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Abstract: Ischemic heart disease is one of the most important causes of mortality and morbidity
worldwide. Revascularization of coronary stenosis inducing ischemia, either by percutaneous or
surgical intervention, significantly reduces major adverse cardiovascular events and improves quality
of life. However, in cases of intermediate lesions, classified by a diameter stenosis between 50 and 90%
by European guidelines and 40–70% in American counterparts with no clear evidence of ischemia,
the indication of revascularization and impact is determined using various methods that altogether
comprehensively evaluate the lesions. This review will discuss the various techniques to assess
intermediate stenoses, highlighting indications and advantages, but also drawbacks. Fractional flow
rate (FFR) and instantaneous wave-free ratio (iFR) are the gold standard for the functional evaluation
of intermediate lesions, but there are clinical circumstances in which these pressure-wire-derived
indices are not accurate. Complementary invasive investigations, mainly intravascular ultrasound
and/or optical coherence tomography, offer parameters that can be correlated with FFR/iFR and
additional insights into the morphology of the plaque guiding the eventual percutaneous intervention
in terms of length and size of stents, thus improving the outcomes of the procedure. The development
of artificial intelligence and machine learning with advanced algorithms of prediction will offer
multiple scenarios for treatment, allowing real-time selection of the best strategy for revascularization.

Keywords: functional assessment; intermediate lesions; fractional flow rate; intravascular ultrasound;
optical coherence tomography

1. Introduction

Coronary artery disease still represents an important public health issue, despite the
advances in the pathology and the treatment of the disease [1]. Coronary angiography
remains the gold standard investigation that allows the identification of lesions and severity
assessment. Notwithstanding, X-ray angiography is a luminography that simplifies the
three-dimensional structure of the vessel into a two-dimensional representation, induc-
ing misinterpretations due to foreshortenings, overlaps or imprecise stenosis assessment
in eccentric stenoses. Visual estimation of the coronary percentage diameter stenosis is
advocated, together with quantitative comparative analysis, in a recently published com-
plex algorithm for defining the completeness of coronary revascularization [2], but the
ability of visual estimation even in experienced operators of the functional significance of
a stenosis is reduced with a global discordance of 30% [3], the worst performance being
obtained in intermediate lesions [4]. A large burden of the coronary stenoses observed in
the catheterization laboratory, or at least the most troublesome, is those classified as inter-
mediate (25% according to a registry [5]), defined by the European Society of Cardiology as
being between 50 and 90% diameter stenosis [6], or between 40 and 70% in the American
guidelines [7] per visual estimation. This category of lesions raises questions regarding the
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need for revascularization, inducing in some circumstances biases, mainly because even
experienced interventionists can over- or under-estimate an intermediate lesion compared
with the measured fractional flow reserve (FFR) [3]. The intermediate coronary lesions
inducing ischemia that are left untreated have a higher chance of requiring revasculariza-
tion in the future, and are associated with poor prognosis compared with non-significant
stenoses [8]. This review will discuss the methods used in the catheterization laboratory to
guide treatment either towards revascularization or medical approach, and follow-up in
intermediate coronary lesions.

2. Fractional Flow Reserve and Instantaneous Wave-Free Ratio

Due to the inconveniences derived from the visual estimation of percentage diameter
stenosis, both American and European guidelines recommend functional evaluation either
in the form of FFR or instantaneous wave-free ratio (iFR) for intermediate lesions in stable
coronary artery disease. Some authors suggest even larger intervals for functional approach
than those defined in the mentioned guidelines in the 3V FFR FRIENDS study, as 8.7%
of lesions with diameter stenosis have less than 50% presented ischemic FFR value [9].
There are other indications of FFR/iFR apart of intermediate lesions’ functional assessment,
specifically the identification of significant (culprit) lesions in multivessel coronary artery
disease or in multiple consecutive stenosis in the same vessel due to its high spatial
resolution, and measurement of the functional significance of a stenosis in the presence
of a distal collateral flow. The estimation of FFR/iFR can also be achieved non-invasively,
derived from computational simulations comparable to those invasively measured [10].

Fractional flow rate is calculated as the ratio between the distal coronary pressure in
the presence of a stenosis and the proximal coronary pressure in the absence of a stenosis
during maximal hyperemia. The importance of inducing maximal hyperemia is crucial,
as this minimizes the resistance of the microcirculation and therefore represents a good
approximation of the coronary blood flow. Herewith, it is worth remembering that FFR
is a pressure measurement, not a direct coronary flow determination, and that ischemia
potential of a stenosis is also influenced by the total morphology of the lesion, the energy
loss to turbulence, friction and separation caused by stenosis, and that all these are draw-
backs of the technique. Apart from FFR, another parameter for the functional evaluation of
a stenosis is coronary flow reserve is the flow ratio during maximal hyperemia and blood
flow at rest. However, there are many limitations of the technique, including left ventricular
contractility, heart rate, blood pressure or unsuitable Doppler waves, and therefore no clear
cut-off to base the clinical indications. Another important issue to consider in intermediate
coronary lesions is microvascular disfunction, as it can induce severe ischemia that can
be invasively evaluated in the form of coronary vasoconstrictor as well as vasodilator
abnormalities [11]. A recent study from the ILIAS registry (Inclusive Invasive Physiological
Assessment in Angina Syndromes) shows a possible role of coronary flow reserve (CFR)
in subjects with intermediate FFR of 0.75 to 0.8, where those with CFR ≤ 2.0 and deferred
PCI had lower risk of target failure defined as cardiac death, target vessel revascularization
or myocardial infarction, compared with those with normal CFR > 2, proving to be a sup-
plementary criteria to strategy patients [12]. Apart from CFR, the index of microvascular
dysfunction (IMR) is a better parameter for the evaluation of microvascular resistance and
has become the gold standard for the evaluation of microcirculation dysfunction [13,14].
Current commercial wires allow the measurement of both indices of epicardial disease
(FFR, RFR) and microvascular dysfunction (CFR, IMR), which are integrated in the same
guidewire assuring a more comprehensive evaluation of the intermediate coronary lesions.

Fractional flow reserve or instantaneous wave-free ratio is considered the gold stan-
dard for assessing the ischemic potential of a stenosis in stable ischemic heart disease,
predicting the clinical benefit of revascularization, but despite the evidence from differ-
ent clinical trials showing significant reduction to the primary endpoint (death urgent
revascularization and myocardial infarction) [15–17], and the major indications from the
European [6] and American [7] guidelines, its usage is low. In a study by Parikh et al.,
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it is shown that the percentage of subjects with no stress test and intermediate lesions
at angiography is very high (61.3%), while in these cases only 16.5% were investigated
with FFR [15]. Interestingly, in the same report, reduced FFR usage in daily practice was
not dependent on the absence of documented ischemia or the presence of symptoms as
expected, revealing that the main reason for underuse remains operator belief in the futility
of the technique and not reimbursement policies or training.

Invasive physiological evaluation with FFR/iFR guidance is recognized as the optimal
method to evaluate the functional significance of an intermediate stenosis with superior de-
tection of myocardial ischemia compared to other non-invasive tests [18]. FFR has multiple
advantages, such as the high reproducibility and ease of determination in the catheteriza-
tion laboratory, a clear cut-off of 0.8 and gray zone between 0.75 and 0.8, independence of
multiple factors such as microcirculation status, collateral flow or hemodynamic factors
(heart rate or blood pressure), and the possibility to subsequently assess the ischemic
contribution of multiple stenosis. Besides its hemodynamic significance, FFR can be used to
classify coronary atherosclerosis into focal or diffuse, with the use of intracoronary pressure
pullbacks, enabling the identification of the most important steps in pressure-drop potential
candidate zones for angioplasty. Apart of the advantages of this technology, the method
is not without its patient- or lesion-related limitations. The FFR value is determined at
maximum vasodilatation, using usually adenosine, but there are also other potent coronary
vasodilators such as papaverine or sodium nitroprusside. From here, there are some patient-
related disadvantages of the technique, referring to the incapacity of inducing maximal
hyperemia, such as in subjects with severe microvascular impairment, or contra-indications
to adenosine administration. To overcome the disadvantages of adenosine administration,
iFR was developed, measuring the resting pressure gradient at a moment of the diastole
called wave-free when the microvascular resistance is low, and therefore meeting the criteria
of the FFR. The ADVANCE trial showed that an iFR value of less than 0.89 correlates with
to a FFR value of less than 0.8 and proposed a hybrid iFR-FFR approach that reduced the
time consumption with functional evaluation [19]. Another drawback of FFR may be the
pressure damping induced by the position of the pressure transducer too distally into the
vessel, creating normal or false positive results. Furthermore, lesion-specific characteristics
may also influence the FFR or iFR calculation, such as ostial or left main coronary artery
(LMCA) stenosis or diffuse coronary disease affecting subsequent segments, as well as
the clinical situation, acute versus chronic coronary syndromes. Fractional flow rate in
acute coronary syndromes shows normal or supra-normal value due to the obstruction of
microcirculation with emboli, which is why this is not recommended in acute coronary
events, representing one main disadvantage of the technique. For a better evaluation of
these cases, intravascular ultrasound (IVUS) or optical coherence tomography (OCT) may
be a better solution of complementary solutions. Although FFR is not implemented as a
technique to optimize percutaneous coronary intervention (PCI), there are studies showing
that sub-optimal FFR post-stenting is associated with future increased vessel revasculariza-
tions [20]. Furthermore, FFR remains the best method to appreciate the significance of a
jailed side branch after provisional stenting [21].

3. Intravascular Ultrasound

Intravascular ultrasound has been used for many years in the assessment of inter-
mediate coronary lesions. This technique uses a piezoelectric transducer that produces
ultrasound signals allowing the assessment of the vessel wall and characterizing the
atherosclerotic lesions, eliminating the disadvantages of angiography and FFR/iFR. Its
main indications in the American College of Cardiology guideline as class IIa recommen-
dation are the assessment of angiographically intermediate stenosis of the LMCA [22] or
the mechanisms of stent failure (thrombosis or restenosis) as well as guidance of coronary
stent implantation, especially in LMCA or complex coronary artery disease. The Euro-
pean guidelines on myocardial revascularization have similar indications, recommending
IVUS for approaching the severity of unprotected LMCA, the mechanisms leading to stent
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restenosis and guiding PCI. As observed, there is no indication to use IVUS to assess inter-
mediate lesions in non-LMCA, mainly because studies showed only moderate correlation
between IVUS-derived parameters and FFR values; for non-LMCA intermediate stenosis
physiological assessment remains the gold standard.

Minimal lumen area (MLA) is the best parameter calculated using IVUS correlating
with a major adverse cardiovascular event (MACE) [23]. If MLA has a good negative
predictive value (75–96%), it has low positive predictive value (28–67%), indicating that
it is a good parameter to defer intervention, but should not be used as the only indicator
for the indication of revascularization, as this induces unnecessary procedures for lesions
without significant functional impact. Although many studies have aimed to find an IVUS
cut-off equivalent to the ischemic FFR of 0.8 or 0.75, the MLA thresholds largely differ
between studies both in LMCA or non-LMCA. Despite the implementation of different
IVUS-MLA cut-offs and refinements according to the type of vessel, location and size [24],
the accuracy of detecting an ischemic FFR did not surpass 70%. The accuracy of MLA in
the evaluation of LMCA stenosis is higher, most probably due to the simple morphology
and dimension of this vessel with no branch involvement in the pure disease of LMCA,
its functional significance decreasing when there is complex involvement of the ostial left
anterior descending or circumflex artery. For LMCA, the MLA largely varied from 4.5 to
5.9 mm2, with guidelines suggesting 6–7.5 mm2 threshold for Western subjects according
to some prospective multicentric studies showing that a value of 6 mm2 or greater is safe
to defer revascularization in Western patients [25,26] and 4.5–4.8 mm2 more appropriate
in Asian patients [27] (Table 1). Although only three studies have researched the optimal
MLA-LMCA corresponding to FFR ≤ 0.80 (0.75), the much larger cut-off of 7.5 mm2 from
the guidelines comes from a registry analysis of patients with normal/minimally affected
coronary arteries [26].

Table 1. Intravascular ultrasound-derived optimal minimal luminal area values to predict fractional
flow rate in left main coronary artery (LMCA) and non-LMCA.

Study Vessel Ethnicity Lesions FFR Best MLA (mm2)

Park et al., 2014 [27] Isolated ostial and shaft LMCA Asian 112 ≤0.80 4.5

Kang et al., 2011 [28] LMCA Asian 55 ≤0.80 4.8

Jasti et al., 2004 [29] LMCA Western 55 ≤0.75 5.9

Han et al., 2014 [30] Non-LMCA Western/Asian 881 ≤0.80 2.75 (Asian)
3 (Western)

Yang et al., 2014 [31] Non-LMCA Asian 206 ≤0.80 4

Naganuma et al., 2014 [32] Non-LMCA Western 132 ≤0.80 2.70 (VD < 3 mm)
2.59 (VD ≥3.0 mm)

Cui et al., 2013 [33] Non-LMCA Asian 165 ≤0.80 3.15

Waksman et al., 2013 [34] Non-LMCA Western 367 ≤0.80
2.4 (DV < 3.0 mm)
2.7 (VD 3.0–3.5 mm)
3.6 (VD > 3.5 mm)

Gonzalo et al., 2012 [35] Non-LMCA Western 61 ≤0.80 2.36

Ben-Dor et al., 2012 [24] Non-LMCA Western 205 ≤0.80
<2.4 (VD 2.5–3 mm)
<2.7 (VD 3–3.5 mm)
<3.6 (VD > 3.5 mm)

Kang et al., 2012 [36] Non-LMCA Asian 784 ≤0.80 2.4

Koo et al., 2011 [37] Non-LMCA Asian 267 ≤0.80 3.0 (proximal LAD)
2.75 (mid-LAD)

Lee et al., 2010 [38] Non-LMCA Asian 94 ≤0.75 2

FFR fractional flow rate; LMCA left main coronary artery; MLA minimal luminal area; VD vessel diameter.
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Another aspect considered in studies is the inter-ethnic variation in coronary anatomy
and size, and thus, a wide range of MLA-IVUS cut-offs between Western and Asian
populations, most probably due to lower body mass index and the subtended myocardium
for each coronary stenosis. Asian population studies have found an IVUS-MLA for non-
LMCA cut-off varying from of 2 mm2 in the IDEAS study to 2.97 mm2 [38], compared with
Western populations, where larger areas were found, from 3.09 mm2 [24] to 4 mm2 [39].
In a meta-analysis [40] including 14 prospective studies with the aim of evaluating the
diagnostic performance of IVUS-MLA to predict significant non-LMCA stenosis, the results
showed a mean MLA of 2.68 mm2 in Asian populations and 3.03 mm2 in Western ones. The
same meta-analysis proves that an FFR cut-off of 0.75 is associated with an accuracy four
times higher than an FFR of 0.8, used in the majority of studies, but the reason for taking 0.8
as cut-off derives from the desiderate of treating a larger number of lesions without leaving
a category of subjects with ischemia uncovered. Even if its accuracy is increased [40], the
clinical significance is reduced.

Another important contribution of IVUS appears when there is important downstream
disease of the coronary vessel, since in these clinical situations, the accuracy of FFR is
diminished, and a hybrid approach with IVUS and FFR provides essential information not
only about severity, but also about vessel architecture in the case of PCI [41].

Apart from MLA, there are other basic parameters such as maximal luminal area, di-
ameter stenosis, plaque burden and lesion length that contribute to the increasing accuracy
of IVUS in predicting functional significance [38].

Intravascular ultrasound, apart from its variable accuracy in detecting the functional
significance of a coronary stenosis depending on numerous factors, has a proven benefit
in the guidance of percutaneous interventions, as it allows stent size selection, identifi-
cation of good proximal and distal landing zones, and post-implantation optimization.
Numerous published meta-analyses have shown that IVUS versus angiographic-guided
intervention is associated with an overall reduction of MACEs [42–44]. Another advantage
of IVUS is the possibility for use in acute myocardial infarction compared to FFR, to pre-
dict early stent thrombosis or in-stent restenosis as it detects stent under-expansion or a
reduced lumen area due to thrombus protrusion, significant edge plaque burden, steno-
sis or dissection [45]. IVUS-guided PCI is also cost-effective, as shown in an Australian
healthcare system study not only reducing costs but also increasing life expectancy and
quality-adjusted life years [46].

4. Optical Coherence Tomography

Optical coherence tomography is the light modality analogue of IVUS, a technique
using near-infrared spectroscopy to detect the structure of the vessel wall. Optical co-
herence tomography brings several benefits over IVUS such as a quicker acquisition of
images with higher resolution, characteristics that allow a better identification of dissection,
thrombus, plaque ulcerations, stent malapposition and under-expansion. On the other
hand, the reduced wavelength of infrared light and the obligatory flush of the catheter
to create a blood-free lumen are associated with decreased depth of imaging, mainly in
large vessels such as the LMCA, and the impossibility to assess aorto-ostial stenosis, ectacic
or tortuous arteries. The procedural time is increased compared with the setting of the
system, but automated workflows are imaged to reduce the total times with automated
stent identification, lumen or external elastic membrane contour delimitation. The superi-
ority of OCT over FFR in appreciating the severity of coronary lesions is not proven, and
therefore not recommended [35,47]. The OCT-MLA cut-offs are smaller compared with
IVUS-MLA, and correspond to the true lumen dimensions [48], being superior as ischemia
predictors in non-LMCA in some trials [49,50] (Table 2). On the other side of the coin,
the smaller measured diameters in OCT may lead to smaller stent diameters and worse
long-term outcomes. To overcome this limitation of OCT, several strategies have been
proposed such as measurement based on the external elastic membrane rounded to the
nearest 0.25 [51] or adding 10% or 0.25 mm to the mean lumen diameter [52]. The OCT
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guided percutaneous interventions showed decreased edge dissection, malapposition and
under-expansion with increased final MLA compared with coronarography, resulting in
better post-procedural FFR values in the survey DOCTORS [53]. The high axial resolution
of OCT allows the measurement of the thin fibrous cap associated in histopathological
studies with increased risk of erosion and rupture. In the COMBINE study, which made
use of OCT and FFR, a thin cap fibroatheroma of 60 µm or less was associated with more
MACEs in diabetic subjects with intermediate coronary lesions, pinpointing the ability of
OCT to detect plaque vulnerability. One trial still recruiting patients is researching vulner-
able plaque markers in OCT after acute coronary syndromes, collecting in a prospective
manner data about OCT characteristics of plaque vulnerability and their correlation with
outcomes [54]. The identification of vulnerable plaques and guidance of medical or inter-
ventional treatment intensification upon these might be very useful in the future, although
there are no randomized trials showing the improvement of cardiovascular adverse events.

Table 2. Optical coherence tomography-derived optimal minimal luminal areas to predict ischemic
fractional flow rate.

Study Lesions FFR Best MLA
(mm2) Ethnicity

Lee et al., 2020 [55] 365 0.8 2.3 Asian
Rivero et al., 2020 [56] 41 0.8 1.92 Western
Burzotta et al., 2018 [57] 40 0.8 2.5 Western
Usui et al., 2018 [50] 203 0.75 1.39 Asian
Reith et al., 2015 [58] 142 0.8 1.59 Western
Zafar et al., 2014 [59] 41 0.8 1.62 Western
Pawlowski et al., 2013 [60] 71 0.8 2.05 Western
Pyxaras et al., 2013 [61] 55 0.8 2.88 Western
Gonzalo et al., 2012 [35] 61 0.8 1.95 Western
Shiono et al., 2012 [62] 62 0.75 1.91 Asian

FFR fractional flow rate; MLA minimal luminal area.

The comparation between OCT and IVUS in PCI guiding shows contradictory evi-
dence, with some small studies showing that the increased OCT sensitivity in detecting
malapposition, for example, does not translate into less adverse events, such as reduced in-
trastent restenosis or stent thrombosis [63], while others describe a decrease in mortality [64].
The differences in the results of various studies derive from their design, prospective or
retrospective, as well as the power to predict clinical outcomes. Although most causes that
drive stent failure may be detected by IVUS, neoatherosclerosis, a very important cause of
late or very late stent thrombosis, is not detected by it, making OCT the most appropriate
technique when this is the presumed mechanism [65].

5. Emerging Artificial Intelligence Techniques

The emergent new artificial intelligence algorithms for machine learning might over-
come the poor accuracy of IVUS or OCT-derived morphological criteria in predicting
ischemia-inducing lesions showing good performance without the expenditure of pressure
wires [55]. Mathematical fluid dynamics allows the calculation of several flow reserves,
including an OCT-based FFR that has excellent accuracy (95.2%) in predicting the need
for revascularization in intermediate coronary stenosis [66], or IVUS-based [55]. Another
parameter derived by mathematical assumptions of FFR is virtual flow reserve, with its
accuracy being investigated in the FUSION trial (NCT04356027), whose results are still
awaited. One limitation to these parameters is that collateral flow is not considered, and
might have significant impact in the calculation formula. One non-invasive method to
detect ischemia is FFR computer tomography angiography (CTA) using novel computa-
tional fluid dynamics. Its good accuracy in predicting lesion-specific ischemia has been
evaluated in many trials, such as NXT [67] or DISCOVER-FLOW [68]. Quantitative flow
ratio (cQFR) is a parameter obtained from two different angiographic projects that generate
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a three-dimensional quantitative coronary angiography. Using the Gould formula, the
pressure drop is calculated in each segment based on geometry and hyperemic flow velocity.
In the FAVOR study, three models were used to compute hyperemic flow, and all of these
showed good agreement with FFR [69]. Currently, the cQFR based on the TIMI count
analysis without pharmacologically induced hyperemia is the standard displaying better
accuracies. Although there is much evidence supporting FFR CTA more than CTA alone in
the diagnosis of an ischemia-inducing stenosis, its application is limited due to accessibility,
technical limitations and costs to intermediate, calcified stenosis or in cases with artefacts.
The coupled CTA and FFR CTA proved to be useful even in subjects with intermediate
stenosis and Agatston calcium score of above 400 [67].

New convolutional neural networks have been explored to classify plaques, including
the vulnerable ones in OCT [70], as well as in IVUS [71]. Plaque vulnerability predictors,
such as the morphological plaque vulnerability index derived from IVUS with machine-
learning algorithms, showed good prediction accuracy [72], opening new horizons in the
description of morphological features increasing the risk of plaque rupture. A machine-
learning model could predict changes in fibrous cap-thickening measured at OCT analyzing
the genetic pool of the subject advancing a precise medicine concept [73], while others
accurately quantified the cap thickness [74]. Plaque geometry and morphology also play
a key role in plaque rupture. Machine learning and three-dimensional reconstruction of
plaques can improve the efficiency of some methods, such as CTA in the evaluation of
intermediate lesions [75]. Artificial intelligence has an increased potential in making an
accurate diagnosis, suggesting personalized treatment based on stratified risks compared
to humans, but this domain is still in its infancy, requesting the standardization of methods
and quality of data to assure appropriate recommendations.

6. Conclusions

One single imaging technique will not answer all the questions raised by coronary
angiography in the case of intermediate stenoses. It is worth noting that FFR remains the
gold standard for the evaluation of functional significance, but in complex clinical scenarios,
it may not prove to be ideal, prompting the interventionist to approach other methods,
such as intravascular ultrasound and optical coherence tomography. Each of these has its
own inconveniences, but together offer a more comprehensive image of the investigated
coronary lesion.
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