fibre optic Raman spec-
trometer and developed a CNN-SVM for binary classification. This model replaces the final
dense layer of a typical CNN with an SVM, combining the feature selection prowess of the
former with the classification abilities of the latter. SVMs can utilise a number of kernel
functions to better model non-linearities in the data; in this paper, a radial basis function
(RBF) was used. They compared this model to a standard CNN as well as PCA-LDA and
PCA-SVM(RBF). The CNN-SVM performed best (accuracy = 99.54%; sensitivity = 99.54%;
specificity = 99.54%), as determined by accuracy, though trade-offs between sensitivity and
specificity may change this interpretation according to clinical needs.

The same team used a similar set-up to collect two datasets taken under conditions
of ‘illumination’ and ‘no light’ [37]. These datasets underwent a further division of pre-
processing or no pre-processing, to make for four datasets. These were used to classify spec-
tra into binary classes using an ensemble CNN, in which several CNN models were trained
and the outputs integrated to give a consensus. They found that the best performance was
attained under the no-ambient-light conditions with pre-processing (accuracy = 98.75%;
sensitivity = 99.10%; specificity = 98.29%), although the difference in accuracy to the
worst-performing dataset (illumination and no pre-processing) was only 4.75%.

The last publication from this team used a similar set-up and dataset to compare the
performance of a custom-built CNN against PCA-LDA and PCA-SVM (with a radial basis
and a polynomial kernel) [38]. They found that the CNN outperformed the other ML
models (accuracy = 96.90%; sensitivity = 91.67%; specificity = 94.44%).

It is not clear if the tissues used in these three studies are the same. However, in all
cases the diseased and healthy samples were obtained from the same subjects.

Also investigating oral cancers, Jeng et al. interrogated cryopreserved samples, seeking
to discriminate between healthy and cancerous tissues [24]. They further performed a sub-
group analysis, dividing their dataset into tongue, buccal and gingiva tissues to perform
three pairwise cancerous versus healthy binary classifications. They additionally performed
a ‘point-wise’ approach in which five spectra were taken per sample and a ‘patient-wise’
approach in which the average of these five spectra was taken. They explored two CV
techniques, comparing a k-fold versus a LOOCV strategy. Finally, they compared a PCA-
LDA and a PCA-QDA (Quadratic Discriminant Analysis) classifier. Using these methods,
they found that taking the average spectrum of a sample yielded a better performance than
a point-wise approach and with PCA-QDA typically performing better than PCA-LDA,
though not across all sub-group analyses. LOOCV resulted in lower error rates compared
to k-fold CV for the ‘all cancer’ versus ‘healthy’ analysis, but this was reversed for the
sub-group analysis, which consisted of smaller sample sizes.

Two studies focused on nasopharyngeal cancers. Zuvela et al. used an in vivo set-up
to collect data during endoscopy [40]. They employed a genetic algorithm (GA) to perform
feature selection for a PLS (Partial Least Squares)-LDA binary classifier, comparing its
performance to a PLS-LDA model without this selection. They also compared performance
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when utilising either the fingerprint region or the high wavenumber region, or both com-
bined. Not only did the GA-PLS-LDA outperform the generic model (accuracy = 98.23%
versus 95.58%), but this feature selection was also used to find the candidate Raman peaks
responsible for this discrimination. Additionally, though combining fingerprint and high
wavenumber regions may actually confuse ML models by including irrelevant data, the
GA feature selection was able to mitigate against this potential pitfall, improving accuracy
(fingerprint region = 92.04%; high wavenumber = 94.69%; both = 98.23%).

The same team expanded their investigations with a similar study which included
many more subjects, samples and spectra with a similar recruitment protocol [34]. Of all
the studies reviewed, this is the largest in terms of the number of subjects recruited. For this
study, they used a CNN to classify three classes (cancerous, post-treatment and healthy) in a
pairwise fashion. This consistently performed better than a PLS-LDA classifier. The CNNs’
superior performance was maintained even when the sample size was down-sampled
by factors of two and four, contrary to the idea that CNNs require an abundance of data
from which to learn. Indeed, the CNN trained on data down-sampled by a factor of two
produced the best performance.

3.2. Lung Cancers

Qi et al. adopted a novel approach to classify Raman spectra of lung tissue as adenocar-
cinoma, squamous cell carcinoma or normal in a pairwise fashion [29]. They transformed
the data into 2D spectrograms in a similar process used to classify audio data. These
spectrogram data was used in a CNN accepting 2D inputs, akin to typical image classifiers
and different from all the 1D inputs thus far discussed, and compared performance to a
PCA-LDA model. For both pairwise comparisons the CNN returned an accuracy over 96%,
while neither PCA-LDA model broached 90%.

Chen et al. also discriminated between lung cancers, as well as glioma, a common brain
cancer, using spectra taken from blood serum [20]. They compared both classes against
healthy controls in a pairwise manner. Several deep learning architectures were compared:
an ANN, a RNN (Recurrent Neural Network), a LSTM (Long Short-Term Memory) and
AlexNet (a particular architecture of CNN). The dimension reduction techniques of PCA
and PLS were also compared to no pre-treatment. The use of data augmentation was
also explored by increasing the number of spectra 5-fold. The augmentation details are
discussed under the ‘Data Augmentation’ section. Across all analyses, this augmentation
increased performance. This was most pronounced when PLS was first performed on the
data. AlexNet, the largest model used, together with PLS and data augmentation, was the
best-performing model, although the difference amongst all the models, except the ANN,
was minimal. However, when a three-class model was constructed, the best performance
had an accuracy of 85.1%.

3.3. Brain Cancers

Two studies from the same team also explored gliomas. Riva et al. took fresh-tissue
biopsies and classified healthy versus cancerous tissue using the traditional models of
Random Forest (RF) and Gradient Boost Tree (GB) [30]. The latter model performed best
because its feature selection allowed the detection of novel Raman peaks to be implicated
in gliomas. In the team’s second study, Sciotino et al. explored the potential to discriminate
between the mutational status of gliomas, essentially attempting to genotype using RS [32].
They used GB and SVM (RBF) to successfully classify between the two disease genotypes.

Bury et al. also analysed brain tissue, attempting to discriminate the primary source
of metastatic brain cancers [18]. Seven samples each with primary sources of lung adeno-
carcinoma, colorectal carcinoma and melanomas were obtained and 25 spectra collected
per section. RS was compared to attenuated total reflection-Fourier transform infrared
(ATR-FTIR) spectroscopy. An overall accuracy of 69.7% was achieved compared to just
55.3% using similar PCA-LDA modelling on ATR-FTIR data. These improved when the
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two adenocarcinoma categories were merged into a single group to 80.2% and 84.0%,
respectively.

Mehta et al. used 35 serum samples from meningioma patients and compared them
to 35 samples from healthy controls in an attempt to develop an approach to diagnose
brain tumours using minimally invasive techniques [28]. Approximately eight spectra were
taken per sample, and the average of these was used for analysis. Employing PCA-LDA
they achieved an accuracy of 86% for discriminating meningioma from healthy samples,
which fell to 70% when the model was tested against an independent held out test set.

3.4. Breast Cancers

Koya et al. created Raman maps from ex vivo breast tissue and classified spectra
as cancerous or healthy [25]. It is the largest study in terms of Raman spectra, though
not samples; the Raman mapping methodology allowed them to take many spectra per
sample. A CNN was used to classify the spectra. They used a technique called ‘permutation
importance’ to interpret the CNN outputs and find which Raman bands were biologically
significant.

Ma et al. also classified breast tissue using a CNN [27]. They compared its performance
against four SVMs (each with a different kernel) and Fisher’s Discriminant Analysis (FDA).
Data augmentation was required to improve the CNN from the worst to the best-performing
model.

Zhang et al. interrogated five breast cancer and one healthy breast cell lines with
RS [39], using PCA-DFA (Discriminant Factor Analysis) and PCA-SVM to classify spectra.
The latter technique in particular was well able to separate healthy from cancerous cell
lines with an accuracy of 99.0%. The team also performed a number of clinically rele-
vant sub-group analyses and still achieved an accuracy of 93.9% with a four-class model.
Performance deteriorated as the sub-class divisions became more nuanced, representing
comparisons between ever more biochemically homogenous samples.

3.5. Prostate Cancers

Lee et al. explored Raman spectra of extracellular vesicles derived from blood serum
samples as a biomarker for prostate cancer in combination with a CNN [26]. This was
compared to PCA-LDA and PCA-QDA models. Additionally, analyses were performed
on three wavenumber regions (full spectrum, fingerprint and high wavenumber regions),
and with the data in its raw form as well as pre-processed. The CNN outperformed the
traditional ML models across all subsets. The fingerprint region generally leant to better
performance, though that was not ubiquitous across all subset analyses.

3.6. Gastrointestinal Cancers

Wu et al. interrogated biopsy samples taken during endoscopy, classifying spectra as
normal, adenomatous polyps or adenocarcinomas [35]. They found that a CNN compre-
hensively outperformed several traditional ML models. They also explored the difference
when conducting analysis on pre-processed versus just normalisation data. Finally, the
team performed CV via two methods, one splitting at the level of spectra, the other splitting
at the level of subject/sample (there was one sample per subject so these coincide). The
former method achieved an accuracy of 93.8%, falling to 81.3% with the latter split.

Ito et al. developed a boosted tree model from serum samples taken from suspected
colorectal cancer patients, classifying them into four categories, colorectal cancer, adenoma,
hyper-plastic polyps and neuro-endocrine tumours, in a pairwise fashion [23]. They
achieved 100% accuracy in all tasks, although they used the R2 value as their assessment
metric which gives a more nuanced idea of performance by accounting for how certain the
model was in its classification, punishing predictions further from the class label. By this
metric, the boosted trees still performed exceptionally well. It is, however, unclear whether
there was any validation/test set, and so these results may reflect the training performance.
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3.7. Skin Cancers

Serzhantov et al. used an ensemble of traditional ML models to classify skin tissue
as cancerous or normal [33]. The models included were a classification and regression
tree, SVM, k-nearest neighbours and logistic regression. Instead of selecting the best single
model, the outputs of all models were used to create a soft voting classifier, allowing each
model to ‘vote’ on an outcome, and the consensus across all models was taken. Splitting the
data 50/50 into train/test sets, this was repeated 1000 times to build a spread of estimates.
This method achieved an accuracy of 90.5%.

Baria et al. compared PCA-LDA and PCA-ANN for the task of classifying spectra
taken from cultured cell lines to distinguish between three skin melanoma genotypes [17].
The LDA produced an accuracy of 92.7%, and the ANN 96.7%.

Santos et al. classified skin samples with spectra from the high wavenumber region
using PCA-LDA, distinguishing between melanoma and not-melanoma [31]. They achieved
an accuracy of 62.5%. The classification model was used in a unique way: they took the
LDA score outputs and, instead of setting a typical limit of 0.5 as the delineation score
between melanoma or not, chose a criteria of any two spectra from a single sample having
a score greater than 0.35, or any single spectrum having a score greater than 0.8.

3.8. Gynaecological Cancers

Daniel et al. compared a PCA-LDA model to a PCA-ANN model in classifying cervical
tissue as healthy, neoplastic or malignant [21]. In addition, those samples determined to
be malignant were then subject to another LDA model to determine whether the sam-
ples were well, moderately or poorly differentiated. The PCA-LDA model achieved an
accuracy of 95.3% compared to 99.0% for the PCA-ANN model. To help determine the
biochemistry that characterised the three classes, non-negative least squares (NNLS) was
used to fit eleven known biochemical signatures to the spectra. This provides a multivari-
ate method of determining sample biochemistry compared to the usual univariate peak
assignment method.

Chen et al. used RS on serum to classify ovarian samples as normal, cystic or cancerous
in a two-step binary classification regime [19]. The first step used an ANN to determine
abnormal and healthy samples, using an ensemble method to select the best model architec-
ture, with an accuracy of 94.8%. Abnormal samples were then entered into another ANN
to determine whether they were cystic or cancerous, achieving an overall accuracy across
the three classes of 86.2%.

3.9. Other Cancers

He et al. interrogated ex vivo renal tissue seeking to identify cancerous tissue and
demarc surgical boundaries as well as classify those tissues [22]. Although 100 spectra
were obtained per sample, only 30 were used for classification after saturated spectra
were removed. They used a suite of ML models, with an SVM (RBF) model marginally
outperforming an ANN, while distinguishing between cancerous, normal and fat tissues
with 92.89% accuracy, with only a slightly lower performance when classifying cancerous
sub-types.

4. Discussion
4.1. Validation Strategies

Nearly all of the reviewed studies conducted some kind of splitting of the data in order
to produce train, test and, in some cases, validation sets. Several partitioning strategies
were used (Figure 2). The most common were LOOCV and k-fold CV, which were either
5-fold or 10-fold. These are common default values in ML as they have been found to
produce a good balance between bias, variance and computational cost [14]. However,
they are somewhat arbitrary choices and what would constitute the optimal strategy is a
nuanced topic. LOOCV theoretically should provide the least biased performance, as it
incorporates the largest amount of training data, with the lowest variance, as it only shifts
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one sample across folds [41]. However, this assumes that CV is averaging independent
estimates, but the samples may in fact be highly correlated. LOOCV could then struggle to
detect model instabilities caused by changing the dataset, as only one sample is changing
at a time. Consequently, a k-fold CV strategy may be preferable, though the precise number
of k depends on a number of interacting factors such as the sample size, signal-to-noise
ratio of the data and the model used, which are not easy to reconcile. Most of the reviewed
studies had low sample sizes, with an average of 82 subjects. When the sample size is small,
LOOCV has been shown to have a high bias and variance, while k-fold strategies had a low
bias and their variance can be further reduced by performing repeated splits [42]. One of
the reviewed studies did explore the difference in performance based on a LOOCV versus
k-fold CV strategy. Jeng et al. found that LOOCV yielded higher accuracies than k-fold CV
(the value of k was not specified) for a binary classification task, but this was reversed in a
three-class problem. The study did not compare the variance or bias of these performances.

Standard k-fold CV splits data into folds at random. Shu et al. employed a variant
called Venetian Blinds, which systematically assigns data to folds [34]. There is some
suggestion that the method performs well compared to random and other methods, though
this depends upon the ML model used [43], and very likely the dataset in question. Overall,
it has received little attention in the literature, and its utility to Raman datasets unexplored.

Repeating CV several times has been shown to be effective at reducing the variance
of generalisation estimates [14]. Serzhantov et al. repeated a 50/50 training/test split
1000 times [33]. Unfortunately, their purpose was not to investigate the effect repeated CV
had on the bias or variance of the generalisation error and so was not explored. This could
have been estimated by comparing models trained on partitions of the data to a model
trained on an entire dataset [14].

Single-split validation refers to the method of dividing the data into different sets
just once, as opposed to CV methods which iteratively split the data to give several
performance estimates. Although single splits have been shown to be unbiased, they have
a high variance, particularly with small datasets [42]. Single splits are often unpopular
in medical ML applications with small sample sizes due to the technique not utilising a
certain proportion of the data for training. Here, seven of the reviewed studies used single
data splits, suggesting it remains a common strategy in biomedical RS applications.

Figure 2. Validation strategy used in the reviewed literature. Some studies used more than one strat-
egy.
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4.1.1. Partitioning Data with a Hierarchical Structure

Most of the reviewed studies classified individual spectra, while some classified
average spectra [23,28]. Many such spectra were often taken from the same sample, and
several samples were sometimes taken from the same subject. This introduces a hierarchical
structure to the data with subjects at the top, followed by samples and then the spectra
themselves. This introduces a complexity to medical Raman datasets which needs to be
taken into account. For instance, it raises the question of which level to split the data:
spectra, sample or subject (Figure 3). If split at the level of spectra, this could mean that
spectra belonging to the same sample and/or subject are present in both the training and
test set. This could lead to overly optimistic estimates of the generalisability of the model
as it is not a realistic assessment of the model, which would be classifying spectra from
unseen subjects in the clinical setting.

Of those studies that split the data at the level of spectra, the best accuracies of 90%,
96.6%, 97.7%, 93.8% and 94.8% were achieved [19,25,26,29,35]. Of those studies splitting
data at the level of subject or sample, the accuracies were: 84.4%, 99%, 81.8%, 98.3%, 83%,
87%, 92.9%, 81.3% and 62.5% [20,22,24,30–32,34,35,40]. Of those studies in which the level
of split was not explicitly stated, the accuracies were: 86.0%, 96.7%, 80.2%, 99.0%, 92.0%,
90.5%, 99.5%, 98.8%, 96.9% and 99.0% [16–18,21,27,33,36–39]. No attempt has been made to
statistically compare these groups, as might be performed during a meta-analysis, as the
various study aims and methodologies are too heterogeneous to make such comparisons
statistically valid. However, it can qualitatively be seen that studies which split at the
level of subject or sample tend to report lower accuracies than those split at the level of
the spectra, or do not explicitly state the level of the split. This likely reflects more realistic
assessments of how well the model would perform in the clinical setting. Of particular note
is the study by Wu et al., the only reviewed study which compared methods of splitting
the same dataset. They found a drop in performance of 12.5% in the overall accuracy when
splitting at the sample level compared to the spectra level [35]. This is consistent with
the findings from Guo et al., who explicitly examined the difference the level of the split
makes during CV with tumour cell lines, concluding that the highest hierarchical level of
the dataset should be used when partitioning the data [44].

Figure 3. Spectra versus patient data splitting: note how the test set when split by spectra includes
some spectra from all the patients contained in the train set.
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For many studies, one sample was taken per subject. However, some studies took
multiple samples from the same subjects, which introduces an additional strata into the the
hierarchy. For instance, Zuvela et al. took 113 samples from 60 patients [40] and Shu et al.
sampled 888 sites from 418 subjects [34]. Both studies split the data at the level of samples
rather than the highest level, subject, so it is not possible to ascertain what impact this may
have had on subsequent analyses.

Two studies took only the average spectrum from a single sample, thus flattening the
hierarchical structure of the data and bypassing this issue [23,28]. Both studies took spectra
from serum samples and analysed the data using traditional ML models. Neither study
examined how taking the average spectra per sample compared to using all sample spectra.
Jeng et al. compared the performance of using average spectra versus all five spectra of a
single sample in their PCA-QDA model, finding that the former method had an accuracy
of 88.75% versus 83.00% [24].

There are two methods by which sample heterogeneity is currently incorporated in the
literature. Averaging spectra provides one means, while including multiple spectra from a
single sample provides another. There has been no direct comparison of these methods in
the reviewed literature. A priori, there is no reason to suspect one will work better than the
other and will likely depend upon the intended application. For instance, a mean spectrum
typically has a higher signal-to-noise ratio than individual spectra, and a model trained on
the former may not generalise to applications requiring individual spectra to be classified,
such as post-surgery cancer edge detection. It is also an open question whether averaging
spectra from a sample before analysis would be an effective use of data for deep learning
models, which are notoriously data intensive. Overall, it is not clear that averaging spectra
will always provide a benefit, and the decision to do so should take into account the nature
of the application and the ML model being used.

4.1.2. Paired Sampling

Many studies took healthy and diseased samples from the same patient [24,25,27,30,32,36–38].
This is completely understandable given the ethical constraints upon taking healthy tissue,
particularly with neurological tissues, but the consequences this has upon generalising
to unseen patients needs exploring. Ma et al. argue that this ‘paired’ sampling reduces
‘interference caused by individual differences’ [27]. This may be true of traditional statistical
set-ups, such as hypothesis testing, but does not necessarily extend to ML. In hypothesis
testing, paired sampling allows a single mean and variance to be calculated: that of the
difference between paired samples. A similar procedure is not typically conducted in ML,
including the literature reviewed here. Rather, even if paired samples have been taken, they
are treated as independent samples (analogous to paired samples being taken but a normal,
non-paired, statistical hypothesis test being performed). Additionally, by using paired data,
it could be argued that the training sample is not as inclusive of the general population,
denying the model the opportunity to distinguish ever more subtle differences between
cancerous versus healthy tissues. Again, this depends upon the clinical application: will
classification be made on the basis of comparing a patient’s healthy sample to their own
suspected diseased sample? If not, then a paired training regime does not reflect the clinical
application, and will compromise generalisability. However, ML models could be adjusted
to account for paired samples, and may be particularly useful for longitudinal studies
and disease progression tracking, where the task is explicitly to compare a single patient’s
sample against their past samples.

4.1.3. Sample Representativeness and Label Noise

Some studies were able to obtain healthy spectra from in vivo tissue, usually via
endoscopy [34,35,40]. The determination of healthy tissue is made by an expert operator
(i.e., an endoscopist) at the time of the examination, while suspicious tissues are excised and
sent for a more thorough histopathological examination. This means that diseased tissues
have been more thoroughly examined than their healthy counterparts. This is compounded
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in RS studies as the technology is able to detect pathological biochemical changes that
have yet to manifest in the tissue morphology [45]; hence, tissue determined as healthy
based on morphology alone may be contaminated with pre-clinical pathological signals. In
the context of ML, this is understood as label noise which describes not noise in the data
themselves but in the labelling of these data [46]. This potential mislabelling of healthy
samples can be described as ‘noisy at random’, in which the source of noise is dependent
upon the true classes. Due to practical and ethical constraints, some degree of contamination
is inevitable, and this should be factored in when considering the implications for any
results. The primary concern in this context is considering how representative the data are
of the population in which they will be deployed.

Wu et al. bypassed this potential problem by obtaining independent samples by
including patients who had biopsies taken of suspicious lesions detected during endoscopy,
which were later determined to be normal by traditional histopathology [35].

There are other potential sources of label noise. It could occur when Raman maps
are taken of an area which are given a single label, as Koya et al. did, but it is possible
that the area is not homogenous in its class, thus mislabelling some spectra. This is only a
problem if spectra, rather than the entire map, are being classified, and might be mitigated
if average spectra are taken, to the degree that one class dominates the sample. Santos et al.,
as well as taking the average sample spectra for training, also explicitly controlled for this
by designating certain samples as heterogeneous during histopathological assessment [31]:
samples deemed to have an uneven distribution of histological features. To control for
this, during train/test splitting, they ensured that both homogenous and heterogenous
samples were included in both sets. They then used the homogenous training set to build
a PCA-LDA model and used the heterogenous training set to define the parameters of
the diagnostic model (i.e., to interpret the outputs of the model). This model achieved a
sensitivity and specificity of 100% and 43.8%, respectively. This is comparable to a 2016
study by the same team on a similar dataset but using only the homogenous samples,
which achieved a sensitivity and specificity of 100% and 45% [47].

Another source of label noise that is perhaps more well understood comes from
mislabelling amongst domain experts such as histopathologists. The negative impact
of inter-observer variation upon ML models has been demonstrated in the context of
circulating cancer cells [48]. A way to improve label accuracy is to obtain consensus
pathology, where more than one pathologist classifies the same samples, as did some of
the reviewed studies [31,34,40]. This may entail discarding valuable medical data if a
consensus cannot be reached. Additionally, how consensus pathology is utilised needs
careful consideration. If only data achieving a consensus label are included to train a
model, this has the effect of enriching the dataset with less ambiguous class examples.
This would limit the generalisability of the model when deployed in the clinical setting
where it would undoubtedly encounter more ambiguous samples. This reflects the fact
that disagreement amongst expert medical annotators is clinically relevant; the boundaries
between classes, for instance, high- versus low-grade dysplasia, exist on a continuum. This
ambiguity in the data could be incorporated into a model by using fuzzy classification,
where class membership is not binary. Other data-retaining options include utilising ML
models known to be robust against class noise, re-weighting data towards clean labels,
and more sophisticated methods specific to deep learning such as teacher and student
models [49].

4.2. Data Augmentation

Data augmentation is a technique by which the amount of spectra is increased by
adding replicated spectra to the data and adding noise and/or other alterations to them.
This is a technique used in deep learning to both increase the sample size and to inject noise
into the data so that the model is less likely to overfit to the training set. Not only does this
increase the sample size, which is important for data-intensive deep models, but it also
makes the model robust against irrelevant features in the data by forcing it to pay attention
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to what is not being distorted. This has the effect of regularising the data, smoothing
out the learning process. This is well established and widely used in other fields using
deep learning, particularly image recognition [50]. This process does not seek to simulate
biological variation, but is useful as a regularisation technique, which lessens the tendency
of a model to over-fit the data. Hence, augmentation cannot be used to compensate for a
lack of biomedical diversity in the data.

Of the studies reviewed here using deep learning, six employed data augmentation.
This was achieved via several strategies. Chen et al. added white Gaussian noise of
varying levels to the spectra, increasing the training data by a factor of five [20]. Lee et
al. similarly added Gaussian noise to spectra, increasing the entire dataset by a factor
of four [26]. Ma et al. also added random Gaussian noise in addition to shifting the
wavenumber axis up to 2 cm−1 and adding a random scale coefficient, thus increasing the
sample size from 600 to 5000 spectra [27], increasing accuracy from 75% to 92%. Wu et al.
also performed wavenumber shifting, up to 4 cm−1, as well as adding linear combinations
of 2–5 random spectra from the same class to create a new spectrum, thus increasing the
sample from 233 to 2420 spectra. Fang et al. linearly combined several spectra to create
a new spectrum and also performed ‘wavenumber shifting’ and added ‘random noise’,
creating 6600 spectra from 510 spectra [51]. Xia et al. augmented the training set up to an
unspecified number, shifting the wavenumber axis and adding noise to the magnitude
at each wavenumber, a process which more closely resembles the Poisson noise typical
of Raman spectra, compared to adding Gaussian noise [36]. Shu et al. developed a novel
augmentation strategy, flipping spectra both vertically and horizontally as might be done
in typical image data augmentation [34].

Only two studies assessed the impact data augmentation had upon classification
performance. Chen et al. found it consistently increased performance across multiple
subset analyses [20], and Ma et al. found it increased the overall accuracy from 75% to
92% [27].

Augmentation is traditionally only performed upon the training data, as data infla-
tion and its regularisation effect is only pertinent during training. The test data are a
representation of the general population of interest and adding noise could be considered
dangerous as it may then become less representative. Four of the reviewed studies which
performed data augmentation did so on the entire dataset before splitting into training and
test sets [26,27,35,51]. There is a technique called test-time augmentation which is becoming
more common, particularly with small datasets. It has been shown to increase model per-
formance [52]. It allows multiple predictions on the same test spectrum, augmented several
times, of which an average can be taken—essentially creating an ensemble approach. Four
of the above studies applied data augmentation to the entire dataset, conducting de facto
test-time augmentation. However, it is not clear from their methods that they exploited the
merging of predictions.

4.3. Pre-Processing

There are numerous pre-processing techniques involved in the analysis of Raman
spectra, such as baseline correction, smoothing and normalisation. However, one of
the putative benefits of CNNs is that they can automatically perform feature selection
and pre-processing at the same time. There is a degree of arbitrariness to many pre-
processing steps, with evidence suggesting that most pre-processing techniques, and their
numerous parameters, actually worsen the subsequent classification [53]. Finding the best
pre-processing method and parameters is often a case of trial and error, or relying on what
has worked well in the past. Although more systematic approaches exist, such as searching
with a genetic algorithm [53], removing this step is attractive. However, neural networks in
general require normalisation to avoid problems such as exploding or vanishing weights;
hence, in the subsequent discussion references to ‘raw’ data includes normalisation. Three
studies explored a suite of pre-processing steps against raw data.
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Lee et al. compared ‘baseline corrected’ data to raw data and found that for traditional
ML models baseline correction improved performance [26]. However, the CNN performed
better on the raw data with an accuracy of 96.6% +/− 0.9% compared to 90.2% +/− 0.5%.
The best performance on pre-processed data was PCA-QDA with an accuracy of 95.0%.

This suggests that CNNs can classify data without pre-processing. There is even a
suggestion that the architecture is able to exploit diagnostic information present in raw
data too subtle for traditional models to detect and usually discarded. However, the results
are not ubiquitous.

Yan et al. pre-processed data by smoothing with a Savitsky-Golay filter and baseline
removal via asymmetric weighted penalty least squares [37]. Compared to raw data,
pre-processing improved the CNN accuracy to 98.75% from 96.70%.

Wu et al. found similar results. They performed baseline correction and spectral
smoothing using the Vancouver Raman Algorithm and compared this regimen to raw
data [35]. The processed regime outperformed the raw one across all subset analyses. This
includes the traditional models, k-nearest neighbours (KNN), RF and SVM, but the largest
increase in performance was observed in the CNN (accuracy: pre-processed = 81.3% vs.
raw = 75.0%).

Although there is some suggestion that using CNNs could preclude an explicit pre-
processing stage, this is not clearly established in the literature. There are a plethora of pre-
processing techniques and it may be that some techniques were better suited to particular
datasets than others—i.e., the pre-processing step could itself introduce over-fitting and
CNNs trained on raw data would generalise better, even though their performance would
be worse during training and testing. This is just speculation until it is more thoroughly
explored. In all the above cases, where traditional ML models were used, they were
improved by pre-processing. If pre-processing is to be conducted, the choices made to
select the best method should be part of the model building process, essentially becoming
another model hyper-parameter. The best pre-processing method should then be selected
based on a validation set, and only tested on the test set once the final pre-processing
method has been selected.

4.4. Traditional versus Deep Machine Learning

Due to the heterogeneity of the reviewed studies, no attempt was made to statisti-
cally aggregate the performance of traditional and deep learning models between studies.
However, many studies performed such a comparison themselves. Table 2 compares the
best performing traditional against deep models. Some studies have multiple entries as
they compared performances across several data subsets or using several pre-processing
strategies. Where more than two models were compared, the best-performing traditional
and deep models are reported.

Prima facie, deep models consistently outperform traditional models, sometimes im-
proving accuracy only by a few percent, but often by a large amount. However, given
the methodological limitations discussed above, together with the propensity of more
complex models to over-fit to data, particularly small datasets, this observation needs
to be taken with caution. It should also be noted that deep learning models have more
hyper-parameters to exploit, which can make them easier to overfit during hyper-parameter
selection.
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Table 2. Deep versus traditional learning models. If the models were tested against various sub-sets
of the data, this is given in the data subset column. Boldface text indicates the best-performing model.

Study Deep Model Traditional Model Data Subsets

Baria et al., 2020 [17]

96.0% (PCA-ANN) 98.0% (PCA-LDA) SK-MEL-2 (Cell lines)
96.0% 90.0% SK-MEL-28
98.0% 90.0% MW-266-4
96.7% 92.7% All

Daniel et al., 2019 [21] 99.0% (PCA-ANN) 98.0% (PCA-LDA)

He et al., 2021 [22] 92.3% (ANN) 92.9% (SVM)

Lee et al., 2020 [26]

90.9% (CNN) 78.3% (PCA-QDA) Processed, whole spectra
90.2% 95.0% Processed, fingerprint
91.2% 86.7% Processed, high wavenumber
95.2% 68.3% Unprocessed, whole spectra
96.6% 61.7% Unprocessed, fingerprint
93.1% 60.0% Unprocessed, high wavenumber

Ma et al., 2021 [27] 92.0% (ANN) 86.5% (SVM)

Qi et al., 2022 [29] 97.7% (ANN) 86.6% (PCA-LDA) Adenomcarcinoma
96.1% 82.1% Squamous cell carcinoma

Shu et al., 2021 [34]
82.1% (CNN) 73.6% (PLS-LDA) All data
84.4% 83.7% NPC vs. control
82.1% 68.4% NPC vs. post-treatment

Wu et al., 2021 [35] 81.3% (CNN) 52.7% (KNN) Processed data
75.0% 42.0% (SVM) Unprocessed data

Xia et al., 2021 [36] 99.6% (CNN-SVM) 95.4% (PCA-SVM)

Yan et al., 2021 [37] 98.8% (Ensemble CNN) 88.5% (PCA-SVM)

Yu et al., 2021 [38] 96.9% (CNN) 88.5% (SVM)

4.5. Model Transparency and Interpretability

ML studies, particularly deep learning, are often criticised for lacking interpretability,
providing results without alluding to the underlying theory [9,54]. In this literature review,
it was found that many studies attempted to relate classification results to the underlying
biochemistry. Most did this by comparing the average spectra of different classes, and relat-
ing differences at given wavenumbers to the underlying antecedent biochemistry. However,
this assumes that an ML model bases its classification on those features detectable by eye
when looking at average spectra, which may or may not be valid. A more sophisticated
method is employed when Raman peaks from different classes are statistically compared,
or when the biochemical make-up of the samples is estimated with techniques such as
NNLS. Regardless, these techniques only provide a post hoc narrative that may or may not
reflect which spectral features the model utilised to drive classification. In general, it is not
obvious what features a CNN is exploiting to make classifications.

Traditional models, being more simple, are often more amenable to interpretation.
Riva et al. identified 19 Raman shifts as biochemically pertinent to classification via GB,
as the technique involves an interpretable feature selection step [30]. Zuvela et al. were
similarly able to identify relevant features due to the GA component of their model [40].
These, and other, traditional ML models have the advantage over deep learning models,
which are infamous for their opacity. However, there are techniques available to help
untangle such classifications, some of which were applied in the literature. Shu et al.
applied a saliency map, in which 100 correctly classified spectra were randomly sampled
from each class to which Gaussian noise was added [34]. This perturbation allowed for
an assessment of which wavenumbers the model paid attention to. Koya et al. used a
technique called permutation importance to assess the importance of features [25]. This
randomly shuffles the features of input spectra and measures the corresponding change in
prediction score. A significant drop in prediction suggested that the feature was particularly
important to the model during classification.
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4.6. Recommendations

There currently exists no explicit standard for conducting and reporting clinical ap-
plications of machine learning. However, reviews in adjacent medical domains have
highlighted similar problems. A review of the literature focusing on deep learning applica-
tions assessed against clinicians found several areas to improve [55]. First, there was a lack
of randomised controlled trials. This is also true of the RS literature reviewed above. Such a
trial would require RS-based ML to be deployed in a clinical setting, and thoroughly assess
how well the technology can generalise across settings. Significant drops in ML model
performances are well documented when a model is applied to data collected at another
institute [56]. Additionally, a large clinical trial would provide a firm benchmark of perfor-
mance against human performance. All the studies reviewed here were non-randomised
and none were compared to human performance, but rather used human pathological
assessment as the gold standard to determine labels used for learning. If the technology is
to translate to clinic then it must establish at least non-inferiority to expert humans whilst
saving resources. Only two studies explicitly used more than one pathologist to provide
labels [34,40]. Given the inter and intra-variability of even expert pathologists it would be
prudent to seek consensus pathology to produce labels. This would also be true if ML is to
be compared to human performance.

In addition, studies should detail enough of their methodology to be reproducible,
which has been found to be lacking in adjacent domains [55]. In the context of this review,
this includes all RS experimental parameters, all pre-processing steps (including data
augmentation), the ML model, architecture and hyper-parameters used, and the cross-
validation strategy used. Given that ML is a data-driven process, datasets and code could
also be made available.

If the full potential of deep learning for biomedical RS is to be exploited, then large,
publicly available datasets need to be curated. Despite the complexity of curating medical
databases due to ethical concerns, such databases do exist for the development of deep
learning models, such as the Cancer Genome Atlas [57]. No such database exists to examine
RS in an oncology context. In addition to the practical challenges of collating large medical
databases, RS poses the additional challenge of system transferability. This is relevant
when a model is trained from data obtained on one spectrometer, then applied to data
taken from a different spectrometer. Even with the same model of spectrometer from
the same manufacturer, there will be subtle calibration differences in both frequency and
intensity and differing fluorescence levels from the optical components. This becomes
problematic when between-instrument variation exceeds between class variation [58]. This
would be greatly aided by having consistent standards for system transfer, as advocated
by Guo et al. [59]. It is worth highlighting that none of the studies reviewed here used
multiple instruments, which would be almost essential in for any reasonable-scale practical
application of the technique. This single fact underlines that, despite the many positive
demonstrations, there are significant hurdles to overcome before such an application is
realised in practice.

Taking all this into consideration, together with the literature reviewed here, we make
the following recommendations:

• When data are split into training, validation and test sets, the level of the split should
be conducted at the highest level (usually the subject, but this may be coincident with
the sample). The chosen level should be explicitly stated.

• If model hyper-parameters are explored, including pre-processing, these should be
selected based on a validation set and once selected only then tested against the test.

• All pre-processing and data augmentation techniques should be described in sufficient
detail to allow for replication. While there is doubt regarding the need for pre-
processing with CNNs, it would be beneficial for studies to include results from both
raw and pre-processed data.

• All the hyper-parameters used in the model should be stated and the hyper-parameter
search strategy should be reported.
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• Where possible, consensus pathology should be used to confirm class labels.
• Where possible, attempts should be made to relate the results to the underlying

biochemistry by interrogating model outputs, in addition to the traditional methods
of comparing average spectra per class, peak comparisons and obtaining difference
spectra.

• Resampling validation strategies should be used, such as k-fold and/or repeated
CV. As these methods provide many generalisation estimates, standard deviations of
performance metrics should be reported.

5. Conclusions

This review has found several common methodological issues in the recent literature
that may be leading to an over-estimation of the ability of ML models to classify Raman
oncology samples. Chief amongst them is the perennial problem in medical research of
small datasets. This exacerbates several other issues including sub-optimal validation and
sampling strategies such as using single splits instead of CV and failing to use a validation
set when selecting hyper-parameters, including pre-processing methods and their attendant
parameters. Regardless of the sample size, data are split into training/validation/test
sets, but the highest hierarchical level in the data results in over-optimistic performance
estimates. Thus, it is likely that the generally high performances seen in the literature are
over-estimating true model performance. This is consistent with other medical domains
employing ML [11].

This review is limited by searching English-language publications and by not by
considering the grey literature, in particular conferences which provide rich sources of
discussion. The review has also omitted several enhanced RS techniques such as SERS,
sacrificing depth for brevity. Due to the heterogeneity of the studies, it was not possible to
conduct a meta-analysis to provide a quantitative exploration of the literature. Contrary to
the PRISMA guidelines, publication bias was not assessed. This is particularly difficult to
assess in non-randomised trials and when meta-analysis has not been performed.

Future research could explore whether deep learning with sufficient sample sizes
could make some of the numerous pre-processing techniques obsolete, or whether hand-
crafted feature selection is an important junction in which to insert domain knowledge.
Additionally, the use of data augmentation when using deep learning is relatively unex-
plored in the context RS and studies specifically looking into the facet would benefit the
field. Regardless, most recommendations concern methodological issues. The reviewed
papers are generally at the proof-of-concept stage, justifying their small sample sizes, but
this necessitates more methodological rigour in order to draw accurate inferences. If the
technique is ever to progress into accepted clinical practice, much larger studies need to
be conducted, preferably populating a publicly accessible dataset, with the transferability
between settings being established.
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Abbreviations
The following abbreviations are used in this manuscript:

RS Raman Spectroscopy
NIR Near-Infrared
PCA Principle Component Analysis
LDA Linear Discriminant Analysis
QDA Quadratic Discriminant Analysis
PLS Partial Least Squares
SVM Support Vector Machine
ANN Artificial Neural Network
CNN Convolutional Neural Network
KNN K-Nearest Neighbours
RF Random Forest
GB Gradient Boost
LSTM Long Short Term Memory
RNN Recurrent Neural Network
RBF Radial Basis Function
CV Cross Validation
LOOCV Leave One Out Cross Validation
ATR-FTIR attenuated total reflection-Fourier transform infrared
ML Machine Learning
NNLS Non-Negative Least Squares
EMSC Extended Multiplicative Scatter Correction
GA Genetic Algorithm
NPC Nasopharyngeal Carcinoma
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