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Abstract: The trade-off between speed and precision is a key step in the detection of small polyps in
wireless capsule endoscopy (WCE) images. In this paper, we propose a hybrid network of an inception
v4 architecture-based single-shot multibox detector (Hyb-SSDNet) to detect small polyp regions
in both WCE and colonoscopy frames. Medical privacy concerns are considered the main barriers
to WCE image acquisition. To satisfy the object detection requirements, we enlarged the training
datasets and investigated deep transfer learning techniques. The Hyb-SSDNet framework adopts
inception blocks to alleviate the inherent limitations of the convolution operation to incorporate
contextual features and semantic information into deep networks. It consists of four main components:
(a) multi-scale encoding of small polyp regions, (b) using the inception v4 backbone to enhance more
contextual features in shallow and middle layers, and (c) concatenating weighted features of mid-level
feature maps, giving them more importance to highly extract semantic information. Then, the feature
map fusion is delivered to the next layer, followed by some downsampling blocks to generate new
pyramidal layers. Finally, the feature maps are fed to multibox detectors, consistent with the SSD
process-based VGG16 network. The Hyb-SSDNet achieved a 93.29% mean average precision (mAP)
and a testing speed of 44.5 FPS on the WCE dataset. This work proves that deep learning has the
potential to develop future research in polyp detection and classification tasks.

Keywords: deep transfer learning; multi-scale encoding; weighted feature maps fusion; image
augmentation; polyp; inception module; single-shot multibox detector (SSD); wireless capsule
endoscopy images (WCE)

1. Introduction

Gastrointestinal cancer is the third major cause of death worldwide [1]. Colorectal
cancer begins as a benign growth of glandular tissue in the colonic mucosa, known as
adenomatous polyps, which may turn into malignant tumors over time. The number of
patients affected by this disease has increased considerably in recent years [2–4]. The non-
invasive technique of wireless capsule endoscopy (WCE) is widely utilized in clinics to
examine the GI tract as an advanced medical imaging technology [5]. Contrary to traditional
colonoscopy devices, it enables physicians to fully visualize the inner cavities of the small
bowel from the inside without pain or sedation [6,7]. However, many circumstances
hinder the diagnosis process; some polyps may be overlooked due to their small size, low
illumination inside the GI tract, or the skills of the gastroenterologist. A WCE produces
two or more color images per second, which lasts 8 hours, to capture an approximation of
55,000 frames per patient. A large amount of data makes the task of detection laborious
and tedious for trained endoscopists to identify suspicious areas and manually locate
polyp regions in each WCE frame. Therefore, a computer-aided system (CAD) is required,
which may help clinicians automatically locate large and small polyps and reduce the
miss rate. Even for highly-skilled clinical practitioners, the detection process is more
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difficult owing to the complicated characteristics of the polyp regions (shape, texture,
size, and morphology). Recently, many polyp detection solutions have been proposed to
assist endoscopists in providing an automated system acquiring some knowledge without
requiring the physical presence of the specialists [8,9]. Deep learning (DL) architectures
have rapidly grown in the medical image analysis field, owing to their superior performance
in image classification compared to the handcrafted methods [10–14]. This study aimed
to classify abnormalities and automatically detect and localize polyp regions on both
colonoscopy and capsule endoscopic images [15–18]. The transfer of information between
the CNN blocks can automatically learn features from raw data and avoid the obstacles
of manual feature extraction. In WCE polyp detection, the lack of public and annotated
datasets pushed most previous studies to utilize private data sets. Other studies on
colonoscopy employed public data sets according to their initiatives (e.g., MICCAI 2015
sub-challenge on automatic polyp detection in the colonoscopy). Region-based object
detection and scale variations are the primary focuses of computer vision. In this context,
CNN-based object detectors can be divided into two categories: two-stage detectors, such
as R-CNNs [19], and their many variants (Faster R-CNN [20], R-FCN [21], etc.), and one-
stage detectors (YOLO [22], SSD [23], etc.). Two-stage detectors show low speed and high
computation rates by selecting a one-scale feature map and using a fixed receptive field,
which limits the practical application of deep learning in small polyp region detection. Thus,
two-stage detectors are accurate but relatively slow compared to one-stage detectors that
map image pixels directly to the coordinates of the bounding boxes. One-stage detectors
are more accurate for speed and memory but sacrifice precision for small object detection.
Recently, many researchers have effectuated corresponding research on improving the
small object detection ability of SSD models. However, the trade-off between accuracy
and speed is still the goal of object detection research in medical image analysis. The SSD
model’s detector succeeded in preserving the location information in either shallower or
deep layer networks. However, semantic information may be lacking in feature maps
generated by shallow layers, particularly for small polyp regions, resulting in performance
degradation over time.

The motivation of this study is to achieve an encouraging mean average precision
(mAP) for polyp detection purposes while reducing the running time by implementing
tremendous deep learning frameworks. For that reason, we redesigned a new SSD model
using the inception-v4 (as a backbone), which can solve the problem of over-fitting and
increased computation during the optimization process. Thus, the inception frameworks
can capture more target information compared to the VGG networks without increasing
network complexity. The inception-v4 has a more uniform simplified architecture and
more inception modules than inception-v3. However, it may not be necessary to add
more inception layers to obtain significant increases in the performances as stated in [24].
Therefore, a weighted mid-fusion of two successive modified inception-A modules of
inception v4 is introduced in order to replace the conv4_3 layer of the VGG16 network for
further contextual and semantic information extraction. The modified version of inception
v4 aims to reduce the number of layers used to speed up the run time with remarkable gain
in precision.

Inspired by the feature fusion single-shot multibox detector (FSSD) [25] and the
GoogLeNet inception v4 [26] Szegedy et al. 2017), this paper proposes a hybrid network-
based single-shot multibox detector (Hyb-SSDNet) to tackle the problem of small polyp
region detection in both WCE and colonoscopy frames. To achieve this goal, the proposed
method benefits from the powerful architectural designs of inception modules to produce
ultimate architecture used as the backbone of the SSD detector. Indeed, it replaces the
classical strategy of alternating convolutional and pooling layers of the shallow part of the
VGG16 network with stacked inception modules. Since inception networks tend to be very
deep, it is natural to effectively redesign them in the higher part of inception v4 (backbone)
consistent with the VGG16 architecture’s small polyp target detection. This would allow
the Hyb-SSDNet framework to reap all the benefits of inception blocks while retaining its
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computational efficiency; thus, enabling the network to detect polyp patterns of various
sizes within the same layer and avoid heavy parameter redundancies. To give higher
importance to the region of interest, we designed a weighted mid-fusion module (WFM)
that enhances more contextual features in shallow layers by assigning weights to different
channels and positions on the feature maps. The simplest strategy of concatenating mid-
level inception modules is aimed at incorporating contextual and semantic information
into deep networks and constructing a multi-scale feature map. Finally, a downsampling
block was applied to generate a new feature pyramid that is fed to the multibox detectors
to produce the final detection results consistent with the SSD process. Using proper fine-
tuning parameters, we conducted extensive experiments on the WCE and the challenging
CVC-ClinicDB and ETIS-Larib datasets. The results show that the Hyb-SSDNet obtains
a higher mAP than the conventional SSD with gains of 16.09, 17.43, and 16.98 points on
the WCE, CVC-ClinicDB, and ETIS-Larib datasets, respectively, especially for small polyp
regions with small speed drops.

The main contributions of this paper are as follows:

1. The application of a lightweight version of inception v4 architecture as the backbone
to improve the SSD detector ability in small polyp detection.

2. A weighted mid-fusion block of two adjacent modules of the modified version of
inception-A is used to replace the Conv4_3 layer of the VGG16 network;
thus, tackling the problem of missing target details.

3. The filter numbers of the first convolution layers in the stem part of the inception
v4 backbone were modified from (32 to 64) to capture more patterns and relevant
information similar to the original SSD.

4. The modification of the inception v4 model through the reduction of layers is used to
achieve faster speed while maintaining the computational cost.

5. The Hyb-SSDNet uses a weighted mid-fusion block to add new convolution layers to
construct the multi-scale feature pyramid differently from the conventional SSD.

6. The Hyb-SSDNet model robustness is verified through repeated experimentation on
three well-known datasets in the field (WCE, CVC-ClinicDB, and ETIS-Larib) for a
fair comparison with the competitor’s state-of-the-art methods.

7. The discussion of the advantages and limitations of the proposed framework.

The remainder of this paper is organized as follows. Section 2 presents the related
studies. Section 3 describes the proposed Hyb-SSDNet model in detail. Section 4 re-
ports the experimental results and compares them with those of other models. Finally,
the conclusions are presented in Section 5.

2. Literature Review
2.1. Hand-Crafted and CNN Methods

Automatically detecting polyps in WCE images is a challenging task because of their
variations in terms of size, shape, and morphology. Recently, significant progress has
been made in investigating handcrafted features for gastrointestinal classification purposes.
In this regard, a framework-based pyramid histogram for polyp classification based on
T-CWT and gamma parameters were presented in a previous study [6]. Understanding
these biological mechanisms remains highly complex. Thus, handcrafted features encode
only some parts and neglect the intrinsic information of the entire frame. Recently, with the
rapid development of CNN, several attempts have been made to classify colonoscopy
polyp abnormalities using existing deep learning frameworks, such as VGGNet [27],
GoogLeNet [28], and ResNet [29]. Limited by the size of medical datasets owing to privacy
concerns, a proper fine-tuning setting leads to good results in many fields compared to
retraining architectures from scratch, especially in the context of colonoscopy/endoscopy
polyp recognition [30]. This is the main motivation behind transferring knowledge to
wireless capsule endoscopy polyp detection tasks.
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2.2. SSD-Based and Other Object Detectors

Polyps localization in WCE/colonoscopy images by drawing a bounding box around
the localized region is the purpose of this paper, whereas polyp classification is conducted
directly as an internal stage of localization. The frameworks of domain-specific object
detection methods are primarily categorized into two types. One is the two-stage algorithm
that first generates region proposals and then classifies each proposal into different object
categories (e.g., Faster R-CNN [31]). The second one is a one-stage algorithm based on re-
gression (e.g., YOLO [32] and SSD [33]). The authors of [34] proposed an improved version
of the mask R-CNN framework for polyp detection and segmentation tasks. Jia et al. [35]
presented a two-stage framework based on deep learning for automatic polyp recogni-
tion in colonoscopy images. An improved version of the CNN algorithm was proposed
by TASHK et al. [36], which used DRLSE to automatically locate polyps in an image.
However, a meta-analysis showed that the detection speed of the two-stage algorithm is
slow, making it difficult to meet the real-time requirements of polyp detection even if it
performs high localization and object recognition performance. In contrast, the one-stage al-
gorithm achieved a high inference speed by using the predicted boxes from the input images
directly, without the region proposal step. Misawa et al. [37] proposed a polyp detection
system based on YOLOv3, which achieved real-time detection with over 90% sensitivity
and specificity. The advantages are that there is only one processing step, so a preliminary
step to extract an ROI is not performed. However, the limitation of the YOLO algorithm is
that it struggles with small objects within the image due to the spatial constraints of the
algorithm, especially for small polyp detection purposes. Liu et al. [38] proposed a deep
framework-based single-shot detector (SSD) that uses ResNet50 and VGG16 architectures
as backbone networks to detect polyps in colonoscopy videos. However, the traditional
SSD-based VGG16 network only uses a 1× 1 and 3× 3 convolution kernel for one convo-
lution layer making its feature extraction ability inefficient. Therefore, a more powerful
backbone (such as inception v4) is needed to strengthen the polyp detection process.
Some attempts have been made to address the problems of small polyp detection using
the SSD algorithm. Zhang et al. [39] presented an architecture (SSD-GPNet) based on the
SSD model in which they combined low-level feature maps with the deconvolution of
high-level feature maps. Jeong et al. [40] proposed an enhanced version of the SSD model,
in which they fully utilized the direction information of the feature maps by performing a
simple concatenation and deconvolution operation. These improvements made the Rain-
bow SSD suitable for small-target detection. Although some attempts have been made to
improve the accuracy of small polyp region detection by simplifying the SSD architecture,
the addition of deconvolution layers leads to excessive computational complexity at the
expense of speed. Within the same scope, Sheping et al. [41] proposed an enhanced SSD
network-based dense convolutional network (DenseNet), in which a residual block was
established before object prediction to further improve the model performance. They
performed a fusion mechanism of multi-scale feature layers to enhance the relationships
between the levels in the feature pyramid. However, information from multiple scales was
treated equally during fusion. For feature extraction enhancement, a weighted mid-fusion
to capture more informative patterns and contextual information is needed, giving weight
to more important features and reducing the model complexity while maintaining high ex-
ecution speed; thus, reaching the requirements for a complete detection process. The ability
to perform both real-time detection and high precision is an indispensable factor in clinical
applications [42]. A lightweight concatenation of mid-level visual and semantic features is
investigated to fully utilize the synthetic information that leads to the improvement in the
performance of small polyp detection in WCE images.

2.3. Single-Shot Multibox Detector (SSD)

The single-shot multibox detector (SSD) uses VGG16 as the backbone network and
is truncated with other convolutional layers [23]. SSD uses ConvNet to generate a se-
ries of fixed-size bounding boxes and scores. Subsequently, it employs a non-maximum
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suppression (NMS) method for final detection. Figure 1 shows the SSD300 design frame-
work separated into two parts; backbone and pyramid networks. The input sizes of the
original images are 300 × 300 × 3. The VGG-16 network is used in the SSD300 model as
the backbone, the first part constitutes four layers, and the second part is the application
of a convolution operation to the Conv4_3 layer of the VGG16 network to generate five
additional layers [18]. Shallower layers are investigated to predict smaller regions, while
deeper layers for bigger ones. However, the problem of small object detection persists as
the semantic information is not well extracted in shallower layers.

Figure 1. Framework of the traditional SSD.

2.4. Feature Pyramids Hierarchy

For object detection in medical imaging, various deep network architectures have been
investigated to trade-off between precision and speed. Faster R-CNN [31] and R-FCN [21]
perform one-scale feature maps to propose anchors for different scales. However, they
cannot efficiently detect multi-scale objects as well as regions of small sizes. FPN [43] and
DSSD [44] have used bottom-up and top-down architectures, respectively. For the rapid
detection process, layer-by-layer feature map fusion is not recommended. The traditional
SSD [23] uses the features of shallower layers, concatenates, and scales them from bottom to
top to make predictions. Then, it generates a pyramidal feature map. Inspired by the feature
fusion module, the proposal adopts the FSSD network structure [25]. However, the feature
pyramid network has been altered to enhance the fusion effect in which an improved
inception network is proposed to optimize SSD for improving the small object feature
extraction ability in the shallow network and to tackle the problem of scale variations in
detecting small polyp regions more effectively. The detailed information is presented in the
following sections.

3. Materials and Methods

A systemic overview of the Hyb-SSDNet architecture for polyp detection is shown in
Figure 2. The low-level feature layer with rich object information is not well reused in the
conventional SSD using the VGG16 backbone, and the polyp region information is partially
lost in the multi-layer transmission process. Therefore, the resulted feature information
at each layer is unbalanced. To boost the detection effect of the model, an improved
version of the SSD model-based inception v4 network (as the backbone) is proposed with
further modification in regards to the deep network part. This study aimed to develop an
optimization method for the detection results without sacrificing speed by fully utilizing
the synthetic information of all the feature layers and increasing the effective receptive field.
Thus, more object feature information can be extracted. We first describe the pre-processing
step, in which the surrounding black regions in the WCE images are removed to extract
the region of interest (ROI) patches that provide only useful information. The training
phase of Hyb-SSDNet is divided into two parts: (i) data augmentation strategies to handle
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overfitting in deep learning models owing to the data insufficiency problem. Then, we
pre-trained the Hyb-SSDNet model on the ILSVRC CLS-LOC dataset [45] and fine-tuned
it on the WCE/colonoscopy polyp datasets. (ii) The backbone network inception v4 for
feature extraction (including a weighted mid-fusion block of the inception modules) for
small polyp detection and the classification sub-network on multi-scale feature maps.

Figure 2. Flowchart of the proposed Hyb-SSDNet method for small polyp detection in WCE images.

3.1. Mid-Fusion Block

Different multi-modal fusions have been widely used in deep learning. Mid-fusion
operates independently at each scale. It then merges and passes them to complete the
network processes. However, information from multiple scales is treated equally dur-
ing fusion. Capturing variance in visual patterns as well as more informative patterns
in class prediction is one of the requirements of the complete classification approach.
Besides, the traditional SSD-based VGG16 network only uses the 1× 1 and 3× 3 convo-
lution kernel for one convolution layer, making its feature extraction ability inefficient.
To address this shortcoming, two weighted inception-A modules based on inception v4
were adapted to the mid-fusion block, giving more weight to important features. The mod-
ified inception-A module is presented in Figure 3. To enhance the feature extraction,
the network width is increased by exploiting sparsity in the network connectivity. A cas-
cade convolution layer composed of two convolution kernels with different sizes and an
average pooling layer are combined in parallel. First, the 1 × 1 convolution reduces the
dimension before the convolution operation and after the pooling operation, which sig-
nificantly reduces the calculation cost. The inception-A module of (inception v4 network)
uses two 3 × 3 continuous convolutions instead of the 5 × 5 convolution kernel to extract
more detailed object features and improve the calculation speed. Finally, the information of
different receptive fields is concatenated in one single layer in order to improve the feature
representation ability of the network. The L2 weight regularization is added to the convo-
lutional layers, the most common type used for neural networks with a sensible default
weighting of 0.00004 specifying the type of regularization as He_normal initializers. In ad-
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dition, after the convolution layer, batch normalization (BN) and ReLU activation functions
are used to accelerate the network training speed and enhance the detection robustness.

Figure 3. Modified inception structure.

The main fusion structure is shown in Figure 4. We considered SLi as the mid-level
inception module feature and SLi+1 as its adjacent inception module feature maps. After ex-
tracting mid-level features at two scales, we apply the mSE-Network to each inception
feature map in each channel (F) and spatial position, enabling the extraction of the most
representative features in highlighting the region of interest computed as:

S̄F
Li
= (mSE− Network(SLi ); mSE− Network(SLi+1)) (1)

The S̄F
Li

and S̄F
Li+1

have the same channel sizes and are fused using a simple concate-
nation strategy. In the literature, there are other fusion approaches, such as element-wise
summation, element-wise multiplication, averaging process, etc. To verify the best con-
catenation strategy, several experiments were conducted. Inspired by the [46] connection
module, a simple concatenation strategy was adopted in this study for the global feature
fusion module, as it is more effective. The concatenation operation provides more feature
representations for feature maps of the same size. The map merging operation can be
described as:

S
′
HL = D(S̄F

Li
; S̄F

Li+1
) (2)

where D is the feature concatenation operation, S̄F
Li

and S̄F
Li+1

are the channel-adjusted

feature maps from two successive mid-level layers, and S
′
HL is the fused feature map

producing a new high-resolution image that contains both rich semantic features and
location information. An L2 normalization operation and ReLU activation were then
applied to all filters after the concatenation procedure because the feature values in the
layers were significantly different in scale. The feature fusion module also localizes small
polyp regions by assigning higher weights to pixels containing the object class. Furthermore,
the fusion block tends to increase the discrimination capacity of the network by highlighting
small polyp edges in some of the feature maps. Thus, the most informative features of the
background were extracted and discriminated from the object in the weighted feature maps.
In this study, the mid-fusion block is used to generate spatial and multi-scale score maps
for the features extracted from two successive inception modules at the mid-level of the
inception v4 network. Polyp regions show great variation in shape, size, and orientation
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at different scales. This is the main motivation behind using a heterogeneous weighted
feature fusion of polyp regions. Thus, making the network sensitive to unique contextual
image features improved the classification performance for polyp regions.

Figure 4. The mid-fusion framework. Input feature maps were created at two successive incep-
tion modules of the inception v4 network to encode contextual information. All scale sizes are
35 × 35× 384. Extracted features were passed to the mSE-Network to generate the score maps,
reflecting the importance of features at different positions and scales. Weighted features were then
concatenated and normalized to complete the network process.

mSE-Network

This is motivated by the squeeze-and-excitation network’s success [47] in showing sig-
nificant improvement in the performance related to medical image analysis. Hyb-SSDNet
uses a learnable mechanism, highlighting the most salient feature maps, and avoiding
no-useful information of background. The structure of the squeeze-and-excitation block
(mSE-Network) used in this proposal is shown in Figure 4.
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cSE Block The squeeze-and-excitation network uses a squeeze operation as a primary
process by applying a global average pooling (Shen et al., 2015) to spatially compress
the input feature maps, and reduce the dimensionality from W × H × C to 1 × 1 × C.
The squeeze operation can be described in Equation (3) as follows: We consider the input
feature map Y = [y1, y2, y3, . . . , yc], yi ∈ RH×W

xl =
1

W × H

W

∑
j

H

∑
k

yl(i, j). (3)

where x is the vector output, x ∈ R1×1×c with its lth element. The spatial squeeze op-
eration only embeds the global spatial information in the output vector (x). Therefore,
the channel-wise dependencies will not be well encoded. Hence, the squeeze-and-excitation
network uses the excitation operation to solve the channel’s weight inefficiency. One of
the more significant issues of the excitation operation is to properly learn the non-linear
interaction between channels as they have to be activated simultaneously. Therefore, two
fully-connected layers F1 ∈ RC× c

r , F2 ∈ R c
r×C, and the ReLU operation δ(.) were used.

The excitation operation is calculated in Equation (4) as follows:

x̄ = F1(Relu(F2 × x)). (4)

where C and r mean the number of channels and the scaling parameters, respectively. To re-
duce the computational complexity of the modified inception-A modules, the r parameter
is set to 2. Finally, a channel-wise recalibration of the output vector was performed with
the input feature maps to be scaled consistently to original sizes. We consider sig as the
sigmoid activation. The final step reconstructs the spatial squeeze and channel excitation
block (cSE). The merging operation expressed in Equation (5) is as follows:

x̃ = [sig(x̄1)y1, sig(x̄2)y2, sig(x̄3)y3, . . . , sig(x̄C)yC]. (5)

sSE block: The channel squeeze and spatial excitation (sSE block) assume the im-
portance of squeezing the input feature map along the channels and mutually exciting
them spatially. Therefore, a convolutional layer is applied to compress the input fea-
ture map. The sigmoid function is activated to obtain spatially distributed information.
Finally, the sSE block processed a concatenation operation for the feature map fusion with
the input feature map, computed in Equation (6) as:

ẍ = Sig(Wd, Y)×Y. (6)

where Y = [y1,1, y2,2, y3,3, . . . , yH×W ], yi,j ∈ R1×1×C is the input feature map and
Wd ∈ R1×1×1×C , generating a projection tensor d ∈ RW×H , ẍ is the final vector for
the sSE block. To mutually recalibrate feature information in both spatial and channel
directions, the mSE-block performs a joint version of the spatial squeeze and channel
excitation (cSE) block and channel squeeze and spatial excitation (sSE) block [48], which
can be calculated in Equation (7) as follows:

YscSE(i, j, C) = max(x̃(i, j, C), ẍ(i, j, C)). (7)

This is based on the experiments conducted in the work of [48]. Concatenation obtains
the best results compared to other strategies that target the spatial and channel squeeze
excitation SE. However, it increases the channel number that implicitly increases the model
complexity. Thus, we used the max-out strategy to merge the two blocks as it obtains
approximately similar results to the concatenation procedure.
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3.2. Multi-Scale Feature Pyramid

This is motivated by FSSD [18,25]. The feature maps from the weighted feature fusion
module (Figure 4) using the inception v4 network (backbone) were considered as inputs
for the multi-scale feature pyramid, as shown in Figure 5. The lightweight feature fusion
module (S

′
HL) is designed to utilize a spatially coarser but a semantically richer feature

map from the middle pyramid level incorporating proprieties of both high level and its
relatively lower-level features. Figure 5 presents a top-down Hyb-SSDNet architecture that
incorporates semantic information of shallow and mid-level layers into textural features
of high levels. The entire process is as follows: First, a mid-fusion block of two adjacent
inception-A modules was performed. Then, L2 normalization and ReLU activation were
applied. The input size of the WCE/colonoscopy images was 299 × 299, and the network
structure of the Hyb-SSDNet could be divided into two parts: the backbone network in-
ception v4 feature extraction and feature fusion module, and multi-scale feature pyramid
for polyp region detection. The filter numbers of the first convolution layers in the stem
part of the inception v4 backbone were modified from 32 to 64 to reinforce the model to
capture more patterns and relevant information similar to the original SSD. Sequential ex-
periments proved that these steps enrich the semantic information of shallow and mid-level
features, and improve the model performance in small polyp regions. After concatenation,
a batch normalization operation was performed. The detailed structure of the model is
illustrated in Figure 6. Based on experiments conducted in the work of [25], a feature map
of resolution smaller than 10 px × 10 px may not contain much information to reuse. This
was inspired by the feature fusion SSD (FSSD) [25]. We constructed multi-scale feature
layers based on the SSD network, which added new layers, Conv6_2, Conv7_2, Conv8_2,
and Conv9_2, for object classification and location regression. To ensure precision and detec-
tion speed, the Hyb-SSDNet network investigated new feature fusion module layers based
on the inception v4 network, Conv1_WF, Conv2_WF, Conv3_WF, Conv4_WF, Conv5_WF,
and Conv6_WF, for the detection of small polyps. The target sizes of the resulting feature
layers were 35 × 35, 18 × 18, 9 × 9, 5 × 5, 3 × 3, and 1 × 1, different from those of the
FSSD model.

Figure 5. Overview of the Hyb-SSDNet architecture with a 299 × 299 × 3 input size and inception v4
as the backbone. Features from two successive modified inception-A layers (SL1, SL2) were fused by
a mid-fusion block producing an intermediate feature representation (S

′
HL).
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Figure 6. Detailed structure of the Hyb-SSDNet network.

4. Experiments
4.1. Datasets

The Fist WCE dataset was acquired from PillCam©COLON 2 polyps [49]. The original
image’s resolution was 256 pixels × 256 pixels. As depicted in Figure 7, the WCE dataset
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contains 120 polyps and 181 normal images obtained from one patient’s VCE test. To avoid
the overfitting problem owing to the small dataset size, we increased the training dataset
size by the pre-processing step, as described in this section. Therefore, the revised dataset
included 1250 polyp patches and 1864 normal patches. Subsequently, two trained experts
reviewed and manually defined binary masks corresponding to the polyp regions covered
to provide ground truths after being manually labeled and annotated as positive and
negative samples. The ground truth bounding box was drawn based on the mask ground
truth provided by specialists to meet the requirements of the polyp detection tools, using
a graphical image annotation tool and label object bounding boxes in images (LabelImg)
and corrected by experts. A popular colonoscopy dataset called CVC-ClinicDB [50] was
also used in this work, which contained frames showing polyp regions of different shapes.
A total of 25 colonoscopy videos were used by researchers to select at least 29 sequences
containing one polyp region in every frame. Subsequently, a set of frames was selected for
each sequence. As depicted in Figure 8, the CVC-ClinicDB dataset comprises 612 polyp
images (size: 384 × 288; format: tiff). Experts created the ground truth by manually
defining masks corresponding to the regions covered by the polyps in each frame. To meet
the requirements of polyp detection tools, the ground truth bounding box was drawn based
on the ground truth provided by specialists. The annotated ETIS-Larib [51] dataset was
used to assess the detection results. A total of 34 colonoscopy videos were used to generate
196 polyp images of different shapes and sizes. The ground truths of the ETIS-Larib dataset
were annotated by competent endoscopists members of clinical institutions as depicted in
Figure 9. The colonoscopy CVC-ClinicDB [52] and ETIS-Larib [53] datasets were adopted in
the 2015 MICCAI sub-challenge on automatic polyp detection. The normal and abnormal
images were rescaled to 299 × 299 pixels to reach the pre-trained inception v4 network
input size. We split the data into training 70%, validation 10%, and model testing 20%. The
five-fold cross-validation [54] was used, in which the state and convergence of the model
were checked after each epoch was completed. The hyperparameter number of iterations
and learning rate were adjusted automatically during the validation data. In general,
the validation set only adjusts the hyperparameters, such as the number of iterations and
learning rate. Subsequently, they were adopted according to the five group performances
in the models. The results were then averaged over the splits to estimate the mean average
precision metric.

Figure 7. Example of WCE polyp images (a–c).
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Figure 8. Example of CVC-ClinicDB polyp images (a–c).

Figure 9. Example of ETIS-Larib polyp images (a–c).

4.2. Evaluation Indexes

In this study, the mean average precision (mAP) metric was adopted to evaluate polyp
detection performance. Using an intersection over union (IoU) of 0.5, the mAP is defined
as the average of the average precision (AP) of all object categories. It is formulated by
Equation (8).

mAP =
∑Q

q=1 AveP(q)

Q
(8)

where Q is the number of queries in the set and q is the query for average precision.
Given a set of ground truth bounding boxes annotated by the experts, and a set of

predicted bounding boxes produced by the network with a confidence score above a specific
threshold (for example, 0.5), precision, recall, and F1-score can be defined in Equations (9)
and (10) as:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(9)

F−measure/F1− score =
(2× Recall × Precision)

Recall + Precision
(10)

where TP denotes true positives; that is, IoU > 0.5, FP indicates false positives and FN
indicates false negatives. Frame per second (FPS) is used to measure the detection speed
and indicates the number of frames transmitted per second. More details regarding the
evaluation metrics can be found in [18].

4.3. Experimental Setup
4.3.1. Experimental Environment Configuration

The experiments were performed using Colab Pro Plus solution provided by Google,
with a maximum RAM of 52 Gb and a disk of 166,83 Gb. All experiments were conducted
using CUDA 8.0.61-1, CuDNN6.0, Keras 2.0.5, Python 3.5, h5py 2.10.0, NumPy 1.16.3,
TensorFlow 1.15, TensorFlow-GPU 1.15, and OpenCV 3.1. According to the ground truth
bounding boxes of the small polyp region, the same aspect ratio within a range of 1–2 was
maintained for all employed datasets.
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4.3.2. Model Training

To verify the capability of the Hyb-SSDNet model, various indicators and parameters
in the field of medical imaging were investigated and adjusted. As a primary process,
the surrounding black regions containing no useful information about the WCE polyp
image were removed, as they may have degraded the performance of WCE polyp detection
and increased the computation time. The input images were resized to 299 × 299 × 3,
and the batch size was 32. Concerning data augmentation strategies [55], we investi-
gated flipping, rotation by 270◦, and cropping schemes. Further details can be found in
previous studies [56,57]. We pre-trained the model on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) dataset, as it showcased massive progress in large-scale
object recognition over the past five years. We then fine-tuned the model on the WCE and
colonoscopy datasets. This method dynamically decreases the learning rate based on the
number of epochs, training times, and losses. Adaptive moment estimation (Adam) is an
optimization method for the adaptive learning rate. Practically, the Adam optimizer is
utilized in this work due to its efficiency with large problems. The initial learning rate
is set to 0.0001, and the learning rate decay policy is approximately different from the
original SSD with a drop of 0.5 and epochs_drop of 10. Other hyperparameters were
adjusted, beta_1 = 0.9, epsilon of 1 × 10−8, and beta_2 = 0.999. Using Keras, the learning
rate schedule is defined as follows: 0.0001 if epoch < 50, 0.00001 if epoch < 80, and 0.000001
otherwise. Hyb-SSDNet is an improved model for the in-depth feature fusion of SSD300.
For a fair comparison with the state-of-the-art approaches, target polyp detection was
used [18]. The model uses 100 epochs and 500 steps per training epoch. The mean average
precision (mAP), the number of picture frames that could be detected by the model per
second (FPS), and other indicators were used to evaluate the detection performance. Simi-
lar to conventional SSD [23], the same loss function was used in the Hyb-SSDNet model.
The hyper-parameter neg_pos_ratio was set to 3 and the α parameter was adjusted by
cross-validation to 1. More SSD_Loss details are presented in [41].

4.4. Results and Discussion
4.4.1. Ablation Studies

In this section, we investigate the effectiveness of the different components that affected
the experimental results of the main structure of the Hyb-SSDNet detector through an
ablation study on the WCE, CVC-ClinicDB, and ETIS-Larib colonoscopy datasets. Different
Hyb-SSDNet model settings are shown in Table 1 in which the inception v4 backbone
was kept. A mid-fusion block was designed based on the middle part of the detection
network to incorporate the semantic information of small polyps into the Hyb-SSDNet
network. Training and testing were performed on the WCE images, or in the CVC-ClinicDB
and ETIS-Larib joint training set and tested on the CVC-ClinicDB and ETIS-Larib test
sets. First, we compare two mainstream normalization methods (Batch Normalization and
L2 Normalization) and report their effects on the performance mAP (%) of the proposed
system. As reported in Table 1 (row 5, row 7 and row10), L2 normalization yielded better
results (90.11%, 93.29% and 92.53% mAP), whereas it is (88.42%, 89.96% and 89.75% mAP)
using batch normalization on the WCE train and test. The CVC-ClinicDB and ETIS-Larib
test sets support the results obtained on the WCE test set (col 5–row 17 and row 20) and
(col 4–row 27 and row 30). Thus, it is reasonable to choose L2 normalization instead
of batch normalization in mid-fusion design. Various feature fusion techniques have
been investigated to determine the most appropriate one for the Hyb-SSDNet framework.
Considering the WCE test set, it can be seen in Table 1 (rows 7) that the framework adopting
simple concatenation to fuse and scale the feature maps of shallow and middle layers
obtains the best result, 3.18 points higher than the average strategy and 4.6 points higher
than element-wise summation while it costs low performances in term of mAP Table 1
(row 1 and row 8) without utilizing a weighted fusion structure. This means assigning a
weighted score to each feature map in each layer and scale, giving them relative importance
in contributing to small polyp detection. In addition, experiments on the CVC-ClinicDB
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and ETIS-Larib test set Table 1 (row 11–20) and (row 21–30) support the results obtained
on the WCE images and demonstrate the high efficiency of the concatenation strategy for
mid-level fusion with L2 normalization, highlighting more important features for small
polyp detection.

Table 1. Effects of different design factors of the mid-fusion block on the Hyb-SSDNet performances.
The mAP is measured on the WCE, CVC-ClinicDB, and ETIS-Larib test sets.

Training Data Testing Data Mid-Fusion Block Weighted Feature Fusion Normalization Feature Fusion mAP (%)

Inception-A (×2) × × Concatenation 89.85
Inception-A(× 2) X × Summation 88.69

Stem & Inception-A(×1) × B.Norm Concatenation 88.42
Stem & Inception-A(×1) X × Summation 89.28

WCE WCE Inception-A(×2) X L2.Norm Average 90.11
Inception-A(×2) X B.Norm Average 89.96
Inception-A(×2) X L2.Norm Concatenation 93.29

Stem & Inception-A(×2) × B.Norm Concatenation 89.75
Stem & Inception-A(×2) X × Summation 91.42
Stem & Inception-A(×2) X L2.Norm Average 92.53

Inception-A (×2) × × Concatenation 88.25
Inception-A(×2) X × Summation 87.37

Stem & Inception-A(×1) × B.Norm Concatenation 88.21
Stem & Inception-A(×1) X × Summation 88.98

CVC-ClinicDB Inception-A(×2) X L2.Norm Average 89.74
& CVC-ClinicDB Inception-A(×2) X B.Norm Average 88.65

ETIS-Larib Inception-A(×2) X L2.Norm Concatenation 91.93
Stem & Inception-A(×2) × B.Norm Concatenation 88.87
Stem & Inception-A(×2) X × Summation 89.68
Stem & Inception-A(×2) X L2.Norm Average 90.14

Inception-A (×2) × × Concatenation 88.49
Inception-A(x2) X × Summation 88.03

Stem & Inception-A(×1) × B.Norm Concatenation 87.82
Stem & Inception-A(x1) X × Summation 89.46

CVC-ClinicDB Inception-A(×2) X L2.Norm Average 89
& ETIS-Larib Inception-A(×2) X B.Norm Average 88.94

ETIS-Larib Inception-A(×2) X L2.Norm Concatenation 91.10
Stem & Inception-A(×2) × B.Norm Concatenation 87.73
Stem & Inception-A(×2) X × Summation 89.41
Stem & Inception-A(×2) X L2.Norm Average 90.05

Where B.Norm and L2. Norm mean batch normalization and L2 normalization, respectively. Concatenation
is a simple concatenation strategy. Summation refers to an element-wise addition strategy, and average is an
element-wise mean strategy.

Table 2 lists the results of the proposed method on the WCE, CVC-ClinicDB, and ETIS-
Larib test sets, as well as some state-of-the-art detector-based SSDs. The (mAP) of SSD300
using VGG16 (backbone) were 77.2%, 74.5%, and 74.12% for the WCE, CVC-ClinicDB,
and ETIS-Larib test sets, respectively. The feature fusion strategy provides richer details
and semantic information, showing remarkable results compared to the conventional SSD.
As depicted in Table 2 (rows 5–6 and rows 15–16), FSSD300 and FSSD500 frameworks were
increased by (12.58% and 9.25%), (12.76% and 9.16%), and (12.18% and 11.47%) in terms of
(mAP) in WCE, CVC-ClinicDB, and ETIS-Larib test sets. By replacing the backbone network
VGGNet with DenseNet-S-32-1, the DF-SSD300 model exceeded the FSSD300 by 1.46%,
2.66%, and 0.54 mAP (91.24% vs. 89.78%), (89.92% vs. 87.26%), and (86.84% vs. 86.3%)
for all test sets, respectively. The detection speed decreases by half. The VGG16 network
was replaced with the ResNet-101 backbone in the L_SSD model (row 8 and row 18) to
perform feature fusion, which contained rich details and semantic information. The mAP
of ResNet-101 was slightly better than that of FSSD300 for both WCE and colonoscopy
datasets. The proposed Hyb-SSDNet algorithm outperforms the FSSD300, DF-SSD300,
and L_SSD models by 3.51 points (93.29% vs. 89.78%), 2.05 points (93.29% vs. 91.24%),
and 3.31 points (93.29% vs. 89.98%) on WCE dataset, while it achieves almost similar
performance with the MP-FSSD network on the WCE dataset; 0.22 points (93.29% vs.
93.4%). The Hyb-SSDNet framework achieved promising results, with a small drop in
speed. However, it still achieved real-time detection with 44.5 FPS, compared with DF-
SSD300 and L-SSD with 11.6 FPS and 40 FPS, respectively. Figure 10a–c supports the results
obtained in Table 2 as it shows the recall vs. precision plots obtained for this experiment on
WCE, CVC-ClinicDB, and ETIS-Larib test sets. The Hyb-SSDNet has strong feature reuse
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and extraction abilities. The mid-fusion block uses a weighted concatenation of spatial
features at each location and scale. Therefore, the features of unrelated regions, such as the
background, are suppressed. Thus, the fusion inception modules help the model focus on
real targets and improve the precision of the detection of small polyps.

Table 2. Comparison with previously published methods based on SSD, WCE, CVC-ClinicDB,
and ETIS-Larib test sets. Pre-train means that a pre-trained backbone was adopted to initialize the
model or it was initialized from scratch. The speed (FPS) and the (mAP) performances were tested
using google Colab pro+ GPU.

Training Data Methods Backbone Input Size Pre-Train FPS mAP@0.5(%)

WCE

WCE

SSD300 VGG16 300 × 300 × 3 X 46 77.2
SSD300 ResNet-101 300 × 300 × 3 X 47.3 81.65
SSD500 VGG16 300 × 300 × 3 X 19 79.45
SSD500 ResNet-101 300 × 300 × 3 X 20 84.95

FSSD300 VGG16 300 × 300 × 3 X 65.9 89.78
FSSD500 VGG16 500 × 500 × 3 X 69.6 88.71

DF-SSD300 [41] DenseNet-S-32-1 300 × 300 × 3 X 11.6 91.24
L_SSD [58] ResNet-101 224 × 224 × 3 X 40 89.98

MP-FSSD [18] VGG16 300 × 300 × 3 X 62.57 93.4
Hyb-SSDNet (ours) Inception v4 299 × 299 × 3 X 44.5 93.29

CVC-ClinicDB ETIS-Larib

SSD300 VGG16 300 × 300 × 3 X 46 74.5 74.12
SSD300 ResNet-101 300 × 300 × 3 X 47.3 78.85 75.73

CVC-ClinicDB SSD500 VGG16 500 × 500 × 3 X 19 78.38 75.45
& SSD500 ResNet-101 500 × 500 × 3 X 20 82.74 80.14

ETIS-Larib FSSD300 VGG16 300 × 300 × 3 X 65.9 87.26 86.3
FSSD500 VGG16 500 × 500 × 3 X 69.6 87.54 86.92

DF-SSD300 [41] DenseNet-S-32-1 300 × 300 × 3 X 11.6 89.92 86.84
L_SSD [58] ResNet-101 224 × 224 × 3 X 40 88.18 87.23

MP-FSSD [18] VGG16 300 × 300 × 3 X 62.57 89.82 90
Hyb-SSDNet (ours) Inception v4 299 × 299 × 3 X 44.5 91.93 91.10

4.4.2. Comparison with the State-of-the-Art Method

For fair comparison experiments with the proposed Hyb-SSDNet framework, we
selected the most highlighted methods in the literature-based SSDs models, YOLOv3, and
DSSD, as listed in Table 3. To quantitatively compare Hyb-SSDNet with other state-of-the-
art models, the performances of the trained model on the ETIS-Larib and CVC-ClinicDB
training sets were evaluated on the publicly available ETIS-Larib dataset. As depicted
in Table 3, the Hyb-SSDNet model obtains encouraging results of the (mAP) metric on
the WCE dataset compared with other models. This is attributable to the fact that polyp
abnormalities exhibit great variation in terms of color and shape. In addition, WCE, CVC-
ClinicDB, and ETIS-Larib images differ in nature, texture, and illumination acquisition
conditions. However, they achieved similar metrics. Additionally, the colors of the polyps
vary across different images within a patient’s VCE and other patients’ examinations.
Compared to previous approaches targeting polyp detection, Hyb-SSDNet achieved the
best mAP, which reached 93.29%, 91.93%, and 91.10%, respectively. The joint training of
the ETIS-Larib and CVC-ClinicDB datasets exceeded some competitor models or achieved
approximately similar metrics on the ETIS-Larib test set. Overall, the Hyb-SSDNet shows
promising results in terms of the mAP with a slight speed drop.
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Table 3. WCE or colonoscopy test detection results, or both (IOU > 0.5, batch-size 1).

Training
Dataset Methods Testing

Dataset
Backbone
Network Pre-Train Input Size Prec Recall F1 Score

WCE images Hyb-SSDNet
(ours) WCE images Inception v4 X 299× 299 93.29%(mAP) 89.4%(mAR) 91.5%(mAF)

ETIS-
Larib+CVC-

ClinicDB

Hyb-SSDNet
(ours) CVC-ClinicDB Inception v4 X 299× 299 91.93%(mAP) 89.5%(mAR) 90.8%(mAF)

ETIS-
Larib+CVC-

ClinicDB

Hyb-SSDNet
(ours) ETIS-Larib Inception v4 X 299× 299 91.10%(mAP) 87%(mAR) 89%(mAF)

WCE +CVC-
ClinicDB

Souaidi et al.,
2022 [18] ETIS-Larib VGG16 X 300× 300 90.02%(mAP) × ×

CVC-ClinicDB
+ ETIS-Larib

Shin et al.,
2018 [59] ETIS-Larib Inception

ResNet X 768× 576 92.2% 69.7% 79.4%

SUN+
PICCOLO+

CVC-ClinicDB

Ishak et al.,
2021 [32] ETIS-Larib YOLOv3 X 448× 448 90.61% 91.04% 90.82%

CVC-ClinicDB Liu et al.,
2021 [60] ETIS-Larib ResNet-101 X 384× 288 77.80% 87.50% 82.40%

GIANA 2017 Wang et al.,
2019 [61] ETIS-Larib AFP-

Net(VGG16) X 1225× 996 88.89% 80.7% 84.63%

CVC-ClinicDB Qadir et al.,
2021 [62] ETIS-Larib ResNet34 X 512× 512 86.54% 86.12% 86.33%

CVC-ClinicDB
Pacal and
Karaboga,
2021 [63]

ETIS-Larib CSPDarkNet53 X 384× 288 91.62% 82.55% 86.85%

CVC-ClinicDB Wang et al.,
2019 [61] ETIS-Larib Faster R-CNN

(VGG16) × 224× 224 88.89% 80.77% 84.63%

CVC-
VideoClinicDB

Krenzer et al.,
2019 [64]

CVC-
VideoClinicDB YOLOv5 × 574× 500 73.21%(mAP) × 79.55%

4.4.3. Visualization of Detection Results

The main objective is to prove the efficiency of the proposed Hyb-SSDNet frame-
work, not only for WCE polyp images detection but also for colonoscopy polyp localiza-
tion cases (CVC-ClinicDB and ETIS-Larib). Polyp detection involves the identification
of polyp regions and the rejection of parts containing normal, blurry tissues, and others
showing feces or water jet sprays to clean the colon. Figures 11–13 show some detec-
tion cases of the FSSD and their analogs of the Hyb-SSDNet model on the WCE, CVC-
ClinicDB, and ETIS-Larib polyp test sets, respectively. The false negative rate decreased
because the Hyb-SSDNet model Figures 11h and 12b,d showed a relative improvement
in small polyp localization from the normal intestinal mucosa in comparison with the
FSSD model Figures 11g and 12a,c. Specifically, the FSSD model failed to observe the
context information of the object because it uses a small receptive field that can only
detect smaller objects from shallow layers. Other circumstances have hindered the iden-
tification of small polyp regions. Their similarity in appearance to the surrounding nor-
mal mucosa, their complicated characteristics (color, texture, contrast, and size), and the
presence of air bubbles, food, and other debris, limits the visualization of the actual ex-
tent of the lumen by capsule endoscopy. Therefore, Hyb-SSDNet performs a weighted
mid-fusion module of middle layers and embeds it into the final fusion block, which
can capture scene contexts and differentiate polyp edge regions from normal mucosa.
Figures 11e, 12g, and 13c,e show the false positive identifications of the FSSD model in the
normal mucosa areas of the WCE, CVC-ClinicDB, and ETIS-Larib test sets. Compared to the
Hyb-SSDNet framework, Figures 11f, 12h, and 13d,f show some true-positive identification
cases of Hyb-SSDNet in different normal mucosa areas. Regarding the WCE images, the dif-
ference in appearance between the polyp regions and the normal mucosa was not obvious.
Thus, the WCE frames captured in the case of insufficient light produced poor pixels,
which hindered the detection process as depicted in Figure 11h. However, the proposed
Hyb-SSDNet algorithm also shows a remarkable improvement in large polyp detection
for the WCE, CVC-ClinicDB, and ETIS-Larib test sets, and accurately distinguishes them
from the surrounding normal areas. Limited by different debris, Figures 12b and 13h show
hard cases of small polyps behind the folds of the CVC-ClinicDB and ETIS-Larib test sets,
respectively. Even specialists sometimes mistakenly recognize these parts when they are
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hidden from view behind a fold or wrapped around a fold in a clamshell fashion and find
them difficult to ’resect’.

However, the proposed Hyb-SSDNet model successfully detected a hard polyp case
in which the ground truth was not annotated by experts Figure 12b.

(a)

(b)

(c)
Figure 10. Precision vs. recall for (a) WCE test set, (b) CVC-ClinicDB test set, and (c) ETIS-Larib test
set using the Hyb-SSDNet framework.
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Figure 11. Qualitative results comparison between FSSD300 (a,c,e,g) and the proposed Hyb-SSDNet
(b,d,f,h) on the WCE polyp test set. True bounding boxes with IoU of 0.5 or higher with the bounding
predicted boxes are drawn in green and red colors, respectively.

Figure 12. Qualitative results comparison between FSSD300 (a,c,e,g) and the proposed Hyb-SSDNet
(b,d,f,h) on the CVC-ClinicDB polyp test set. True bounding boxes with IoU of 0.5 or higher with the
bounding predicted boxes are drawn in green and red colors, respectively.

Figure 13. Qualitative results comparison between FSSD300 (a,c,e,g) and the proposed Hyb-SSDNet
(b,d,f,h) on the ETIS-Larib polyp test set. True bounding boxes with IoU of 0.5 or higher with the
bounding predicted boxes are drawn in green and red colors, respectively.
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5. Conclusions

In this paper, an improved FSSD detection model (Hyb-SSDNet) was proposed for
accurate polyp abnormality localization and detection in both WCE and colonoscopy
datasets. In addition to the problem of medical ethics, researchers have been pushed to use
their datasets for polyp detection owing to the lack of standard and public WCE datasets.
Therefore, research in this field is limited and the performance metrics may be subjective.
The lightweight version of the Hyb-SSDNet aims to model the visual appearance of small
polyp regions via a weighted mid-fusion of inception modules for a polyp detection net-
work using the inception v4 backbone. The mid-fusion block uses the modified inception-A
modules to magnify the mid-level feature maps instead of using simple convolution layers.
Therefore, the Hyb-SSDNet model shows promising results in the (mAP) metric with little
speed drop. An efficient feature fusion module using a simple concatenation strategy and
L2 normalization was applied to the SSD framework to combine the intermediate inception
layers to further generate new pyramid feature maps. The effectiveness of the weighted
feature fusion was confirmed on three annotated testing datasets: WCE, CVC-ClinicDB,
and ETIS-Larib. The Hyb-SSDNet framework adequately integrates low- and mid-level
details, and high-level semantic information using a novel top-down feature fusion module.
It also adopts one horizontal connection to reduce the number of repetitive computations,
which shortens the detection time. In the future, a filtration strategy will be investigated to
regularize the intermediate layer and reduce the false negative rate. Although the proposed
model achieves satisfactory detection precision, the presence of the circumstances (e.g.,
debris, feces, and other factors) certainly influence the results as they cannot be completely
omitted. This shortcoming should be examined through subsequent work, such as how to
improve the performance of the model while maintaining a higher detection speed.
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