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Abstract: Monitoring the early stage of developing tissue injuries requires intact skin for surface
detection of cell damage. However, electronic alert signal for early detection is limited due to the
lack of accurate pressure sensors for lightly pigmented skin injuries in patients. We developed an
innovative pressure sensor mattress that produces an electronic alert signal for the early detection
of tissue injuries. The electronic alert signal is developed using a web and mobile application for
pressure sensor mattress reporting. The mattress is based on body distributions with reference points,
temperature, and a humidity sensor to detect lightly pigmented skin injuries. Early detection of the
pressure sensor is linked to an electronic alert signal at 32 mm Hg, a temperature of 37 ◦C, a relative
humidity of 33.5%, a response time of 10 s, a loading time of 30 g, a density area of 1 mA, and a
resistance of 7.05 MPa (54 N) at 0.87 m3/min. The development of the innovative pressure sensor
mattress using an electronic alert signal is in line with its enhanced pressure detection, temperature,
and humidity sensors.

Keywords: biomarkers; early detection; electronic alert signal; innovative mattress; pressure sensors;
patients with tissue injuries

1. Introduction

Early detection of tissue injuries can be facilitated by a crucial pressure sensor for
lightly pigmented skin damage in patients. The early stage of cell damage in patients
comes with the risk of developing pressure injuries. Moreover, treating patients with tissue
injuries are complicated. The complexity is due to cell damage, the breakdown of skin, deep
tissue injury, and cell death [1–3]. The global treatment rate of tissue injuries in patients
is approximately 14.8%, and it is 6–18.5% in the acute clinical setting. Emergency care
accounts for 6.31% [4]. Treatment costs for tissue injuries in patients can range from USD
894.69 to USD 98,730.24 per year [5].

Despite the development of diagnostic devices, it remains difficult to detect the occur-
rence of early cell damage in patients [6,7]. For early detection of lightly pigmented skin
injuries in patients [8,9], pressure sensors provide an accurate reading. The characteristics
of lightly pigmented skin in patients are defined as ‘wet-bulb and dry-bulb cells’, and
an accurate pressure sensor is required. Early tissue injuries are detected based on the
first visual sign of skin damage, defined as the ‘heralding sign’, to report the cutaneous
blanche response [10]. For early detection devices, an electronic signal alert enables precise
detection from the pressure sensor on lightly pigmented skin injuries in patients.
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An electronic alert signal from a pressure sensor on lightly pigmented skin damage
plays an important role in detecting native skin colour, cell diagnosis, and magnetic reso-
nance [11,12]. Previous studies have indicated that early detection of darkly pigmented
skin damage relies on accurate biosensor applications [13–15]. An accurate method for
early detection requires a real-time alert, mechanical loading, effective monitoring, and
applicable diagnostic devices. A highly innovative mattress that can accurately detect early
cell damage in patients is appropriate [16]. However, temperature and humidity sensors
are integral to the development of an accurate pressure sensor mattress.

Early detection of lightly pigmented skin injuries in patients requires a highly force-sensitive
sensor, a fast response, an accurate diagnosis, and reliable sensing devices [3,6,10,14,17]. Previous
studies have investigated the biophysical response to invisible cell damage during the
tumour development of tissue injuries [18]. Some studies have suggested that temperature
and humidity sensors are paramount in detecting tissue injuries [19,20]. There is recent
research on cell organs, 3D printed diagnoses, body pressure distributions, and blood
pressure tests [21–24]. Lightly pigmented skin damage is a key focus in terms of early
detection. However, current temperature and humidity sensors used for intact skin surface
are inadequate.

In the subepidermal layer, various studies have found moisture in patients with a dark
skin tone [7,8,14,25]. Recent studies have obtained measurements involving temperature
and the photonic, electrical, ultrasound, biofilm, and dermal fluids [26–30]. To date, there is
limited research on detecting temperature and humidity in patients with lightly pigmented
skin injuries [6,21,31,32]. The purpose of the current study is to develop an innovative
pressure sensor mattress using an electronic signal alert for early detection of tissue injuries
in patients. We aim to examine perfusion and blood circulation (wet and sweat) using
temperature (◦C) and humidity (%) sensors.

2. Literature Review
2.1. Tissue Injury Stages

Tissue injuries are the cause of cell damage in blood vessels; they also result in sprains,
strains, chemokines, contusions, and tendon issues [33,34]. Maver et al. [35,36] declared
that the causes of tissue injuries include an acute trauma, a chronic wound, an infection,
and genetic disorders. Tissue injuries are typically found in regions where early cell damage
occurs adjacent to bony prominences, as shown in Figure 1.

Diagnostics 2023, 13, 145 2 of 20 
 

 

enables precise detection from the pressure sensor on lightly pigmented skin injuries in 
patients. 

An electronic alert signal from a pressure sensor on lightly pigmented skin damage 
plays an important role in detecting native skin colour, cell diagnosis, and magnetic 
resonance [11,12]. Previous studies have indicated that early detection of darkly 
pigmented skin damage relies on accurate biosensor applications [13–15]. An accurate 
method for early detection requires a real-time alert, mechanical loading, effective 
monitoring, and applicable diagnostic devices. A highly innovative mattress that can 
accurately detect early cell damage in patients is appropriate [16]. However, temperature 
and humidity sensors are integral to the development of an accurate pressure sensor 
mattress. 

Early detection of lightly pigmented skin injuries in patients requires a highly force-
sensitive sensor, a fast response, an accurate diagnosis, and reliable sensing devices 
[3,6,10,14,17]. Previous studies have investigated the biophysical response to invisible cell 
damage during the tumour development of tissue injuries [18]. Some studies have 
suggested that temperature and humidity sensors are paramount in detecting tissue 
injuries [19,20]. There is recent research on cell organs, 3D printed diagnoses, body 
pressure distributions, and blood pressure tests [21–24]. Lightly pigmented skin damage 
is a key focus in terms of early detection. However, current temperature and humidity 
sensors used for intact skin surface are inadequate. 

In the subepidermal layer, various studies have found moisture in patients with a 
dark skin tone [7,8,14,25]. Recent studies have obtained measurements involving 
temperature and the photonic, electrical, ultrasound, biofilm, and dermal fluids [26–30]. 
To date, there is limited research on detecting temperature and humidity in patients with 
lightly pigmented skin injuries [6,21,31,32]. The purpose of the current study is to develop 
an innovative pressure sensor mattress using an electronic signal alert for early detection 
of tissue injuries in patients. We aim to examine perfusion and blood circulation (wet and 
sweat) using temperature (°C) and humidity (%) sensors. 

2. Literature Review 
2.1. Tissue Injury Stages 

Tissue injuries are the cause of cell damage in blood vessels; they also result in 
sprains, strains, chemokines, contusions, and tendon issues [33,34]. Maver et al. [35,36] 
declared that the causes of tissue injuries include an acute trauma, a chronic wound, an 
infection, and genetic disorders. Tissue injuries are typically found in regions where early 
cell damage occurs adjacent to bony prominences, as shown in Figure 1. 
• Lightly pigmented skin injuries (stage I). Such an injury is defined as the first visible 

change in the skin and is known as the ‘heralding sign’. 
• Darkly pigmented skin injuries (stage II). This type of injury is defined as partial-

thickness skin loss with an exposed dermis. 
• Blanchable erythema injuries (stage III). This type of injury is defined as full-thickness 

skin loss, such as adipose, granulation tissue, and epibole. 
• Pressure injury with oedema (stage IV). This injury is defined as full-thickness skin and 

tissue loss with exposure of directly palpable fascia, muscle, tendon, ligament, 
cartilage, and bone in the ulcer. 

 
Figure 1. Stages of tissue injuries. Figure 1. Stages of tissue injuries.

• Lightly pigmented skin injuries (stage I). Such an injury is defined as the first visible
change in the skin and is known as the ‘heralding sign’.

• Darkly pigmented skin injuries (stage II). This type of injury is defined as partial-thickness
skin loss with an exposed dermis.

• Blanchable erythema injuries (stage III). This type of injury is defined as full-thickness
skin loss, such as adipose, granulation tissue, and epibole.

• Pressure injury with oedema (stage IV). This injury is defined as full-thickness skin
and tissue loss with exposure of directly palpable fascia, muscle, tendon, ligament,
cartilage, and bone in the ulcer.
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2.2. Tissue Injury Detection

Early detection of lightly pigmented skin injuries in patients is effective for the pre-
vention of cell damage. Previous studies have defined four stages of tissue injuries: non-
blanchable erythema of intact skin (stage I), partial-thickness skin loss with exposed dermis
(stage II), full-thickness skin loss (stage III), and full-thickness tissue loss (stage IV) [37].
Previous studies have classified tissue injury as ‘a localized purple or maroon area of
discoloured intact skin due to damage of underlying soft tissue from pressure and/or
shear’ [38]. According to Kolluru et al. [39], patients with lightly pigmented skin injuries
exhibit painful, firm, mushy, boggy, and warmer/cooler areas. In the present study, we
detect patients with lightly pigmented skin damage and theorise that this is an effective
region to implement an electronic alert signal from an accurate pressure sensor mattress.

2.3. Temperature Detection

The temperature of patients with tissue injuries plays a crucial role in the early detec-
tion of lightly pigmented skin damage. According to Kokate et al.’s [40] definition, ambient
temperature is detected on the skin surface of patients’ body organs, such as the heart, liver,
brain, and blood. The temperature detection is based on electronic vibrations, elevation
of rectal temperature, antioxidative enzyme activity, and the formation of malondialde-
hyde [41]. The temperature ranges from 1 to 100 mm Hg, withstands a strain of 26%, and
detects cycles of 40 ◦C, and the tissue injury has a silky substrate of 1.5 µm thick epoxy. As
temperature increases by 1 ◦C, which relates to 1 mm Hg, there is a force-sensitive detection
of 10%. The temperature ranges from 35 to 40 ◦C, with a change of ±0.1 ◦C from 37 ◦C to
39 ◦C and of ±0.2 ◦C when below 37 ◦C and above 39 ◦C [42].

Previous studies have suggested a temperature-increase (<1◦C) resonance-based passive
detection (>2 moisture), an accuracy of ±2%, and a pressure loading time of 10–15 s for the
early detection of temperature [43]. The temperature of tissue injuries in patients ranges from
30 to 50 ◦C, has a sensitivity of <0.1 ◦C, and may increase by 94% for early detection [44].
However, it is unclear whether a patient’s temperature, even at a high level, may overcome
the limitation of detection. It is unknown how to detect lightly pigmented skin injuries [45].
To reinforce this point, a previous study on temperature detection in patients found a range of
35–40 ◦C, with a pressure sensor of 32 mm Hg and an accuracy of ±1% [46].

2.4. Humidity Detection

Humidity in patients with tissue injuries is defined as subepidermal moisture-induced
cell damage from water in the epidermal and dermal tissues [47]. One type of humidity
is erythema at the buttocks, ischia, trochanters, sacrum, and coccyx with dark tones [48].
Humidity in patients with tissue injuries is associated with hydrated edges of the hand,
abdomen, thighs, legs, and lower back [49]. Schwart et al. [50] suggested that humidity can
be detected in the skin’s moisture, such as sweat, urine, and saline. There have been efforts
to detect patients’ damaged layers deeper in the skin through the sinking-in of the probe
and the bulging of adjacent skin from mechanical injuries to the plantar tissues.

Gefen et al. [51] found that humidity involves visual skin assessment, moisture, and
skin-water vapour. To ensure humidity detection, the pressure sensor is assessed in the dry-
bulb and wet-bulb thermometer moistures [52]. The dry-bulb and wet-bulb tissues involve
the thermodynamic activity of air and water vapour. Bates-Jensen et al. [16] suggested that
humidity is detected via the non-blanchable erythema (early redness) of skin tone. It is
important to note that moisture, wetness, lipids, and porcine are responsible for humidity
detection in patients with lightly pigmented skin injuries.

3. Materials and Methods
3.1. Detection Procedures

The electronic signal alert procedures used to detect lightly pigmented skin injuries
are combined with pressure detection (mm Hg), temperature (T), and humidity (H) [53].
The detection procedures of tissue injuries provide an accurate response to perfusion,
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change of position, and moisture. The parameter is connected to oxygen, tissue-perfusion,
temperature, and humidity sensors. The lightly pigmented skin has not suffered from
ischemic damage as a result of non-contact, which is not reported. The diagram depicting
the detection procedures is displayed in Figure 2.
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3.2. Pressure Sensors

The pressure sensors for tissue injuries in patients were developed using a force-sensitive
resistor to test static measurement and repeatability. The sensor array was based on the supine
and side-lying positions and had a pressure loading of 32 mm Hg [54]. The subjects were
in a side-lying position, adjusted from 25 to 40 mm Hg in a supine region. The temperature
ranged from 35 to 40 ◦C. Humidity ranged from 10 to 100%. They varied with the detection of
the electronic alert signal. The force-sensitive sensor was converted to an alert signal on the
dashboard monitor. The electronic signal took the form of a transmitted microcontroller in the
(yes) pin and the (no) pin. The pressure sensor is illustrated in Figure 3.
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3.3. Developing an Innovative Pressure Sensor Mattress

Our development of an innovative pressure sensor mattress for early detection of tissue
injuries incorporated temperature and humidity data. Figure 4 depicts the development
of the pressure sensor mattress. The detection array is set at 4.37 mm, with two sensors
spanning across the platforms. The array consists of three functional layers: pressure
detection, temperature, and humidity sensors. Infrared probes are placed in the supine and
side-lying positions. The force-sensitive sensor is set at 1200 kΩ, with a loading time range
of 10–30 s and a normal force range from 10 to 30 g.
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3.4. The Functional Sensing System

The functional system includes three arrays. First, the pressure sensors detect data and
time. Second, the temperature sensors detect skin, time, and average temperature. Third,
the humidity sensors account for skin wetness and dryness. Figure 5 details the functional
mechanism of the mattress. The array includes four top and four bottom force sensors.
All sensors receive the detection data, which are then displayed on the microcontroller.
The sensor database is subsequently sent to the dashboard monitor of the pressure sensor
mattress. Figure 6 presents the pad sensor in the detection mechanism. The datasheet
consists of two force-sensitive sensor boxes as follows:

• The sensor is mounted on a hard surface;
• The contact pad is smaller than the sensitive area;
• The contact pad is mounted in the central array;
• Permanent loads are not applied to the sensor to avoid drift;
• The sensor is bent in the active area.
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3.5. Control System

The key control systems are as follows: (i) temperature and humidity sensors, (ii) pressure
detection, (iii) microcontroller (input and output), and (iv) dashboard monitor (web and mobile
app). The pressure sensor mattress rays correspond to a microcontroller (+ or –out). The
signal alert reporting system is connected to the dashboard monitor via Wi-Fi. The mechanism
consists of automatic and user controls. The temperature and humidity sensors are connected
to a digitalised monitor for reporting.

Figure 7 depicts the control system of the electronic signal mechanism. The system
consists of four temperature and humidity sensors and eight pressure sensors that are
connected to the microcontroller monitor. The signalling data are sent to the electronic
alert system. The force-sensitive system is displayed in Figure 8. The sensor is mounted
on the FSR sensor, which measures the interface pressure for the side-lying position. The
data-based signal is sent to the pressure sensor mattress via the dashboard monitor.
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3.6. Dashboard Monitor

The dashboard monitor is displayed in Figure 9. The sensor includes seven contacts
of epoxy on the dashboard monitor. The outputs are as follows: (i) automatic system,
(ii) display of pressure, (iii) operational system, (iv) temperature and humidity data,
(v) conditional notification, (vi) real-time detection, and (vii) keypads. The seven key
elements of the microcontroller include the following:

À Real-time displays and reporting with command keypads ‘on’ the left and right after
a specification time;

Á A display of the patient’s weight and surveillance alerts;
Â A flip command to control the screen;
Ã A display of the real-time temperature and view in period;
Ä A display of the magnitude of the force-sensor hazard when the pressure is over 32

mm Hg, with a red alert warning;
Å A display of the temperature and humidity values;
Æ Keypad command (autos and manual control).
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4. Results
4.1. Patients with Tissue Injuries

The database test for the pressure sensor mattress included 30 patients suffering from
tissue injuries at the Thammasat University Hospital, Thammasat University Rangsit Cam-
pus, Pathum Thani, Thailand. All patients provided informed consent to participate in the
study. We adhered to the Declaration of Helsinki, the Belmon Report, the CIOMS Guidelines,
and international practice (ICH-GCP) (COA 122/2564 Project No.121/2564). The thirty pa-
tients were divided into two groups (n = 15 experimental group and n = 15 control group).
The tests were conducted every two hours in a four-week trial from 1–29 December 2021.
Tables 1 and 2 display the characteristics of the experimental and control groups.
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Table 1. Experimental group.

No.
Internal Factors External Factors

PI Risk PI Incidence PI Alert
Gender Age Disease Pressure (mmHg) Humidity (%) ◦C

1 Male 60 DM + HT 32 30 37.2 High No Alert
2 Female 58 DM + HT+DLP 30 20 36.7 No No Normal
3 Male 75 DM + HT+DLP+AF 30 40 36.5 No No Beware
4 Female 88 DM + HT+DLP 30 50 36.7 Moderate No Alert
5 Female 90 DM + HT+DLP 34 30 37.1 High No Alert
6 Male 60 DM + HT 32 30 36.8 High No Alert
7 Female 58 DM + HT 25 20 36.7 No No Normal
8 Male 75 DM + HT + DLP + AF 30 20 37.2 No No Beware
9 Female 76 DM + HT + DLP 32 40 36.6 High No Alert

10 Female 90 DM + HT + DLP 34 30 36.5 High No Alert
11 Female 56 DM + HT 30 20 36.6 No No Beware
12 Male 48 DM + HT + DLP 34 30 36.5 Moderate No Alert
13 Male 66 DM + HT + DLP 34 40 36.5 High No Alert
14 Female 59 DM + HT 35 40 37.1 High No Alert
15 Female 66 DM + HT + DLP 35 20 37.2 High No Alert

Abbreviations: AF = atrial fibrillation; DM = diabetes mellitus; HT = hypertension.

Table 2. Control group.

No.
Internal Factors External Factors

PI Risk PI Incidence
Gender Age Disease Pressure (mmHg) Humidity (%) ◦C

1 Male 63 DM + HT + DLP + AF 35 40 37.1 High Yes
2 Female 58 DM + HT 25 30 36.3 No No
3 Male 48 DM + HT + DLP 31 35 37.1 Low No
4 Male 66 DM + HT + DLP 34 40 36.9 High Yes
5 Female 59 DM + HT 34 30 37 High Yes
6 Male 66 DM + HT + DLP 35 40 36.6 High Yes
7 Female 54 DM + HT 30 20 36.8 No No
8 Male 65 DM + HT + DLP + AF 31 20 37.2 Moderate Yes
9 Female 70 DM + HT + DLP 30 50 36.6 Moderate Yes

10 Female 82 DM + HT + DLP 34 30 37.1 High Yes
11 Female 53 DM + HT 30 20 36.6 No No
12 Male 50 DM + HT + DLP 30 20 36.7 No Yes
13 Male 63 DM + HT + DLP 34 20 36.9 High Yes
14 Female 61 DM + HT 34 40 37.2 High Yes
15 Female 64 DM + HT + DLP 32 40 37.3 High Yes

Abbreviations: AF = atrial fibrillation; DM = diabetes mellitus; HT = hypertension.

4.2. Platform of Mattress

The platform included pressure detection regions, temperature, and humidity sensors.
The test ranged from 1 to 15 MPa for the online converter of weights, which was used to
measure tissue injuries in patients. The temperature ranged from 35 to 40 ◦C. The humidity
(skin wetting and abnormal skin effect) ranged from 10 to 50% for lightly pigmented skin
injuries. The loading and unloading times were set at 32 mm Hg to examine the stability of the
accurate pressure detection. The outputs were recorded before and after the sensor responses.

Figure 10 depicts the platform of the mattress. The platform was tested using patient
information (gender, age, ID code, and disease) on the dashboard monitor. Figure 11
presents the structure of the dashboard monitor. The screen displays the pressure detection,
temperature, and humidity sensors, which are linked to the electronic alert signal on the
dashboard monitor. The monitor can be set as an automatic system. It includes a timer, the
ability to turn left and right, and/or a handling screen.
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4.3. Pressure Sensor Test

Static calibrations of the pressure sensor were used for the test; this included eight
temperature and humidity sensors and four pressure detections. The force-sensitive resistor
was consistently set at 1.52 cm in width and 60.96 cm in length, with a distance of 5 cm.
The force resistance was set at 1200 kΩ, and the range was from 10 to 100 kΩ. The loading
time was set at 30 g, which changed from 1 to 5 g. The nominal resistance accounted for
12%, and the fast response sensor was between 10 and 30 s.

Figure 12 illustrates the body sensors of the experimental group. It shows the supine
area of the body’s angle at 45◦ from the body, a midstance at 15◦ from the femur, a sagittal
angle at 30◦ dorsal, and a frontal angle at 45◦ medial. The left-lying and right-lying positions
are set at 90◦ from the body sensor (sagittal angle at 15◦ ventral, frontal angle at 30◦ medial,
and sagittal angle at 45◦ dorsal). The force-sensitive detection of tissue injuries in patients
is presented in Table 3.
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Table 3. The force-sensitive sensor of body detection.

Body Area
Detected

Supine Left-Lying Right-Lying Recall

Original
Supine 35 1 4 0.748

Left-lying 9 27 0 0.719
Right-lying 12 1 23 0.552

Precision – 0.760 0.954 0.725 –

Force-sensitive resistors are used to test the pressure detection and loading time (g).
The force-sensitive resistor is based on a weight set at 1.96 N of the loading time on the
voltage divider circuit as follows:

V0= Vcc

(
R

R + FSR

)
(1)

where V0 is the output of voltage, Vcc is the input of voltage, and R is the pulldown
resistance. The resistance labelled ‘R’ is divided into an equation with a set of 1200 kΩ
resistors, which can reach as low as 100 kΩ when force pressure is applied.

The experimental test using weights is shown in Figure 13. Regarding kΩ, the fastest
response time of sensors 2 and 3 ranges from 2.59 to 5.83% of probability. There is a 1.44%
probability that sensors 1, 4, and 5 would be misclassified as sensor 6. The FSR drifts are
plotted on the loading pressure (5–10 g) and are fitted to the sensor for 10 s. There is a
difference of almost five times compared to pressure loading (30 g), allowing the system to
monitor respiratory rates up to 1000 kΩ per 10 s.
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4.4. Temperture and Humdity Sensor Tests

The temperature and humidity tests relied on internal factors (gender, age, and disease)
and the external factor of mm Hg. The humidity ranged from 20 to 50% and had an accuracy
of ±5% relative humidity. The temperature ranged from 35 to 40 ◦C, and the accuracy was
±2 ◦C. The test was repeated at 0.5–2% of the relative humidity. The detection had a fast
response (<10 s), a resolution of <1%, a tolerance of ±10%, and a loading time of 30 s.

Table 4 includes a comparison of the temperature and humidity sensors. The normal
temperature remains stable at 40 ◦C and is recorded every 10 s. The temperature is repeated
for the RTD240.5 ± 0.0 reference sensor. The response time of RTD is over 10 times that of
264.0 ± 0.0 and has the average 1/erise (30 s). The values show that the H steps of 10% RH
are then adjusted to 10–70% RH, keeping T constant at 7.5 ± 0.5 ◦C. We also compared the
variability of the reference to RTD260.1 ± 0.2 of T (35 ◦C) at RH55.0 ± 0.4, defined as the
time to change from 10% to 70% of the final values.

Table 4. Comparison of temperature and humidity data.

Temperature Humidity

Normal T (◦C) TT (Ω) RTD (Ω) Normal (%) RH (%) Sensor (Ω)

10 1038.8 ± 0.1 240.5 ± 0.0 10 7.5 ± 0.5 12,514.9 ± 11.2
15 1057.4 ± 0.1 244.2 ± 0.1 20 17.4 ± 0.6 12,689.8 ± 1.6
20 1076.2 ± 0.1 248.1 ± 0.1 30 27.2 ± 0.2 12,827.2 ± 2.6
25 1096.3 ± 0.2 252.3 ± 0.2 40 36.5 ± 0.3 12,935.5 ± 1.9
30 1114.9 ± 0.6 256.0 ± 0.2 50 45.8 ± 0.2 13,032.5 ± 2.7
35 1134.5 ± 1.3 260.1 ± 0.2 60 55.0 ± 0.4 13,140.9 ± 3.6
40 1153.7 ± 0.0 264.0 ± 0.0 70 64.4 ± 0.2 13,271.1 ± 5.1

Figure 14 illustrates the temperature test. It was recorded using a high-resistance probe
sensor placed 10 cm into the rectum, with an accuracy of +0.2 ◦C and 3-point calibration.
The test showed that sensors 1 and 2 of T1, T2, and T3 were placed in areas of the body
(lying position). The sensor achieves detection at 35.5 ◦C and 27 mm thickness. The T4
and T5 of sensors 3 and 4 are accurately detected within ±10%. They also withstand a
temperature gradient reaching 37.5 ◦C. The results (Figure 15) highlight that the humidity
remains constant at 36.5% and that the moduli range from 37.5 to 42.5% RH. The validity
of the results was monitored using a hygrometer (±5% accuracy) of 64.4 ± 0.2 with 42.5%
increases every 30 s, respectively.
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4.5. Force Sensor Test

The standard loading time (SLT) is defined as skin reddening in the same subjects and
regions of a patient’s position. The subjects refer to the areas of pressure, and there is a
set of 4 kPa over 30 min for the SLT. The regions refer to the pre-damaged skin, including
sheer forces, excessive muscular activities, and injuries on the lumbar spine. The SLT is a
set of 10−4 kPa−4, with a resolution of 105 in the static test of 0.1 kPa. The SLT is calculated
for the pressure p as follows:

SLT (min) = 2400/p (kPa) (2)

The SLT is applied as follows: (i) the skin is covered by thin layers of fat and muscle;
(ii) the skin has a highly convex curvature; (iii) the skin is not trained by cyclic loading; (iv)
the patient is at risk according to the Norton scale; and (v) the skin is pre-damaged. When
the SLT is suited for the sensor, the layers are pressed on the vapour of P data (p = 1.0 to
95.2, 96.0, or 96.7 kPa). The SLT is created (p = 1.0 to 50.0 kPa) for skin damage, with a set
of 43 kPa at 32 mm Hg for the equal components.

The maximum of the force sensor is set to ±1.95 MPa at <1 N. The temperature ranges
from 35 to 40 ◦C. The humidity ranges from 7.5 to 40% on patients’ lightly pigmented skin
injuries. The support factor (SUF) is provided as Ps. Whether Ps is suitable for the loading
data is defined as follows:

SUF =/Pm (3)
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where the Pm is the maximum average of pressure loading. The SLT and SUF are compared
with the subject regions in the supine and the side-lying positions. The parameter has
a drop in discharge piping of 10%, a normal relief of 10%, and an accumulation of 20%.
The fracturing-based fluid is a set of 8.17 m3 at 6.13 MPa and 0.92 m3/min. The cross-link
fracturing of the fluid is 22.37 m3. The flow rate is equivalent to 7.05 MPa at 0.87 m3/min.
The safety factor (SF) is defined as follows:

SF =
Rp0.2min

σredB
≥ 1.0 (4)

where SF = safety factor against bolt yield pressure load;

σredB =
√

σ2
2 + 3 (kττ)2 = von Mises equivalent pressure;

σz = 1
AS

(FMzu+ FSAmax);

τ = 16MG
πd3

S
;

kτ = pressure reduction factor = 0.5.
The parameter is the maximum rate of error in the detection on lightly pigmented skin

injuries. The four subjects are the following: (i) the small and light type (150 cm/60 kg);
(ii) the high and light type (170 cm/80 kg); (iii) the small and heavy type (155 cm/99 kg);
and (iv) the high and heavy type (175 cm/100 kg). The maximum rate is 330 min for the
high and light types and 920 min for the small and light types, with a pressure average
(AVm) of 750 min, a range parameter (RPm) of 1.25, and causes of error at 5%. For the small
and light types, RPm = 1.58 and the AVs is 500 min. Table 5 presents a comparison of the
averages, ranges, and loading times.

Table 5. A comparison of averages, ranges, and loading times.

No. SL HL SH HH AVs RPs

1 930 450 660 270 560 2.57
2 770 530 520 360 680 2.07
3 540 470 550 330 510 1.70
4 720 540 600 360 510 2.58
5 700 390 570 350 500 1.88
6 850 530 670 540 400 2.00
7 450 360 490 450 520 1.65
8 700 500 530 370 580 2.19
9 710 550 360 410 460 2.16

10 760 610 420 540 380 1.97
AVm 850 640 620 380 590 2.07
RPm 1.69 1.47 1.25 1.31 1.48 –

The force-sensitive sensor was pressed in the supine position to test the stability of the
loading time. The test consisted of pressure loading (10–60 g) in 10–30 s. The resistance
ranges from 200–1200 kΩ, and there is a value of 1.95 MPa (15 N). The sensor is based on
loading and unloading, and the pressure sensor is on the mattress screen. Since the loading
time is appropriate, the SUF is 50% higher in a supine position. Figure 16 displays the tests
of the kΩ and SLT.

The SLT and the SUF have results of 10% for the pressure sensor, 36% for the tall
and light types, and 72% for the small and heavy types. For the force-sensitive subjects,
RPm = 2.07 for the small and light types and RPm = 1.48 for the high and light types. The
SUT increases by 30%, which appears to recover at ≈0.1 s of loading and 0.1 s of unloading
time. A sensor set of 10 g (15 N) was applied to the loading and unloading cycles (0.5 Hz).
Figure 17 shows the resistance and weight loading.
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4.6. Static Test

The static calibration is based on the force-sensitive sensor outputs. The different
weights are recorded to ascertain the actual drift of voltage, loading time, and signal
detection. Static calibration is formulated as follows:

Dri f t(t)
VFSR(t)− VFSR(0)

VFSR(0)
(5)

where the Drift(t) is a normalised voltage; VFSR(t) is the loading time; t, and VFSR(0) is the
pressure detection. Each sensor which is based on weight loading ranges from 0.059 to
18.8 N at 117 voltage in the centre-side position. The resistor RG is 1200 kΩ as the voltage
VFSR across the sensor is 1 V. The loading time is a set of 10 s, ranging from 10 to 30 g,
with a repeated test of 10 times for signal detection. The loading time is combined with
a 1.3 × 10−4 V/Pa of 0.9 kPa in 1 h for the force sensor. Table 6 sets the criteria for the
force-sensitive resistor.

Figure 18 presents the static sensor dataset of 15 kPa on the mattress. The temperature
ranges from 30 to 40 ◦C. The relative humidity ranges from 30 to 40%. The loading time
is 12 in d, and the absolute drift is 32 mm Hg. The pressure loading is a set of 18 N,
100 kΩ, RPm = 1.25, and loading response of 10–30 s. The pressure loading is 10 g at 0.954
in a supine position for lightly pigmented skin injuries.
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Table 6. Conductive force-sensitive resistor.

Feature Value

Nominal thicker 0.30 mm

Active sensor area
35.1 mm × 35.1 mm

Semi-conductive layer: 0.10 mm/U1tem

Rubber mattress build
Spacer adhesive: 0.10 mm/Acrylic
Conductive layer: 0.10 mm/U1tem

Rear adhesive: 0.5 mm/Acrylic
Wide-force sensitive range <100 g–1 kg
Break force (turn-on force) 20 g to 100 g

Stand-off resistance 200–1200 kΩ
Temperature operating range 35 ◦C to + 40 ◦C

Number of actuations (lifetime) >10 million actuations
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4.7. Repeated Temperature, Humidity, and Pressure Sensor Test

The pressure sensor is the core pressure loading of 32 mm Hg, temperature at 30–40 ◦C,
and RH at 10–50%. According to the repeated tests, the loading time is 30 g, 25 N,
1000 kΩ, RPm = 1.75, 1.90 kPa, with fluid of 32.24 m3/min. The force signal is detected at a
temperature of 36 ◦C, RH at 33.5%, and 32 mmHg. The detection was repeated (+3%) with
hysteresis (10%), a response time of 30 s, an active area of 12.7 mm, and a density area of
1mA. Figure 19 depicts the repeatability of temperature and RH. Figure 20 includes a test
of the repeatability of the pressure, temperature, and humidity sensors.
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5. Discussion
5.1. Discussion with Rsults

We aim to develop innovative pressure detection, temperature, and humidity sensors
for an electronic signal mattress. The innovative pressure sensor mattress demonstrates
early detection at 32 mm Hg, a pressure loading of 30 g, a loading time of 10 s, a temperature
of 36 ◦C, a RH of 33.5%, hysteresis of 10%, 25 N, and 1000 kΩ. Our data confirm the results
of prior studies that the detection of tissue injuries is significant for patients with lightly
pigmented skin damage (13,25,31). Based on our findings and the results of prior research,
early detection (with electronic signal alerts) of tissue injuries in patients is effective in the
clinical care setting [2,6,9,14,24,25,36,40,42].

The temperature and humidity sensors show the most active early detection, flexible
substrate deforms, and resistance [55,56]. The force-sensitive resistors are converted into
electronic signals for early detection of lightly pigmented skin injuries in patients [2,32].
The loading time of 10 s with pressure loading at 30 g and fluid at 32.24 m3/min are
appropriate components of a pressure sensor mattress. This finding is consistent with a
study conducted by Lee et al. 2019 [57], who found the pressure loading signal could be
detected at 10–30 s at 34.3 mm Hg. Previous studies have discovered that high damping of
pressure loading needs to be linked to the accuracy of early detection in lightly pigmented
skin injuries [58,59].

The electronic signal mattress shows the greatest early detection at 32 mm Hg, with
25 N, 1000 kΩ, RPm = 1.75, and 1.90 kPa. This finding is supported by the previous studies
by Yu et al. [60] and Malmsjö et al. [61], which indicated that a pressure loading at 32 mm
Hg may increase early detection by 10% in patients. A pressure sensor mattress is shaped
to produce an electronic signal alert for early detection of tissue injuries in patients in a
diagnostic setting [3,20,47]. The advantage of the temperature and humidity sensors is that
they are gentle on a directly detected signal alert system with a loading time at 10 s of both
high sensitivity and high specificity (66% and 72%, respectively). Even with limited data
(n = 15 experimental groups and 15 control groups), the pressure sensors show promise in
early detection for the clinical utility of the mattress.

Proper measurement from eight temperature and humidity sensors and four pres-
sure sensors is useful for early detection in the first stage of skin damage [13,57,62,63].
The temperature (35–40 ◦C), humidity (37.5–42.5%), and loading time of 10 s are the
most significant electronic alert signals of the pressure sensors. The measurement shows
that temperature increases by 0.5 ◦C, humidity increases by 50%, and an electronic alert
signal is detectable at 20 s. This finding is consistent with previous work, which has
shown that temperature sensors are effective for early detection in the first stage of tissue
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injuries [14,16,20,24,51]. To date, temperature sensors have incorporated detection re-
sponses when applied to lightly pigmented skin damage [64].

The innovative pressure sensor mattress is the most effective method in the early de-
tection of electronic alert signals based on the loading time (on) and unloading time (off)
procedure [6,8,11,14,24,35,65,66]. The electronic signal alert of the web and mobile application
is a proactive prognosis system in clinical care settings. We found early detection with a load-
ing time of 10 s at 32 mm Hg and RPm = 1.75, an accurate time within ±10%, a temperature
gradient of up to 37 ◦C, and a relative humidity of 33.5%. The results show that an accurate
pressure sensor can be used for detection in temperature and humidity sensors.

5.2. Practical Diagnostics

This study has some practical diagnostic devices. First, the accurate pressure sensors
have been validated with a set of 32 mm Hg; this may increase early detection in 94%
of patients. Even in a high-performing diagnostic setting, an electronic signal is usually
detected only once or twice. Second, the signal detection yields noteworthy accuracies
(loading time of 10 s at 30 g), indicating that such a rapid routine could be used for reliability
in the developmental stage. Third, the pressure sensor intricately interacts with ambient
data, indicating that the electronic signal potentially causes alert responses in real time.
There are also the factors of stable temperature and humidity sensors, which are mostly
automatic, and the flow of liquid through early signal detection. Apart from usability, the
temperature and humidity sensors are capable of detecting a temperature of 37 ◦C and
RH of 33.5% on tissue injuries. Correct detection, early signal operation, and pressure
sensor capability in the context of the mattress solution have developed a fully integrated
diagnostic system with electronic signal alert.

5.3. Innovation Device Contributions

This research is novel because the pressure sensor mattress, along with the tempera-
ture and humidity sensors, can be used to detect tissue injuries. This innovative diagnostic
device implies that tissue injuries in patients can be detected freely while performing daily
activities. This innovative mattress (as shown in Figure 7) with real-time electronic signal
detection (see Figure 12) is now available to optimise the operation and usable devices. This
is a diagnostic mattress with sufficient sensitivity (as indicated in Figure 20), and the devel-
oper requires a medical launch of an innovative mattress. New medical devices, diagnostic
procedures, detectable sensors, prognostic sensitivities, and electronic signals are being
produced. This process creates an additional burden for hospital administrators, clinical
engineers, and medical staff who are responsible for the acquisition of new technology.

As a result, there is a pressing need for medical engineers to assume more respon-
sibilities in these two areas. First, new innovative mattress technology must include an
evaluation of safety, efficacy, and cost-effectiveness, as well as a consideration of the social,
legal, and ethical effects of these diagnostic devices. Second, for nursing care institutions
to remain cost-effective and competitive, a new medical mattress can be selected based
on the knowledge gathered about its performance, value, and availability. The processes
of innovation, development, and diffusion of public and private medical technology play
important roles in advancing diagnostic mattress technology.

6. Conclusions

To conclude, we presented an innovative pressure sensor mattress that produces
an electronic alert signal for the early detection of tissue injuries in patients, yielding
an accuracy that exceeds the previous report. This study reveals an electronic signal
alert of 32 mm Hg, along with results for temperature (37 ◦C), relative humidity (33.5%),
pressure loading (30 g), and density area (1mA). Effectiveness studies testing medical
devices under conditions resembling real-world practice can be improved with the use of
correct diagnostic medical devices. Within this development, an electronic pressure sensor
mattress with electronic signal alert and pressure detection, temperature, and humidity
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sensors can have end-user application for detecting tissue injuries in patients. This mattress
is implemented for early detection with existing sensor devices, which can be used in
clinical care settings.

Limitations and Future Direction

This study has some limitations. First, the abovementioned diagnostic device is the
prototype of an innovative mattress using electronic alert signals and pressure detection,
temperature, and humidity sensors. The experimental group only includes 30 patients with
tissue injuries. Second, the pressure sensor mattress is still in the developmental stage.
Through the development and application of innovative pressure sensor mattresses, future
studies are needed to gain widespread clinical acceptance of these diagnostic devices. The
current study provides the platform upon which to further improve these medical devices
to enable patient-specific diagnostics for those with tissue injuries. Once available, it will
be used as a diagnostic device and an example of innovative pressure sensor mattresses in
real-world clinical care settings.
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