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Abstract: Background: Craniosynostosis is a condition caused by the premature fusion of skull
sutures, leading to irregular growth patterns of the head. Three-dimensional photogrammetry is
a radiation-free alternative to the diagnosis using computed tomography. While statistical shape
models have been proposed to quantify head shape, no shape-model-based classification approach
has been presented yet. Methods: We present a classification pipeline that enables an automated
diagnosis of three types of craniosynostosis. The pipeline is based on a statistical shape model built
from photogrammetric surface scans. We made the model and pathology-specific submodels publicly
available, making it the first publicly available craniosynostosis-related head model, as well as the
first focusing on infants younger than 1.5 years. To the best of our knowledge, we performed the
largest classification study for craniosynostosis to date. Results: Our classification approach yields an
accuracy of 97.8 %, comparable to other state-of-the-art methods using both computed tomography
scans and stereophotogrammetry. Regarding the statistical shape model, we demonstrate that our
model performs similar to other statistical shape models of the human head. Conclusion: We
present a state-of-the-art shape-model-based classification approach for a radiation-free diagnosis of
craniosynostosis. Our publicly available shape model enables the assessment of craniosynostosis on
realistic and synthetic data.

Keywords: classification; craniosynostosis; statistical shape model; template morphing; machine
learning; stereophotogrammetry; shape analysis

1. Introduction
1.1. Craniosynostosis

Craniosynostosis is characterized by the premature fusion of skull sutures in infants
and results in irregular growth patterns. The reported prevalence is three to six cases
per 10,000 live births [1–3]. Craniosynostosis can occur isolated (affecting one suture) or
non-isolated (affecting multiple sutures). Syndromic conditions such as Crouzon, Muenke,
or Pfeiffer syndromes have genetic reasons and lead to multi-suture synostosis. These
syndromes tend do show phenotypical craniofacial findings. Unlike syndromic cases,
the causes of isolated craniosynostosis are believed to be multifactorial. Hereditary con-
ditions and genetic mutations have been identified to cause premature fusion of specific
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sutures [4]. Symptoms of isolated craniosynostosis are a deformity of the neurocranium
and, consecutively, viscerocranium. Craniosynostosis has been linked to elevated intracra-
nial pressure [5], which can lead to reduced brain growth and reduced neuropsychological
development [6]. Depending on the involved suture, isolated craniosynostosis can be
classified into sagittal synostosis (scaphocephaly), metopic synostosis (trigonocephaly),
unilateral coronary synostosis (anterior plagiocephaly), lambda synostosis (posterior pla-
giocephaly), and bicoronal synostosis (brachycephaly). Although brachycephaly includes
the synostosis of both coronal sutures, the medical community counts it among isolated
synostosis. Surgical treatment involves resection of the synostosis, as well as remodel-
ing and reshaping of the cranial vault. The operation aims to prevent abnormal brain
growth, thus enabling a regular development of the skull and face [7,8]. Complications
during surgery are rare [9], and in most cases, a normalized head shape is achieved [10].
The most important differential diagnosis for craniosynostosis are head deformities caused
by positioning without suture fusion. These head deformities are mainly manifested as
a non-synostotic posterior plagiocephaly. Positioning deformities are often treated with
positioning pillows, helmet therapy, or changes in positioning behavior [11]. For further
reading, the reader is referred to [12].

As determined by Virchow’s Law, the premature closure of a suture limits the expan-
sion of the skull perpendicular to the fused suture and causes compensatory growth along
the suture, resulting in distinct head shapes [13]. During diagnosis, physicians perform
visual examination, palpation, cephalometric measurements, and medical imaging. Com-
puted tomography (CT) imaging is the gold standard for diagnosis, as well as for surgical
planning and is routinely performed in many craniofacial centers worldwide. However,
this exposes infants to ionizing radiation, which should be avoided [8]. One alternative
imaging method is Black Bone magnet resonance imaging [14,15], which has the notable
drawback that the infant needs to be sedated during image acquisition to prevent child
from moving. Sonographic examinations [16] and 3D photogrammetry are radiation-free
and broadly available diagnostic options. Photogrammetric scans provide inexpensive and
fast means to objectively quantify head shape without exposure to radiation or sedation.
They are often used to monitor the condition before surgery and the head development after
the operation [17]. For more information about the current development, we refer to [16].

1.2. Assessment and Classification of Craniosynostosis Using Statistical Shape Modeling

Statistical shape modeling describes the approach to capture variations of geometric
shapes by statistical methods. Point distribution models (PDMs) are the most common type
of statistical shape models (SSMs) and use a point cloud representation. Cootes et al. [18]
introduced the idea to construct PDMs using training instances. PDMs require a registra-
tion step and correspondence among training instances before computing the statistical
properties of the training data. Usually, principal component analysis (PCA) is applied to
determine the principal components according to their respective variance in the training
data. Synthetic, valid shapes are constructed by linear combinations in the vector space
defined by the principal components and constrained by their respective eigenvalues.
The idea to model statistical attributes has been introduced in facial models [19,20], while
the Liverpool-York-Head-Model is the first publicly available shape model of the full hu-
man head in both shape and texture [21], also including the first publicly available child
model constructed from healthy subjects between 2 and 15 years. Egger et al. [22] gives a
overview about face models, current trends, applications, and challenges.

SSMs have also been applied to the analysis of craniosynostosis-specific head deformi-
ties. Some studies showed statistical differences between healthy subjects and pathological
subjects using PCA and statistical shape modeling on photogrammetric surface scans [23],
while other studies built healthy models and found shape vector differences between pre-
and post-operative craniosynostosis patients [21,24,25].

While for CT data, SSMs have been successfully used to classify craniosynostosis
in combination with other features [26], no SSM-based classification approach has been
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presented for 3D photogrammetric surface scans. Ray-based classification approaches have
been presented [27], which do not have many of the desirable features of SSMs such as a
visual representation of the patient for patient counseling or the ability to create synthetic
data from their training data.

1.3. Scope of This Work

In this publication, we construct a classification pipeline for craniosynostosis built on
top of an SSM of 3D surface scans, which we also make publicly available. In particular, we
make the following contributions:

• We present an alternative classification approach for craniosynostosis to distinguish
between controls and three different types of craniosynostosis directly on the param-
eter vector of our SSM built from 3D photogrammetric surface scans. We test five
different machine-learning-based classifiers on our database consisting of 367 subjects
and achieve state-of-the-art results. To the best of our knowledge, we conducted the
largest classification study of craniosynostosis to date.

• We propose the first publicly available SSM of craniosynostosis patients using 3D
surface scans, including pathology-specific submodels, texture, and 100 synthetic
instances of each class. It is the first publicly available model of children younger than
1.5 years and SSM of craniosynostosis patients including both full head and texture.
Our model is compatible with the Liverpool-York head model [24], as it makes use of
the same point identifiers for correspondence establishment. This enables combining
the texture and shape of both models.

• We demonstrate two applications of our SSM, which can easily be performed with the
publicly available model: First, with regard to patient counseling, we apply attribute
regression as proposed by [19] to remove the scaphocephaly head shape of a patient.
Second, for pathology specific data augmentation, we use a generalized eigenvalue
problem to define fixed points on the cranium and maximize changes on face and ears
as proposed by [28]. To the best of our knowledge, neither of these applications have
been applied to patients using a craniosynostosis shape model before.

2. Materials and Methods

Figure 1 gives a full overview of the pipeline from the raw data to the SSM creation
and the craniosynostosis classification. We describe each of the top-level blocks in detail in
the following subsections.

2.1. Dataset and Preprocessing

At the Department of Oral, and Maxillofacial Surgery of the Heidelberg University
Hospital, photogrammetric surface scans are routinely used to monitor and document
patients with craniofacial diseases. Out of the scans that were acquired between 2011 and
2020, 367 preoperative 3D photogrammetric scans were extracted. We used a standardized
protocol, which had been examined and approved by the Ethics Committee Medical Faculty
of the University of Heidelberg (Ethics Number S-237/2009). The study was carried out
according to the Declaration of Helsinki, and written informed consent was obtained from
parents. The Canfield VECTRA-360-nine-pod system (Canfield Science, Fairfield, NJ, USA)
was used for recording. To avoid artifacts on the head due to hair, the scanned infants
wore tight-fitting nylon caps. For each of the recordings, the dataset provided the 3D
vertex coordinates, UV texture coordinates, and the triangular face indices connecting the
vertices to a mesh surface. Each recording contained additional metadata, which includes
the medical diagnosis of the physician, the patient’s age on the day of the recording, and
10 cranial and facial landmarks manually annotated by a medical expert. We summarize
the aforementioned landmarks in Table S1.
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Figure 1. Shape model creation and classification pipeline. Blue: data, yellow: statistical and
preprocessing methods, red: classification. Each of the top-level blocks is described individually.

We retrieved patient scans classified with one of three types of craniosynostosis,
namely “coronal suture fusion” (brachycephaly and unilateral anterior plagiocephaly),
“sagittal suture fusion” (scaphocephaly), “metopic suture fusion” (trigonocephaly), as well
as a control group without any suture fusion. This makes our approach comparable
to other classification studies, which distinguished between craniosynostosis and non-
craniosynostosis classes, in particular [26,27]. Besides healthy subjects, our control group
contained also scans of children with positional posterior plagiocephaly without suture
fusion, who were later treated with helmet therapy or laying repositioning. All craniosyn-
ostosis patients later underwent surgical remodeling of the cranium. We show violin
plots [29] using a publicly available implementation [30] of the subjects’ age distribution
in Figure 2.

During recording, the patients had to be held tight; often, the neck of the patient was
covered by clothes or the hands of the medical staff. For this reason, some recordings
contained isolated parts and other artifacts. Additionally, close to the ears, we often found
mesh irregularities such as large edge lengths. The open-source tool Meshlab (ISTI-CNR,
Pisa, Italy) [31] was used to remove isolated parts and duplicated vertices and to close
holes. After artifacts removal, we used isotropic explicit remeshing [32] to avoid large edge
lengths and to obtain a regular, uniform surface scan.

Depending on the model application, it can be advantageous to use a non-regular
mesh (having different resolutions on different parts of the mesh). Cranial parts mostly
change smoothly in comparison with facial parts and can thus be expressed with fewer
vertices and lower spacial resolution to reduce computational cost.

We used the mean shape of the Liverpool-York child head model [21] as a template for
correspondence establishment. This template has the advantage of being symmetric and
does not have any head deformity, avoiding pathological bias during model creation. To di-
rectly include eyes and close the mouth in the model, we added additional vertices into the
template, which enables using the model without an additional eye model. The modified
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template is compatible with the original model as the order of the vertex identifiers is the
same. The final template has p = 13151 vertices and a mean edge length of 2.91 mm.

Figure 2. Age distribution among classes of the dataset. Parenthesis indicate number of samples
per class.

2.2. Correspondence Establishment

Correspondence establishment is crucial and has a high influence on the model per-
formance, but is at the same time difficult to evaluate as no ground truth is available.
During correspondence establishment, we intended to find corresponding points with
the same morphological meaning on the template X ∈ Rp×3 and the target scans. To in-
crease our sample size and avoid a symmetry bias for asymmetric pathological cases for
the coronal model, we mirrored each subject on the midsagittal axis, thus increasing the
dataset size from N = 367 to 2N = 734. To prepare template morphing, we initially
aligned the template to each target using the annotated landmarks. We used Procrustes
analysis to obtain a linear transformation consisting of translation, rotation, and isotropic
scaling, which transformed the original template landmarks onto the corresponding target
landmarks. By applying the transformation to the whole set of the template points, we
aligned the template mesh to each target scan, ensuring that the facial and cranial regions
of the template were close to their morphological counterparts on the target scan. Note that
this process only facilitates template morphing and does neither rescale nor change the
target scans.

We used nonrigid iterative closest points affine (N-ICP-A) from the family of opti-
mal step nonrigid iterative closest points (OS-N-ICP) methods for correspondences estab-
lishment over other 3D surface registration methods that have been applied on medical
data [20,21,24,33–36], as it was developed for head shape registration.

The OS-N-ICP methods were presented by [37], who based their work mostly on [35].
The core idea is to use an affine transformation for each point and locally regularize trans-
formations of connected points. A stiffness term penalizes differences between transforma-
tions between adjacent nodes. A distance term controls how close the template vertices are
transformed to the target points, and a landmark term requires that the landmark points
of template and target match each other. All three terms, stiffness term, distance term,
and landmark term, are optimized simultaneously using an iterative approach starting
with a high stiffness. For each stiffness, a correspondence search is performed, and the opti-
mal deformation with respect to the found correspondences is computed. As soon as the
transformation changes very little, the stiffness parameter is decreased and repeated for the
reduced stiffness until convergence. For detailed explanations, the reader is referred to [37].
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To show that our classification approach also performs well on other registration methods,
we also performed template morphing for the competing Laplace–Beltrami regularized
projection (LBRP) methods. Those parts are not included in the main study and are instead
available as Supplementary Material. We include mathematical descriptions in Section S2,
the used hyperparameters in Table S2, and the evaluation of all the morphing methods in
Section S3.

2.3. Statistical Modeling

A statistical analysis was performed by computing the sample mean and sample
covariance matrix of the training data. To align the morphed templates, we employed
rigid generalized Procrustes analysis (GPA) [18]. GPA iteratively calculates the mean shape
of the training data and the deviation of the training data to the calculated mean shape
and aligns the training data accordingly. The Euclidean distance was used as the Procrustes
distance metric. This removed the non-shape-related attributes translation and rotation
from the morphed templates. For this study, we considered scale an attribute of shape
because craniosynostosis-related features may depend on the patient’s age and head size.
After reshaping each of our morphed templates Xi ∈ Rp×3 into column vectors xi ∈ R3p, we
stacked them horizontally to obtain the observation matrix XObs ∈ R3p×2N . We regarded
them as independent observations, which served as training data upon which we built
our SSM. We computed the mean shape x̄ ∈ R3p, and by subtracting the mean shape from
the observations matrix, we obtained the mean-aligned data matrix, which we refer to as
zero-mean data matrix:

XObsZM = XObs − x̄ (1)

To compute the eigenvectors and eigenvalues of the sample covariance matrix of
the zero-mean training data, we used weighted principal component analysis (WPCA).
In contrast to ordinary PCA (which would over-emphasize regions with high point densities
such as the face), WPCA enables all parts of the head to have the same influence on the
principal components.

We defined the mass matrix M ∈ Rp×p, composed of per-vertex weights and per-edge
weights, in a very similar manner to barycentric cells. The diagonal elements of M represent
the vertex weights. Each vertex weight is defined as the sum of the area of the adjacent
faces for which this vertex is the nearest neighbor. Likewise, the non-diagonal elements
represent the edge weights, and each edge weight is defined as the sum of the area of
the adjacent faces for which this edge is the closest edge. To account for the vectorized
representation of the observations, the mass matrix is then stretched by a factor of 3 and
nearest-neighbor-interpolated, resulting in M3 ∈ R3p×3p. We computed the weighted Gram
matrix GW ∈ R2N×2N as

GW = XT
ObsZMM3XObsZM (2)

and performed an eigendecomposition of GW using

GW = UGΛGUT
G. (3)

We computed the principal components V ∈ R3p×2N of the training data as

V = XObsZMUGΛ
− 1

2
G , (4)

and the eigenvalues Λ ∈ R2N×2N of the sample covariance matrix of the training data by
re-scaling the eigenvalues of the Gram matrix:

Λ =
1

2N − 1
ΛG. (5)
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Each observation could then be defined using the principal components and eigenval-
ues using

x = x̄ + VΛ
1
2 α. (6)

As the data matrix was centered before, the last eigenvalue will be zero and can
be omitted.

We created one full model, four class-specific submodels, and one cranium-only model.
The full model was created using the full zero-mean observation matrix. The class-specific
submodels used the assigned diagnosis label for each observation. For the classification
approach, we built a cranial model and extracted the cranial part of the template to remove
possible influences of the face. For each model, GPA was performed individually.

2.4. Classification of Craniosynostosis

The classifier was trained on the cranium model to distinguish between the labeled
classes and, thus, between the three different types of craniosynostosis and the control class.
We extracted the coefficient vector α for each observation from the cranial model, which
served as an input for the classifiers. Using the coefficient vector as shape descriptors and
as a direct input for an support vector machine (SVM) has been successfully tested in a
different domain [38].

We evaluated five different machine-learning-based classifiers: SVM [39], linear dis-
criminant analysis (LDA) [40], naive Bayes (NB) [41], bagged decision trees (BDTs) [42],
and k-nearest-neighbors (kNN) [43]. All classifiers were implemented using the Python
module scikit-learn [44] (Version 1.0.2), mostly sticking to the default settings. SVMs
are binary classifiers that use kernel functions to map the input parameters into a high-
dimensional representation, which can be separated by hyperplanes. We chose a kernel-
based on radial basis functions and a multi-class model with 6 one-versus-one binary
classifiers. For LDAs, we used a multivariate Gaussian distribution for each class assuming
the same covariance matrix for each class. Each prediction is assigned to the class whose
mean is the closest in terms of the Mahalanobis distance taking into account the prior proba-
bility of each class. NB assumes conditional independence between input variables. Similar
to LDA, we used a Gaussian model to distinguish between classes. kNN classification
classifies the test sample according to the k closest neighbors. We selected k = 5 nearest
neighbors in Euclidean space. For tie-breaking we chose the nearest neighbor among the
tied classes. BDTs are white-box classification algorithms using a hierarchical, tree-like
structure. We used the default implementation for tuning the hyperparameters of the BDTs.

We used stratified 10-fold cross-validation on the unmirrored samples. For each split,
the test set was only composed of the original, unmirrored samples, and the training set
was augmented with the mirrored training samples. This way, each of the samples from
the original set was used once for testing without the possibility of cross-over.

We ordered the principal components according to their variance, so the first principal
components describe the overall shape, while the last components contain mostly noise.
The noise can arise, e.g., from incorrect morphing, limited resolution, or acquisition errors
during scanning. We aimed to reduce the number of principal components based on the
assumption that the parameters responsible for a good classification are concentrated in the
first components. We iterated over the first 100 principal components and used the accuracy
as a fitness function to select the optimal number of principal components. Finally, four
different metrics evaluated the final classifier: besides overall accuracy, we used g-mean,
per-class sensitivity, and per-class specificity.

3. Results
3.1. Classification Results

We tested the five classifiers on the cranial model. Figure 3 shows the accuracy
over the used number of principal components on the N-ICP-A approach. LDA, SVM,
and NB outperformed kNN and BDT. A reduction in accuracy with adding more principal
components could be observed for NB and kNN and less pronounced for the SVM.
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Figure 3. Accuracy as a function of the number of principal components used for the nonrigid
iterative closest points affine (N-ICP-A) classifier.

For the optimal classification setup (LDA with 44 components), we show the confusion
matrix, per-class sensitivities, per-class specificities, and g-mean in Table 1. The classifier
yielded optimal per-class specificities for the pathological cases and the per-class sensitivity
for the controls and metopic cases. The remaining per-class sensitivities for the pathological
cases were between 0.773 and 0.973, while the per-class specificity for the control group
was 0.958. The g-mean resulted in 0.931 and the total accuracy in 0.978. In Table S4, we
include the classification results for the other morphing methods.

Table 1. Confusion matrix, sensitivity, and specificity for linear discriminant analysis (LDA), nonrigid
iterative closest points affine (N-ICP-A) and the optimal number of components (44) using stratified
10-fold cross-validation. Con = control, Cor = coronal, Sag = sagittal, Met = metopic.

True Class Predicted Class Sensitivity Specificity

Control Coronal Metopic Sagittal

Control 178 0 0 0 1.000 0.958
Coronal 5 17 0 0 0.773 1.000
Metopic 0 0 56 0 1.000 1.000
Sagittal 3 0 0 108 0.973 1.000

G-mean 0.931
Total accuracy 0.978

3.2. Morphing and Shape Model Evaluation

We evaluated each template morphing approach using three metrics: landmark errors,
vertex-to-nearest-neighbor distances, and per-class surface normal deviations. Landmark
errors provide sparse point-to-point errors on known correspondences. Vertex-to-nearest-
neighbor distances evaluate how close the template has been morphed onto the target
without taking into account whether the nearest neighbor is morphologically correct. What
we refer to as “surface normal deviations” was proposed in [37]: we removed translational
and rotational components from the morphed templates and computed surface normal
deviations between the morphed templates. This evaluates how well point identifiers
have been morphed onto morphologically similar regions across all scans. However, our
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dataset contained different pathologies, so we also expected shape and surface normal
differences among different pathology classes. Hence, we modified this approach and
computed surface normal deviations on each pathology class separately before calculating
the cumulative mean surface normal deviations. Table 2 shows morphing errors for the
N-ICP-A method.

Table 2. Mean error and standard deviation for the N-ICP-A method.

Mean Landmark
Error (mm)

Mean Vertex-to-Nearest-Neighbor
Distance (mm)

Mean Surface Normals
Deviations (Degree)

6.533± 1.796 0.007± 0.003 33.488± 1.578

For shape model evaluation, we used the three metrics compactness, generalization,
and specificity [45,46]. Compactness determines the model’s ability to capture most of
the variance with few components, generalization the model’s ability to fit to unknown
observations, and specificity the model’s ability to create synthetic instances similar to
the training data. We show the results for N-ICP-A in Figure 4. For the other morphing
methods, we refer to Table S3.

We performed a qualitative evaluation of the shape model eigenmodes and submodel
mean shapes on the N-ICP-A model, as shown in Figure 5. A change of the first eigenmode
of the full SSM represents a change primarily in size. For the second mode, we observed an
elongated head shape characteristic of sagittal suture fusion. In the positive direction, we
observed a triangular forehead typically associated with metopic suture fusion. The third
mode showed head asymmetry resembling left and right plagiocephaly patients present in
the control group.

In Figure 6, the resulting submodels are evaluated in terms of compactness, general-
ization, and specificity. However, quantitative comparisons between the submodels are
invalid as the they differ in sample size. Visually, the mean shapes of each pathological
submodel show the typical characteristics of each disease (Figure 7).

Figure 4. Compactness, generalization, and specificity of the final model as a function of the number
of principal components. Top left: Compactness. Top right: Zoom-In. Higher is better. Bottom left:
Generalization error. Bottom right: Specificity error. Lower is better.
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First mode, front and top view.

Second mode, front and top view.

Third mode, front and top view.

Figure 5. First three modes of the full model in front and top view. From left to right: −3σ, mean
shape, and +3σ. Color bar indicates vector norm difference between principal component shape and
mean shape (gray).
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Figure 6. Shape model metrics for the control submodel and the pathology-specific submodels. From
top to bottom: compactness, generalization, and specificity.
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Control model Coronal fusion model Sagittal fusion model Metopic fusion model

Figure 7. Mean shapes of pathology-specific submodels, front and top view. From left to right:
control model, coronal suture fusion model, sagittal suture fusion model, and metopic suture fusion
model. Color bar indicates vector norm difference between principal component shape and mean
shape (gray).

3.3. Publicly Available Shape Model

We provide the N-ICP-A-based SSM, a texture model, triangular mesh mappings,
the class-specific submodels, and 100 instances of each model sampled from a Gaussian
distribution. The models are publicly available online [47] under the Creative Commons li-
cense CC-BY-NC 4.0. For the models, we included 95–98% of the total variance. As we used
the Liverpool-York child head model as a basis for the initial template for correspondence
establishment, the statistical information of both the shape and texture of the models can
easily be combined. Table 3 provides information on how many components we included
in each model.

Table 3. Number of principal components included in the publicly available shape model data under
Creative Commons license CC-BY-NC 4.0.

Model Included Principal Components

Full shape model 100
Texture model 100
Control model 30
Sagittal model 30
Metopic model 25
Coronal model 15

3.4. Shape Model Applications

We illustrate two applications of our SSM. First, we changed the head of a scapho-
cephaly patient toward the control group. Blanz et al. [19] presented an approach to change
an attribute (such as gender or weight) using linear regression. As the pathologies in our
model can be interpreted as such attributes, we changed the pathology of our samples:

αID,control = αID + αµ,control − αµ,sagittal (7)
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We present the resulting pathology change in Figure 8. This approach can be useful in
clinical settings for patient counseling.

Scaphocephaly patient (sagittal suture fusion) with
elongated head shape

Synthetic representation of the patient without
scaphocephaly

Figure 8. Patient pathology assessment using pathology change. Left: the original head shape of the
scaphocephaly patient. Right: the patient’s head with removed pathology using our full SSM.

Second, we sampled random instances from our shape model while keeping the
points on the cranium fixed. Modeling the remaining flexibility on a shape that is held
partially fixed can be described as a constrained generalized eigenvalue problem [28]. This
approach can be applied to create a synthetic database for machine learning applications
and is depicted in Figure 9. Alternatively, synthetic samples with a predefined pathology
can also be created using a posterior shape model [48] or by simply using the pathology-
specific submodel.

First flexibility mode. Second flexibility mode. Third flexibility mode.
Figure 9. The first three flexibility modes with fixed cranium, applied to a synthetic scaphocephaly
patient. Changes are minimal for the cranium and maximal for the face, neck, and ears.

4. Discussion

We proposed the first classification pipeline for craniosynostosis based on a SSM. To the
best of our knowledge, we tested it on the largest dataset used for a craniosynostosis-related
classification study to date. Multiple authors [23,49] have shown that shape modeling
enables a quantitative analysis of the head shape with respect to craniosynostosis. In our
work, we demonstrated that SSM can not only quantify, but also classify head deformities.
With an accuracy of 97.8% on 367 subjects, our approach classifies craniosynostosis com-
parable to competing methods: Mendoza et al. [26] achieved a classification accuracy of
95.7% on 141 subjects using CT data, and de Jong et al. [27] obtained an accuracy of 99.5%
on 196 samples using a feed-forward neural network in combination with ray casting and
stereophotographs. As each classification approach used different datasets, quantitative
comparisons between different approaches are arguably dataset dependent. However,
as we tested multiple classifiers and multiple morphing methods, we demonstrate that
our classification approach is robust and does not rely on heavy hyperparameter tuning.
Morphing methods for the shape model creation showed little influence in the final clas-
sification accuracy. The choice of the classifier had a larger influence on the classification
results: LDA and SVMs appeared to be the most robust classifiers with respect to the noisy
components, while NB worked well with fewer than 40 components. Overall, LDA worked
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best. In future work, a multi-class classification approach could enable a multi-suture
craniosynostosis classification.

We further present the first publicly available craniosynostosis SSM. It unites statistical
information of 367 subjects and their mirrored twins with and without craniosynostosis.
To date, many methods presented by various authors rely on in-house datasets, making
quantitative comparisons difficult. A set of synthetic photogrammetric head scans of our
SSM can help in creating a large patient cohort for a reproducible evaluation of methods to
assess craniosynostosis.

Our model reflects the pathologies available in our dataset: The first two components
show changes in size, as well as changes related to sagittal and metopic suture fusion. These
are the two largest craniosynostosis classes in the dataset. The third principal component is
associated with head asymmetry, resulting from non-synostotic positional plagiocephaly
subjects in the control class. The pathology-specific submodels also depict the typical head
deformities observed in clinical studies and are best used for controlled sampling of labeled
synthetic instances.

From the tested template morphing methods, none of the approaches clearly outper-
formed the other ones. We considered N-ICP-A and iterative coherent point drift with
Laplace–Beltrami regularized projection (ICPD-LBRP) to be the two most promising meth-
ods. Our decision to use N-ICP-A over ICPD-LBRP for the publicly available model was
motivated by the smaller vertex-to-nearest-neighbor distances and the higher model com-
pactness. Landmark errors are typically considered the gold standard, but as our model is
concerned with craniosynostosis and the landmarks are located primarily on the face, we
deemed them less important for this model.

A comparison with other craniosynostosis-related SSMs is difficult as we propose
the first publicly available model of infants. In the medical field, studies that used shape
models [49,50] did not include quantitative metrics such as landmark error, compactness,
generalization, and specificity. The most comparable SSM might be the Liverpool-York-
Model [21,24], as it is a full-head model and also contains a submodel comprising children
from 2 to 15 years of age. Compared with the Liverpool-York head model, our model
is more compact and has a lower specificity error and lower vertex-to-nearest-neighbor
distances, but a higher generalization and landmark error. However, a direct comparison
may not be meaningful considering that both the dataset and the used mesh resolution
are different. Our training data contain only children younger than 1.5 years, so the total
variance of our model might be smaller by nature. However, by including a similar LBRP
approach in our analysis, we show that our model performs comparable to state-of-the-
art models.

The control class of our study was assembled by the scans of children who visited
the hospital without indication to be treated surgically. This includes patients who were
diagnosed being healthy and patients who were diagnosed having mild head deformities
due to positional plagiocephaly. Thus, the control model represents a mixed group of
children and should be used with caution when generating healthy subjects.

Using PCA or WPCA assumes that the training data follow a multivariate normal
distribution. This assumption does not hold up for a head model that includes different
pathology classes. With respect to the classification, PCA serves as a re-parameterization
and ultimately as a dimensionality reduction procedure. This seems to be one of the
key elements of our classification approach. PCA is the de facto standard method for
PDM generation, although some authors have proposed some alternatives for specific
cases. Probabilistic principal component analysis (PPCA) has been proposed for datasets
with missing data or outliers [51], but has higher computational costs. As we have a
regular mesh and removed corrupt scans before establishing dense correspondence, we
employed WPCA.

Many authors proposed modifications to further improve SSMs. With respect to temp-
late morphing, multiple correspondences can be taken into account [52]. Some possible
improvements for the statistical modeling include the use of PPCA [51], reparameteri-
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zation of training shapes [53], the use of part-based models [54], or combining multiple
models [55,56]. Gaussian process morphable models [57] model deformations as Gaussian
processes, which increases model flexibility by the use of prior models, combining kernels,
and operating in the continuous domain. Domain-specific Gaussian process shape defor-
mations [20] can also be used for model building. These methods might further improve
our model.

5. Conclusions

We presented a craniosynostosis classification pipeline using the parameter vector of
an SSM. We achieved state-of-the-art results comparable to both CT data and photogram-
metric scans, and to the best of our knowledge, we tested it on the largest craniosynostosis-
specific dataset to date. We also presented the first full-head model of craniosynosto-
sis patients and made it publicly available. We included pathology-specific submodels,
ready-to-use sampled instances of each submodel, and a texture model. Our model per-
forms similar to state-of-the-art head models with respect to morphing and model met-
rics and captures craniosynostosis-specific features. Finally, we showcased two original
craniosynostosis-specific applications of our model.
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