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Abstract: Chest X-ray radiography (CXR) is among the most frequently used medical imaging modal-
ities. It has a preeminent value in the detection of multiple life-threatening diseases. Radiologists can
visually inspect CXR images for the presence of diseases. Most thoracic diseases have very similar
patterns, which makes diagnosis prone to human error and leads to misdiagnosis. Computer-aided
detection (CAD) of lung diseases in CXR images is among the popular topics in medical imaging
research. Machine learning (ML) and deep learning (DL) provided techniques to make this task more
efficient and faster. Numerous experiments in the diagnosis of various diseases proved the potential
of these techniques. In comparison to previous reviews our study describes in detail several publicly
available CXR datasets for different diseases. It presents an overview of recent deep learning models
using CXR images to detect chest diseases such as VGG, ResNet, DenseNet, Inception, Efficient-
Net, RetinaNet, and ensemble learning methods that combine multiple models. It summarizes the
techniques used for CXR image preprocessing (enhancement, segmentation, bone suppression, and
data-augmentation) to improve image quality and address data imbalance issues, as well as the use
of DL models to speed-up the diagnosis process. This review also discusses the challenges present
in the published literature and highlights the importance of interpretability and explainability to
better understand the DL models’ detections. In addition, it outlines a direction for researchers to
help develop more effective models for early and automatic detection of chest diseases.

Keywords: radiography; chest X-ray; computer-aided detection; machine learning; deep learning;
deep convolutional neural networks

1. Introduction

CXR imaging is a fast and cost-effective technique widely used by radiologists to
diagnose multiple parts of the human body such as heart, lungs, bones, blood vessels, and
airways [1]. It plays a major rule in detecting diseases and abnormalities. CXR images
are typically generated by projecting X-ray radiation through the body positioned against
the metallic plate of the X-ray machine. The organs appear differently on the CXR image
because of the amount of radiation absorbed by each organ. The organs that absorb more
radiation (e.g., bones) appear in white color, while the parts that absorb less radiation (e.g.,
heart) appear in different shades of gray. The airways and the organs containing air (e.g.,
lungs) appear in a black color [2]. CXR examinations are affordable, non-invasive and
painless. They are considered as a valuable tool for the detection of many diseases and
abnormalities, which helps in diagnosing diseases and monitoring therapy [3].

Chest diseases are the most common and dangerous health issues worldwide. Many
people die from chest diseases every day, especially from lung cancer, pneumonia, tuber-
culosis (TB), and COVID-19 [4–6]. Chest diseases are fatal if not detected at their earlier
stages. According to the WHO (World Health Organization), chest diseases have a very
high mortality rate, and they can lead to death in several situations. As reported by WHO,
an estimated 65 million people worldwide have COPD (chronic obstructive pulmonary
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disease), including 3 million deaths [7]. For pneumonia, the mortality rate is worrying, as it
killed 808,694 children under the age of 5 in 2017 [8,9]. Around 10 million people fell ill
with TB (1.2 million children, 3.2 million women, and 5.6 million men) with 1.4 million
deaths [10]. The same is true for lung cancer, which kills approximately 1.6 million people
annually [11].

In order to diagnose the patients, radiologists inspect visually the CXR images. This
process is time and resource intensive, especially in areas where there is a shortage of
qualified clinicians. The lower resolution of CXR images, the similarities between the
signs of diseases, and the lack of experience and focus while examining a CXR image can
make the interpretation a challenging task for radiologists as it can lead to potentially
life-threatening diagnostic errors. Therefore, computer-aided detection systems (CAD),
including computer vision, machine learning (ML) and deep learning (DL) algorithms,
were proposed to provide a good decision-making tool for radiologists to diagnose different
diseases [12–14].

For nearly a decade, ML techniques became more popular for medical imaging-
based anomaly detection and classification, especially with the release of several datasets.
These techniques were applied for various purposes in medical image analysis such as
organs segmentation, diseases detection and classification. They showed high performance
through numerous studies developed to classify several diseases such as TB, pneumonia,
edema, cardiomegaly and COVID-19. For instance, Rasheed et al. [15] examined the use of
ML for the diagnosis of COVID-19 using a logistic regression classifier with CXR images.
They considered a dimensionality reduction approach to speed up learning and to obtain
the highest possible accuracy (ACC) by selecting the most relevant features.

Elaziz et al. [16] proposed an ML method to classify CXR images into normal and
COVID-19. FrMEMs (fractional multichannel exponent moments) technique was employed
for features extraction, an MRFO (modified version of manta ray foraging optimization)
method was used for features selection and KNN (k-nearest neighbors) classifier was em-
ployed to classify CXR images. Candemir et al. [17] used an algorithm that has two main
stages for the cardiomegaly classification. The first is heart and lung region localization on
CXR images, where the second is based on radiographic index extraction from lungs and
heart edges. Alslatie et al. [18] proposed an SVM (support vector machines) algorithm for
the classification of atelectasis and cardiomegaly. CXR images were segmented to localize
the region of interest (ROI) and then enhanced by using gray-level transformation tech-
niques. Avni et al. [12] worked on the classification of the cardiomegaly, pleural effusion,
and septum enlargement. They used a non-linear multiple SVM algorithm to identify the
manifested diseases. Sara et al. [19] used an SVM classifier to detect pneumonia using a
pediatric dataset. Chandra and Verma [20] proposed an ML paradigm to detect pneumonia
on segmented images. Five classifiers were used named random forest, logistic regression,
SMO (sequential minimal optimization), multi-layer perceptron and classification via re-
gression. Sousa et al. [21] used five ML classifiers (multi-layer perceptron, decision tree,
naive Bayes, SVM, and KNN) combined with three techniques of dimensionality reduction
(principal component analysis, sequential forward selection, and kernel principal compo-
nent analysis) to detect childhood pneumonia. Varela-santos and Melin [22], proposed an
ML features-based approach for the classification of pneumonia. Texture features were ob-
tained using GLCM (gray level co-occurrence matrix) algorithm, and then the classification
of images into normal or pneumonia was performed. Pavithra and Pattar [23] introduced an
algorithm to detect and classify CXR images into pneumonia or lung cancer. The algorithm
employs power law transform and median filter for noise removing, extracts the features
using a Gabor filter, then performs a classification using a feed forward and radial basis
function. A distance of two probability distributions algorithm namely, EMD (earth movers
distance) was used by Khatri et al. [24] to extract the difference between two CXR images
and detect whether it is a pneumonia or a non-pneumonia image. Subhalaxmi et al. [25]
used three different machine learning techniques (LR (Logistic Regression), NN (Neural
Network), and SVM) to predict pneumonia on CXR images. An extraction of features was
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performed using a GLCM algorithm. Inbaraj et al. [26] used a decision tree model called
stacked loopy decision tree (SLDT) classifier with an ROI based approach to detect TB.
Their proposed approach is based on three steps to distinguish TB, including segmentation,
feature extraction, and classification. For more ML works, readers can consult the survey
by Rahamat et al. [27] which reviews the use of ML methods for CXR classification and
detection and summarizes the obtained results.

While ML models require users and data scientists to select features from the input
data, DL models perform automatic features extraction. ML algorithms reveal less perfor-
mance using large datasets, while DL algorithms perform better with the availability of
large quantities of data and higher computational power [28]. Therefore, researchers are
focusing more on DL techniques to increase the performance of medical applications and
decrease the time and cost of the diagnostic process.

Multiple reviews were published presenting the application of DL techniques in med-
ical image analysis for the detection of different diseases. Alghamdi et al. [29] reviewed
convolutional neural networks and other deep learning techniques employed for the detec-
tion of COVID-19 using CXR images. Various CXR COVID-19 datasets were introduced
and discussed in addition to numerous architectures proposed to automate the detection
of COVID-19. They covered and highlighted different challenges facing the discussed DL
approaches and datasets. Chandrasekar [30] explored the application of DL techniques for
the detection of coronavirus in CXR images. Many papers presenting new DL approaches
for features extraction and detection of coronavirus were outlined. They introduced the
used CXR coronavirus datasets and analyzed the performance of DL models. Shyni and
Chitra [31] presented a comparative study of preprocessing and deep learning techniques
used for the automatic detection of COVID-19 on X-ray and computed tomography (CT)
images. They highlighted the importance of transfer learning and data-augmentation tech-
niques for the scarcity of COVID-19 datasets. Jiechao et al. [32] focused on DL techniques
applied to detect four pulmonary diseases (pulmonary nodule, pulmonary embolism,
pneumonia, and interstitial lung disease). They presented several DL frameworks used for
medical images and discussed their architectures.

Most of these studies focus only on the application of DL models for COVID-19
detection and do not consider other diseases. In addition, many open access datasets are
missing, as well as recent CXR image processing techniques that have shown a favorable
effect on the performance of recent DL models. As far as we know, our review is the
first to present all accessible collections of CXR images, including COVID-19 datasets. In
comparison to prior reviews, our paper contributes as follows:

• It describes a total of 22 publicly available datasets containing CXR images from
different institutions.

• It introduces commonly used processing techniques, and recently published research
related to the automatic detection of various chest diseases (pneumonia, pulmonary
nodules, tuberculosis, COVID-19, etc.) using radiological medical images and DL tech-
niques.

• It highlights the necessity of using preprocessing and data-augmentation techniques
to improve the quality of CXR images, solve data balance problems, and therefore
increase the performance of the models used for chest disease detection.

• It discusses various concerns facing the research community, highlights the limitations
of published studies, and suggests alternatives to help overcome these challenges.

• It presents recent published papers (the majority of them are between 2019 and 2022)
and allows researchers to have easy access to state-of-the-art works.

As depicted in Figure 1, this paper is structured as follows: Section 2 introduces the
most widely used and publicly available CXR datasets. Section 3 illustrates the evaluation
metrics and the most efficient preprocessing techniques for CXR medical images, including
data-augmentation, image enhancement, bone suppression, and organs segmentation.
Section 4 demonstrates recently published studies that have used DL techniques to detect
and classify chest diseases. The results obtained by each of the mentioned papers are
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presented in tables grouped by diseases. Section 5 covers main challenges that most of the
published papers have faced and discusses alternative solutions to be considered in future
works in order to achieve more complete and relevant results. Finally, Section 6 concludes
this work.

Figure 1. Structure diagram illustrating the topics discussed in our paper.

2. Datasets

In the medical area, there are several types of image screening technologies, including
ultrasound imaging, CT (computed tomography), MRI (magnetic resonance imaging),
and X-ray imaging. Radiologists use these images to diagnose organs for the detection
of abnormalities [33]. Detecting diseases from CXR images is always a difficult task for
radiologists and sometimes leads to misdiagnoses. To address this purpose using CAD
systems, a large amount of data is required for training and testing. CAD systems in
medical analysis are usually trained and tested on an ensemble of data called a dataset,
that are generally composed of images and other important information called metadata
(e.g., age of patient, race, sex, Insurance type). Some hospitals, universities and laboratories
in different countries used several approaches to collect data that belong to patients [34].
Datasets collection in medical area aims to advance research in detecting diseases. DL
techniques proved their efficiency and ability to detect most dangerous diseases using
different datasets [35,36]. These techniques achieved expert-level performance on clinical
tasks in many studies [6,37]. There are multiple datasets that contain thousands of CXR
images. Details about datasets are presented in Tables 1 and 2. In this review, we are
focusing on the open-access CXR image datasets. The most relevant publicly available CXR
datasets are as follows:

1. Indiana is a publicly available dataset collected by Demner-Fushman et al. [38]. It
has 7470 CXR images (frontal and lateral) and 3955 associated reports, collected from
different hospitals and offered to the University of Indiana School of Medicine. The
CXR images in this dataset represent several diseases such as pulmonary edema,
opacity, cardiac hypertrophy, pleural effusion.

2. ChestX-ray8 [39] is collected between 1992 and 2015. It contains 108,948 posterior im-
ages, with 24,636 containing one or more anomalies, and the remaining 84,312 images
representing normal cases. The images belong to 32,717 patients. The dataset has
labels that refer to eight diseases (pneumothorax, cardiomegaly, effusion, atelectasis,
mass, pneumonia, infiltration, and nodule), where every image can be multi-labeled.
The labels are text-mined from the associated radiological reports using NLP (natural
language processing) algorithms.

3. ChestX-ray14 [39] is a dataset of images extracted from the PACS (Picture Archiving
and Communication Systems) databases. It is an upgraded version of ChestX-ray8
dataset with six more common chest abnormalities (hernia, fibrosis, pleural thickening,
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consolidation, emphysema, and edema). ChestX-ray14 has 112,120 frontal view CXR
images (51,708 images contain one or multiple abnormalities and the remaining 60,412
images do not include any of the 14 abnormalities) belonging to 30,805 unique patients.
ChestX-ray14 was also labeled using NLP techniques. Examples of CXR images from
ChestX-ray14 are depicted in Figure 2.

(a) (b) (c) (d)

Figure 2. Examples of CXR images from ChestX-ray14 dataset [39] where, (a) Nodule; (b) Emphysema;
(c) Effusion; (d) Infiltration.

4. KIT [40] is a tuberculosis dataset created by the Korea Association of Tuberculosis.
It contains 10,848 DICOM images collected between 1962 and 2013, including 7200
normal cases and 3828 with TB.

5. Montgomery [41] is a dataset collected in collaboration with the US Department of
Health and Human Services and Montgomery County. It has 138 frontal CXR images
(80 normal and 58 with TB). The images are provided by Montgomery County’s
Tuberculosis screening program.

6. Japanese Society of Radiological Technology (JSRT) [42] is a public dataset collected
by the JSRT (Japanese Society of Radiological Technology) in collaboration with the
JRS (Japanese Radiological Society) in 1998 from 13 institutions in Japan and one
in the United States. It contains 247 postero-anterior CXR images, including 154
with nodule (100 CXR with malignant nodules and 54 with benign nodules) and
93 non-nodule high-resolution CXR images. JSRT has metadata such as diagnosis
(malignant/benign), gender, age, and location of nodules [43].

7. Shenzhen [41] is composed of 662 CXR images, including 336 images showing TB
and 326 images for normal cases. These CXR images were all captured in one month,
and they include pediatric CXR. The Shenzhen dataset was collected in collaboration
between Shenzhen No. 3 People’s Hospital and Guangdong Medical College in China.

8. CheXpert [44] is a large Public dataset of CXR images composed of 224,316 images
acquired from 65,240 patients. It contains 14 common chest abnormalities, and it
was collected from the Hospital of Stanford between 2002 and 2017. Each image in
CheXpert dataset was labeled for the presence of 14 abnormality as negative, positive,
or uncertain based on an automated rule-based labeller to extract the observations of
experts from the free text radiology reports. Samples of CXR images from CheXpert
are shown in Figure 3.
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(a) (b) (c) (d)

Figure 3. Samples of CXR images from CheXpert dataset [44] where, (a) Atelectasis; (b) Cardiomegaly;
(c) Edema; (d) Pneumonia.

9. Padchest (Pathology Detection in chest radiographs) [45] is one of the biggest and
most labeled public datasets, with 168,861 CXR images acquired from 67,000 patients
from San Juan’s Hospital, Spain between 2009 and 2017. A total of 18 radiologists
contributed in reporting Padchest dataset.

10. PLCO [46] is a large dataset with 185,241 CXR images of prostate, lung, colorectal and
ovarian (PLCO) belonging to 56,071 patients (men and women). The PLCO dataset
was collected in the context of investigating the impact of screening on cancer-related
mortality and secondary endpoints in people aged between 55 and 74 years. It was
created under the sponsorship of the NCI (National Cancer Institute).

11. MIMIC-CXR [47] is a collection of 377,110 CXR images corresponding to 227,835
patients. It is considered as one of the largest open-access datasets of chest radiographs
with free text radiology reports. It has data of 14 chest abnormalities. It was performed
between 2011 and 2016 at the Beth Israel Deaconess Medical Center (Boston, MA,
USA).

12. VinDr-CXR [48] is a public CXR dataset with radiologist-generated annotations. It
consists of 18,000 CXR images that come with the location and the classification of the
chest diseases. This dataset was collected from two of the biggest hospitals in Vietnam
that are Hospital H108 and the HMUH (Hanoi Medical University Hospital) [49].
Figure 4 shows CXR samples from VinDr-CXR dataset.

(a) (b) (c) (d)

Figure 4. Examples of CXR images from VinDr-CXR dataset [48] where, (a) Infiltration; (b) Pleural
Effusion; (c) Pneumothorax; (d) Pulmonary Fibrosis.
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13. Pediatric-CXR [50] is collected from Guangzhou Women and Children’s Medical
Center, China. It is composed of 5856 X-ray images (1583 normal cases and 4273 with
pneumonia) of pediatric patients (one to five years) with different resolutions.

14. The RSNA Pneumonia Detection Challenge dataset (RSNA-Pneumonia-CXR) is
collected by the RSNA (Radiological Society of North America) and the STR (Society
of Thoracic Radiology) and published for a challenge [51]. It has 30,000 CXR images,
of which 15,000 CXR are diagnosed with pneumonia or similar diseases such as infil-
tration and consolidation. Images in RSNA-Pneumonia-CXR dataset are all acquired
from ChestX-ray14 dataset.

15. COVIDx CXR-3 is a public benchmarking dataset that comprises a total of 30,386
CXR images from 17,026 patients. Images in COVIDx CXR-3 repository are collected
by Pavlova et al. [52] from the following datasets:

• COVID Chest X-ray [53], an open-access dataset obtained from public sources
and by indirect collection from hospitals and physicians. It consists of 686
COVID-19 CXR images from 412 patients from 26 countries.

• COVID-19 Chest X-ray, a COVID-19 dataset collected by Chung et al. [54] in
collaboration with members from University of Waterloo in Canada. COVID-19
Chest X-ray dataset consists of 53 CXR COVID-19 images.

• Actualmed COVID chest X-ray, a publicly available dataset of 217 CXR images,
collected by Chung et al. [55] in collaboration with Actualmed and Jaume I
University (UJI) in Castellón de la Plana, Spain.

• COVID-19-Radiography database, created by a group of researchers at Qatar
University in Qatar, and Dhaka University in Bangladesh, along with collabo-
rators from Pakistan and Malaysia and a group of medical specialists [56]. It
consists of 21,173 CXR images (3616 COVID-19, 6012 opacity, 1345 viral pneumo-
nia and 10,200 normal).

• RSNA International COVID-19 Open Radiology Database (RICORD) [57],
created as a collaborative work between the RSNA and the STR. It comprises
998 CXR images with diagnostic labels (positive for COVID-19) belonging to 361
patients (aged 18 years or older) from four institutions across the world.

• BIMCV-COVID19+, a large COVID-19 dataset That contains 3141 positive CXR
images with radiology reports (pathologies, locations, and other details) and
CT scan images [58]. It is published by the BIMCV (Valencian Region Medical
Image Bank) in collaboration with the FISABIO (Foundation for the Promotion of
Health and Biomedical Research of Valencia Region), and the Regional Ministry
of Innovation, Universities, Science and Digital Society (Generalitat Valenciana).

• Stony Brook University COVID-19 Positive Cases (COVID-19-NY-SBU), a
large collection of COVID-19 images from the “COVID-19 Data Commons and
Analytic Environment” at the Renaissance School of Medicine, Stony Brook Uni-
versity [59]. COVID-19-NY-SBU dataset contains 562,376 images of different
medical imaging modalities including X-rays acquired from 1384 patients.
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Table 1. Publicly available CXR datasets.

Dataset Ref. Size Classes Collected/Sponsored by

Indiana b [38]
7470 images
(512 × 512 pixels)
3996 patients

Multiple diseases including opacity,
cardiomegaly, pleural effusion, and
pulmonary edema

Indiana Network for Patient Care with
various hospitals associated with the
Indiana University School of Medicine

ChestX-ray8 a [39]
108,948 images
(1024 × 1024 pixels)
30,805 patients

8 findings including pneumonia,
atelectasis, mass, pneumothorax,
infiltration, cardiomegaly, effusion,
and nodule

From clinical PACS databases in the
hospitals associated to NIHCC
(National Institutes of Health Clinical
Center)

ChestX-ray14 a [39]
112,120 images
(1024 × 1024 pixels)
32,717 patients

14 findings including hernia,
consolidation, emphysema edema,
pleural thickening, pulmonary
fibrosis, and others

From clinical PACS databases in the
hospitals associated to NIHCC
(National Institutes of Health Clinical
Center)

KIT dataset a [40] 10,848 images Normal and TB The Korea Association of Tuberculosis
between 1962 and 2013

Montgomery b [41,60] 138 images
(4020 × 4892 pixels) Normal and TB Montgomery County Department of

Health and Human Services

Shenzhen b [41]
662 images
(3000 × 3000 pixels)
336 TB patients

Normal and TB
In collaboration with Shenzhen No. 3
People’s Hospital, Guangdong Medical
College, Shenzhen, China

JSRT b [42,43]
247 images
(2048 × 2048 pixels)
247 patients

Nodule and no nodule Japanese Society of Radiological
Technology

CheXpert a [44,61] 224,316 images
65,240 patients

14 findings including edema,
cardiomegaly, lung opacity, lung
lesion, consolidation, pneumonia,
atelectasis, pneumothorax, and
others

Stanford University Medical Center

Padchest c [45] 160,868 images
67,000 patients Large number of findings San Juan Hospital (Spain)

PLCO a [46] 185,241 images
56,071 patients

Prostate, lung, colorectal, and
ovarian findings The NCI (National Cancer Institute)

MIMIC-CXR a [47,62]
473,057 images
(2544 × 3056 pixels)
63,478 patients

14 diseases (227,943 imaging
studies)

MIT, Beth Israel Deaconess Medical
Center (Boston, MA, USA)

VinDr-CXR b [48,49] 18,000 images
28 findings including TB,
pneumonia, cardiomegaly, pleural
effusion, lung opacity and others

The Hospital 108 (H108) and the
HMUH (Hanoi Medical University
Hospital)

Pediatric-
CXR b [50,63] 5856 images Normal, bacterial-pneumonia,

viral-pneumonia
Guangzhou Women and Children’s
Medical Center, China

RSNA-
Pneumonia-
CXR b

[51] 15,000 images Pneumonia, infiltration, and
consolidation

The RSNA (Radiological Society of
North America) and the STR (Society of
Thoracic Radiology)

Note: a dataset annotated by an NLP algorithm, b dataset annotated by radiologists, c only 27% of CXR images
were manually annotated by radiologists.
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Table 2. Overview of publicly available COVID-19 CXR datasets.

Dataset Ref. Size Classes Collected/Sponsored by

COVIDx CXR-3 [52] 30,386
images

Positive and negative
COVID-19

Pavlova et al. [52] by combining and modifying images
from different COVID-19 datasets.

COVID Chest X-ray [53] 686 images Positive COVID-19 Cohen et al. [53] from public sources and by indirect
collection from hospitals and physicians

COVID-19 Chest
X-ray [54] 53 images Positive COVID-19 Chung et al. [54] in collaboration with members from

University of Waterloo in Canada

Actualmed COVID
chest X-ray [55] 217 images Positive COVID-19 Chung et al. [55] in collaboration with Actualmed and UJI

(Jaume I University) in Castellón de la Plana, Spain

COVID-19-
Radiography
database

[56] 21,173
images

Normal, positive
COVID-19, opacity,
and viral pneumonia

A group of researchers at Qatar University and Dhaka
University along with medical doctors and collaborators
from Pakistan and Malaysia

RICORD [57] 998 images Positive COVID-19 The Radiological Society of North America and the
Society of Thoracic Radiology

BIMCV-COVID19+ [58] 3141 images
Positive COVID-19,
pneumonia, alveolar,
and interstitial

The BIMCV (Valencian Region Medical Image Bank) in
collaboration with the FISABIO (Foundation for the
Promotion of Health and Biomedical Research of Valencia
Region), and the Regional Ministry of Innovation,
Universities, Science and Digital Society (Generalitat
Valenciana)

COVID-19-NY-SBU [59] 4118 images Positive COVID-19 The Renaissance School of Medicine and Department of
Biomedical Informatics at Stony Brook University

3. Image Preprocessing Techniques

Preprocessing of X-ray images is the operation that consists of improving their quality
by converting them from their original form into a much more usable and informative form.
Most of CXR images are produced in DICOM (Digital Imaging and Communications in
Medicine) format with large set of metadata, which makes it challenging to understand
by experts outside the field of radiology [47]. In other areas such as computer vision,
DICOM images are usually stored in PNG or JPG formats using specific algorithms. These
algorithms allow the compression without losing important information in the images.
This process has two main steps, first is to de-identify the information of patients (privacy
protection). Second is to convert DICOM images into PNG, JPEG, or other formats. Normal
X-ray images have dimensions of 3000 × 2000 pixels, which requires high computational
resources if used in their original size. Therefore, radiological images must be resized
without losing the essential information they contain. Most of the datasets have resized
images, such as Indiana dataset, which has CXR images resized to 512 × 512 pixels [38] and
ChestX-ray dataset that has resized images with a dimension of 1024 × 1024 pixels [39].

Datasets are most of the time imbalanced or contain low-quality images, which usually
contain noise and unwanted parts. In the process of developing a CAD system, the image
preprocessing techniques play a crucial rule in enhancing and improving the quality of
images. They help to remove the irrelevant data, to extract the meaningful information, and
to make the ROI clearer. These techniques improve the performance of CAD systems and
reduce their error rate. Preprocessing techniques applied on CXR images, consist of several
methods including augmentation, enhancement, segmentation, and bone suppression.

3.1. Augmentation

Training a Deep Convolutional Neural Network (DCNN) on an imbalanced dataset
mostly leads to overfitting, makes the model unable to generalize to novel samples and
does not provide the desired results. To cope with this situation, many transformations
can be employed by position-based augmentation (cropping, rotating, scaling, flipping,
padding, elastic deformations) and color-based augmentation techniques (hue, brightness,
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contrast) to increase the number of samples in the dataset by making slight adjustments to
existing images. Table 3 gives an overview of data-augmentation techniques applied to
CXR images.

Ait Nasser and Akhloufi [64] used different data augmentation techniques, including
a rotation of −15 to 15 degrees, a translation of 20% in four directions, a shear of 70 to
100, and a random flip, which resulted in a total of 84,204 CXR images. The increased
data improved the performance of their proposed model. Nayak et al. [65] increased
the number of CXR samples by applying different techniques such as rotation, scaling,
horizontal flipping, and adding Gaussian noise with a variance between 0 and 0.25. These
data-augmentation techniques resulted in five times more CXR samples than the original
training set of images.

Over the past few years, generating artificial CXR images using generative adversarial
networks (GANs) was of great interest to the research community, as it deals with the pri-
vacy concerns of patients data. GANs that have been introduced by Goodfellow et al. [66],
were employed to increase the size of existing CXR datasets by creating new artificial
images. GANs have two deep neural networks that are: the generator, which creates
samples that are as realistic as possible to the original images, and the discriminator, which
distinguishes original images from newly generated images. Venu et al. [67] employed
GANs for data-augmentation using Pediatric-CXR dataset [63]. Most of the images in this
dataset belong to one class (3875 Pneumonia, 1341 normal). This experiment consisted of
increasing the number of normal CXR images using deep convolution adversarial networks
(DC-GAN). After training the DC-GAN model, high quality CXR-like images were gener-
ated. Chuqucusma et al. [68] produced realistic lung nodule images by using unsupervised
DC-GAN. The quality of generated nodules were evaluated by presenting Turing tests
to two radiologists. Madani et al. [69] used DC-GAN to augment the original dataset by
generating more CXR, and then trained a DCNN for a classification of abnormalities. The
model showed high performance in classification. Data-augmentation techniques proved
its efficiency on the performance of different models and systems for the detection and
the classification of chest diseases using CXR images. Using DC-GAN, Albahli et al. [70]
generated new synthetic CXR images to deal with the data imbalance problem. They
trained several DL models with and without data augmentation. The results obtained show
that data augmentation using DC-GAN improves the accuracy (ACC) by 5%.

Table 3. Overview of different data-augmentation techniques for CXR images.

Ref. Dataset Technique

[64] Consolidated dataset of 26,316 CXR images
from VinDr-CXR and CheXpert datasets

Rotation (−15 to 15 degrees), four direc-
tions translation (20%), shear (70 to 100),
and a random flip

[65] 703 CXR images from ChestX-ray8 and
COVID Chest X-ray and

Rotation, scaling, horizontal flipping, Gaus-
sian noise (variance between 0 and 0.25)

[67] 1341 normal CXR images from Pediatric-CXR DC-GAN

[68] ChestX-ray14 Unsupervised DC-GAN

[69] 4110 CXR images from ChestX-ray14 and
PLCO DC-GAN

[70] 91,324 CXR from CheXpert DC-GAN

3.2. Enhancement

Image enhancement techniques are generally used to improve the information inter-
pretability in images. For CXR images, these techniques are used to provide a better image
quality to human readers (radiologists) as well as to automated systems [71]. To improve
the quality of a CXR image, multiple parameters can be considered (contrast, brightness,
noise suppression, edge of features, and sharpness of edges) using different methods in-
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cluding histogram equalization (HE) [72], high and low pass filtering [73], and unsharp
masking [74]. Figure 5 depicts an example of enhancement applied to a CXR image.

(a) (b)
Figure 5. (a) Noisy CXR image from a low quality version of CheXpert dataset [44]; (b) Enhanced
CXR image.

Aashiq et al. [75] used a gabor filter that represents a combination of gaussian and a
sinusoidal term to enhance CXR images. Munadi et al. [76] employed three techniques
(CLAHE (contrast-limited adaptive histogram equalization), high frequency emphasis
filtering, and unsharp masking) to enhance TB images from Shenzhen dataset. A transfer
learning technique was used to train two DCNN models to detect TB using enhanced
images. Tawsifur et al. [77] explored the effect of various enhancement techniques on the
performance of DCNN models for COVID-19 detection using CXR images. The used en-
hancement techniques include, HE, CLAHE, image invert, gamma correction, and Balance
Contrast Enhancement Technique (BCET). Nefoussi et al. [78] enhanced CXR pneumo-
nia images using several preprocessing techniques such as unsharp mask, CLAHE, and
HE. Zhou et al. [79] proposed an enhancement method for CXR images. They applied
techniques to tune the brightness and contrast of the input image and obtain an enhanced
image in the output. This method is based on a parameter called gamma. Genc et al. [80]
proposed three preprocessing approach, including two enhancement techniques (HE and
CLAHE) using CXR images from ChestX-ray14 dataset. Koonsanit et al. [81] used an
enhancement technique called N-CLAHE which combines the normalization function
and the CLAHE method to increase the quality of CXR images. N-CLAHE provided the
highest contrast resolution when compared with other techniques such as CLAHE, HE,
and unsharp masking. Kushol et al. [82] performed a contrast enhancement method for
CXR images from six datasets including Montgomery, ChestX-ray14 and Shenzhen. The
proposed method used two techniques (top hat and bottom hat transform) to enhance the
quality of CXR images based on features extraction and background equalization.

Most studies showed that using enhancement techniques improves the performance
of automatic systems for feature extraction and disease detection [77,79,80]. An overview
of enhancement techniques applied to CXR images is shown in Table 4.
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Table 4. Overview of different enhancement techniques for CXR images.

Ref. Dataset Technique

[75] COVID-19-Radiography Database Gabor filtering

[76] Shenzhen CLAHE, unsharp masking, and high fre-
quency emphasis filtering

[77] RSNA-Pneumonia-CXR and
BIMCV-COVID19+

HE, CLAHE, image invert, gamma cor-
rection, and BCET

[78] RSNA-Pneumonia-CXR Unsharp mask, CLAHE, and HE

[80] ChestX-ray14 HE and CLAHE

[81] Custom dataset CLAHE with normalization function

[82] CXR images from Montgomery,
ChestX-ray14, and Shenzhen Contrast adjustment

3.3. Segmentation

Image Segmentation has a critical rule in image preprocessing techniques. It is usually
necessary to divide a visual image into fragments. For CXR images, this technique allows
segmenting the thoracic image into areas in order to extract the ROI. Figure 6 depicts
examples of ROIs overlaid on CXR images.

CXR image segmentation was implemented in several studies and research, and it
proved its efficiency in the whole process of detection and classification of chest diseases.
For instance, Kumarasinghe et al. [83] used U-Net model, that is among the most efficient
methods to perform segmentation of the CXR images. The generated images were even-
tually used for a classification of pneumonia and COVID-19 cases. Gu et al. [84] used a
fully convolutional networks (FCN) model to perform lung field segmentation and isolate
the anatomical ROI using CXR images. Sogancioglu et al. [85] explored the detection of
cardiomegaly on CXR images from ChestX-ray14 dataset, using two approaches (segmen-
tation and classification). They proposed a standard U-Net architecture that segments the
lungs and heart regions. Eslami et al. [86] proposed a DL model, namely pix2pix, for organ
segmentation using JSRT dataset. The pix2pix model suppresses the bones and segments
the organs within the chest area (heart and lungs) of CXR images. Ghali and Akhloufi [87]
proposed a segmentation model called ARSeg for identification and segmentation of lung
fields. Attention mechanism was employed to suppress irrelevant features in CXR images.
The model was performed on images from three public datasets (Shenzhen, Montgomery,
and JSRT). Dai et al. [88] proposed a SCAN (structure correcting adversarial network)
to segment heart and lung regions in CXR images from JSRT dataset. Liu et al. [89] pro-
posed an improved U-Net model to extract lung field features using CXR images from two
datasets (Montgomery and JSRT).
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(a) (b)
Figure 6. (a) Examples of CXR images from CheXpert dataset [44]; (b) Samples of ROIs overlaid on
CXR images.

Most cited papers in this section proved that using segmentation techniques for
the extraction of ROI using DL models such as U-Net [90] and FCN [91] has high po-
tential to improve the performance of DCNN models for chest disease detection and
classification [83,86,89]. Table 5 shows an overview of segmentation techniques applied to
CXR images.

Table 5. Overview of different segmentation techniques for CXR images.

Ref. Dataset Technique

[83] COVID Chest X-ray U-Net

[84] 379 CXR images from JSRT and Montgomery FCN

[85] ChestX-ray14 U-Net

[86] JSRT Pix2pix

[87] CXR images from Shenzhen, Montgomery, and JSRT ARSeg with attention mechanism

[88] JSRT SCAN

[89] Montgomery and JSRT U-Net
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3.4. Bone Suppression

Bone suppression is a technique that can be applied on CXR images. It is an important
step in the process of lung segmentation and extraction of features from thoracic images.
Bone suppression technique is based on removing the bones from the CXR images, as
depicted in Figure 7. It helps to increase the visibility of obscure zones and to prevent
the overlap of signs of diseases with ribs and clavicles. An overview of bone suppression
techniques applied to CXR images is presented in Table 6.

(a) (b)
Figure 7. (a) CXR image from CheXpert dataset [44] before bone suppression; (b) CXR image after
bone suppression

Several studies have investigated this technique of bone suppression including, Mat-
subara et al. [92] who proposed a convolutional neural filter (CNF) that suppresses all
bone components without loss of tissue information. Sato et al. [93] developed a bone
suppression algorithm that is based on gradient differences in CXR images. Zarshenas
et al. [94] presented a CNN model to separate the bone structures from soft tissue in differ-
ent lung regions using a dataset of CXR radiographs with pulmonary nodules. Rajaraman
et al. [95] proposed a DCNN model called DeBoNet that removes bones in CXR images. The
generated images were used to detect COVID-19. Zhou et al. [96] introduced a conditional
GAN model, for suppressing bone shadow without loosing contextual information. The
model generated boneless images of high quality. Gordienko et al. [97] applied a DL
method to detect lung cancer. They compared the performance of the model by applying
it on CXR datasets with and without bones. Using CXR dataset of radiographs without
clavicle and rib shadows, the model showed higher performance.

The papers cited in this section, showed the usefulness of the bone suppression
technique in increasing the performance and the reliability of DCNN models for the
detection of different diseases [92–94].
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Table 6. Overview of different bone suppression techniques for CXR images.

Ref. Dataset Technique

[92] ChestX-ray8 and JSRT Convolutional neural filter

[93] 604 CXR images from a private dataset Custom algorithm based on gradient dif-
ferences in CXR images

[94] 118 CXR images with pulmonary nodules Custom CNN model

[95] 3016 CXR images from BIMCV-COVID19+,
ChestX-ray14, and RSNA-Pneumonia- CXR DeBoNet

[96] JSRT Conditional GAN

3.5. Evaluation Metrics

Several metrics for evaluating the performance of CAD systems are available. The
commonly used metrics in medical imaging analysis are given in the following:

• Accuracy (ACC), which determines the number of correct predictions out of all pre-
dictions.

ACC =
TP + TN

TP + FN + TN + FP
(1)

• Precision (PRE), which determines number of correct positive predictions.

PRE =
TP

TP + FP
(2)

• F1-score, which describes the harmonic mean of the recall and the precision.

F1-score =
2.TP

2.TP + FP + FN
(3)

• Sensitivity (SEN), also called recall, measures the ability to identify abnormal cases.

SEN =
TP

TP + FN
(4)

• Specificity (SPE), which measures the ability of not reporting normal cases as abnormal.

SPE =
TN

TN + FP
(5)

where TP represents the true positive rate, FP represents the false positive rate, TN
represents the true negative rate, and FN represents the false negative rate.

• Area under curve (AUC) which is one of the commonly used metrics in medical
imaging analysis using CAD systems. AUC describes the performance of a proposed
model based on its bad and good predictions.

Other metrics usually used for medical image segmentation are given in the following:

• Dice index, which is a function to measure the performance of the segmentation and
the overlap similarity between image (A) and image (B).

Dice(A, B) = 2
|A ∩ B|
|A|+ |B| (6)
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• Jaccard index, also known as IoU (intersection over union), is one of the most used
metrics in segmentation. It is very similar to dice index as it evaluates the agreement
between the ground truth (G) and the predicted segmentation (S).

Jaccard(S, G) =
|S ∩ G|
|S ∪ G| (7)

4. Deep Learning for Chest Disease Detection Using CXR Images

Several CAD systems were developed to detect chest diseases using different tech-
niques. Early diagnosis of thoracic conditions gives a chance to overcome the disease.
Diseases such as TB, pneumonia, and COVID-19 become more serious and severe when
they are at an advanced stage. In CXR images, three main types of abnormalities can be
observed: (1) Texture abnormalities, which are distinguished by changes diffusing in the
appearance and structure of the area. (2) Focal abnormalities, that occur as isolated density
changes and (3) Abnormal form where the anomaly changes the outline of the normal
morphology. A plethora of models and systems developed to deal with chest diseases
using DL approaches are presented in this paper. We focused on DL algorithms applied for
detecting different chest diseases using CXR images.

In this section, we review recently published DL approaches for binary and multi-
disease detection, splitting them into sections on the basis of the disease detected (pneu-
monia, pulmonary nodule, TB, COVID-19, and multiple diseases). We selected the listed
diseases based on their mortality and spread rates according to the WHO reports.

4.1. Pneumonia Detection

It is a challenging task for radiologists to detect pneumonia using CXR images. Pneu-
monia may appear as a benign abnormality and overlap with other diseases [98]. Multiple
works were developed in the context to avoid misdiagnosing pneumonia, as shown in
Table 7. For example, Ma and Lv [99] proposed a Swin transformer model for features
extraction with a fully connected layer for classification of pneumonia in CXR images.
The performance of the model was evaluated against DCNN models using two different
datasets (Pediatric-CXR and ChestX-ray8). Image enhancement and data-augmentation
techniques were applied, which improved the performance of the introduced model, achiev-
ing an ACC of 97.20% on Pediatric-CXR and 87.30% on ChestX-ray8. Singh et al. [100]
proposed an attention mechanism-based DCNN model for the classification of CXR images
into two classes (normal or pneumonia). ResNet50 with attention achieved the best results
with an ACC of 95.73% using images from Pediatric-CXR dataset. Darapaneni et al. [101]
implemented two DCNN model with transfer learning (ResNet-50 and Inception-V4) for a
binary classification of pneumonia cases using CXR images from RSNA-Pneumonia-CXR
dataset. The best performing model was Inception-V4 with a validation ACC of 94.00%
overcoming ResNet-50 which achieved a validation ACC of 90.00%. Rajpurkar et al. [102]
developed CheXNet model, which is composed of 121-layer convolutional network to
detect and localize the lung areas that show the presence of pneumonia. ChestX-ray14 was
used to train the model, which was fine-tuned by replacing the final fully connected layer
with one that has a single output. A nonlinear sigmoid function was used as an activation
function, and the weights were initialized with the weights from ImageNet. CheXNet
model showed high performance, achieving an AUC of 76.80%. Kundu et al. [103] devel-
oped a CAD system based on transfer learning for a binary classification of pneumonia.
Their proposed approach consists of training an ensemble learning of three different DCNN
models (ResNet-18, GoogleNet, and DenseNet-121) with a weighted average ensemble
technique and a five cross-validation strategy. Two publicly available datasets were used
for this experimentation (Pediatric-CXR and RSNA-Pneumonia-CXR). The proposed model
achieved an ACC of 98.81% on Pediatric-CXR and an ACC of 86.86% on RSNA-Pneumonia-
CXR dataset.
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Table 7. Summary of different DL architectures used for pneumonia detection.

Ref. Dataset Model Results

[9] Pediatric-CXR CNN model with and without data-
augmentation ACC = 83.38%

[63] Pediatric-CXR Custom DCNN model with transfer
learning

ACC = 92.80%
SEN = 93.20%
SPE = 90.10%
AUC = 96.80%

[98] Pediatric-CXR 18-layer deep sequential CNN
model

ACC = 94.39%
SEN = 99.00%
SPE = 86.00%

[99] Pediatric-CXR
ChestX-ray8

Swin transformer with a fully con-
nected layer

ACC = 97.20%
ACC = 87.30%

[100] Pediatric-CXR ResNet50 with attention mechanism ACC = 95.73%

[101] RSNA-Pneumonia-CXR Inception-V4 with transfer learning ACC = 94.00%

[102] ChestX-ray14 CheXNet model (121-layer CNN) AUC = 76.80%

[103] Pediatric-CXR
RSNA-Pneumonia-CXR

Ensemble learning of three DCNN
models (GoogleNet, ResNet-18, and
DenseNet-121)

ACC = 98.81%
ACC = 86.86%

[104]

X-viral dataset (5977 viral-
pneumonia and 37,393 non-
viral pneumonia images) and
X-Covid dataset (106 COVID-
19, 107 normal)

Confidence-aware anomaly detec-
tion (CAAD) model

AUC = 83.61%
SEN = 71.70%

[105] Pediatric-CXR DCNN with and without dropout
and data-augmentation ACC = 90.00%

[106] Pediatric-CXR Custom DCNN model from scratch ACC = 93.73%

Khoiriyah et al. [9] used 5856 CXR of the Pediatric-CXR dataset to classify images
into two classes (binary classification) normal and pneumonia. They increased the training
data by applying data-augmentation techniques. The generated data were used to train a
customized CNN, achieving an ACC of 83.38% on detecting pneumonia. Zhang et al. [104]
used a CAAD (confidence-aware anomaly detection) model to identify viral pneumonia
from non-viral pneumonia. Two CXR datasets were used (X-viral and X-Covid) in this
experiment. The first one has 5977 images with viral pneumonia and 37,393 images with
non-viral pneumonia. The second dataset has 106 COVID-19 images and 107 healthy [104].
The two datasets were collected from 390 hospitals via a telemedicine platform of JF
Healthcare [107]. The proposed CAAD model showed superior performance, achieving
an AUC of 87.57% for viral pneumonia screening. Siddiqi [98] used an 18-layer DCNN
algorithm for a classification of CXR images into pneumonia or normal. Pediatric-CXR
dataset was used to accomplish this task. The model achieved a 94.39% ACC, a 99.00%
SEN, and an 86.00% SPE. Sharma et al. [105] developed a DCNN model for the extraction
of features and the detection of pneumonia using Pediatric-CXR dataset. They opted for
data-augmentation techniques such as resize, flip, and rotation. The model was tested
with and without dropout and data-augmentation. The results showed that the model
performed better with dropout and data-augmentation, achieving an ACC of 90.00%.
Kermany et al. [63] used the Pediatric-CXR dataset to detect pneumonia and to distinguish
viral from bacterial pneumonia using the transfer learning technique. The model Inception-
V3 achieved an ACC of 92.80% for the detection of pneumonia from normal cases, and an
ACC of 90.70% for the identification of viral and bacterial pneumonia. Stephen et al. [106]
proposed a DCNN model trained from scratch for the classification and detection of
pneumonia using Pediatric-CRX dataset. Due to the small size of the dataset, different
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algorithms for data-augmentation were used to overcome overfitting and to reduce the
generalization error. The model achieved high results with an ACC of 93.73%.

4.2. Pulmonary Nodule Detection

According to the WHO, lung cancer is one of the most dangerous diseases. It is the
most frequent cancer in men and the third in women [108]. Lung cancer manifests as lung
nodules. Early diagnosis of these nodules is extremely effective in treating lung cancer
before it becomes dangerous.

To demonstrate the usefulness of DL-based systems to assist radiologists in detecting
pulmonary nodules on medical images, several studies were carried out. DL algorithms
proved high performances on different modalities of medical screening and specifically
on X-ray radiographs. For instance, to compare the performance of radiologists for the
detection of malignant pulmonary nodules with and without assistance of a DL based
CNN system, Sim et al. [109] proved in a multi-centre study that the performance of
12 radiologists was improved with more than 5% in terms of SEN after being assisted
by a DL system. The performance of radiologists increased from 65.10% to 70.30% when
they used the proposed DCNN software. Cha et al. [6] trained a model based on a
ResNet architecture for detecting operable lung cancer. In this experiment, the authors
used a dataset composed of 17,211 CXR images, augmented to 600,000 using different
techniques such as cropping, resize and rotation. The model achieved a SEN of 76.80%
and an AUC of 73.20% outperforming six radiologists in the detection of lung cancer.
Thamilarasi et al. [110] used a DL approach for automatic classification of lung nodules
into normal or abnormal. The proposed architecture consists of a custom DCNN model
trained and tested on 180 segmented CXR images (90 nodules and 90 non-nodule images)
acquired from JSRT dataset. Data-augmentation techniques were performed to increase the
number of CXR samples and to avoid overfitting. The results showed that the introduced
model achieved a high ACC of 86.67%. Bush [111] proposed ResNet-50 model used
with transfer learning for the classification of CXR images from JSRT dataset into non-
nodule, benign, or malignant nodule. The model achieved 92.00% for SEN and 86.00% for
SPE. Pesce et al. [112] used a very large dataset collected from the historical archives
of Guy’s and St. Thomas NHS foundation (contains 745,479 CXR images) to train a
convolutional neural network with attention feedback to detect lung nodules. The used
model obtained a 92.00% PRE, a 78.00% SEN, an 85.00% ACC and an 85.00% F1-score.
Schultheiss et al. [37] trained a DCNN RetinaNet model using a dataset of 411 CXR.
The performance of the model was compared with that of two radiologists in detecting
pulmonary nodules on segmented images. The RetinaNet model achieved an AUC of
87.00% outperforming the two radiologists. Wang et al. [113] experienced the potential
of DL in detecting pneumoconiosis by training the model Inception-V3 with fine-tuning
on a dataset composed of 1881 chest X-ray images (958 Normal and 923 diagnosed with
pneumoconiosis) obtained from the PACS database at Pekin University Third Hospital.
The Inception-V3 model achieved an AUC of 87.80%, outperforming two radiologists who
achieved an AUC of 66.80% and 77.20%. Xuechen et al. [114] introduced a DenseNet-based
architecture to detect lung nodules. The proposed model was trained using CXR Images
from JSRT dataset after applying preprocessing techniques such as lung area segmentation
and bone suppression. An extraction of patches was performed for each pixel in the
segmented lung area. A full feature fusion technique was then applied to perform a
combination of extracted features. The proposed DCNN model achieved a high ACC
of 99.00%, outperforming the average predictions of radiologists. Kim et al. [115] used
two DCNN models that are Mask R-CNN and RetinaNet to validate the effects of using
different sizes of CXR images (256, 448, 896, 1344, and 1792). A dataset of 2088 abnormal
(nodule/mass) and 352 normal CXR radiographs collected from CheXpert was used. A
total of 896 and 1344 pixels in Mask R-CNN and 896 in RetinaNet were the optimal sizes.
The two models showed high performance in terms of SEN, achieving 95.60%. Table 8
represents an overview of presented works for pulmonary nodule classification.
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Table 8. Summary of different DL techniques for pulmonary nodule detection.

Ref. Dataset Model Results

[6]
17,211 CXRs for training (augmented to
600,000 training images) and 10,285 CXRs
for testing (1483 CXRs with lung cancer)

ResNet-50 and ResNet-
101

AUC = 73.20%
SEN = 76.80%

[37] 411 CXRs, 257 with annotated pulmonary
nodules and 154 normal

RetinaNet with ResNet-
101 as backbone AUC = 87.00%

[111] JSRT dataset ResNet-50 SEN = 92.00%
SPE = 86.00%

[109]

13,710 normal and 3500 lung nodules CXR
images for training, 800 CXR images for
testing. Images were obtained in four hos-
pitals between 2015 and 2017 by two ex-
pert radiologists

ResNet-50 ACC = 70.30%

[110] 180 segmented CXR images from JSRT
(90 nodule and 90 non-nodule images)

Custom DCNN model
with data-augmentation
techniques

AUC = 86.67%

[112]

745,479 CXR scans acquired from the his-
torical archives of Guy’s and St. Thomas’
NHS Foundation Trust in London from
January 2005 to March 2016

Convolutional network
with attention feedback
model based on VGG-13
architecture

ACC = 85.00%
SEN = 78.00%
PRE = 92.00%
F1-score = 85.00%

[113]
1881 CXRs (958 normal, 923 pneumoco-
niosis) obtained from the PACS at pekin
University Third Hospital

Fine-tuned Inception-V3 AUC = 87.80%

[114] JSRT dataset

Custom DCNN with lung
field segmentation, bone
suppression, and full fea-
tures fusion technique

ACC = 99.00%

[115] 2440 images (2088 with nodule and 352
normal) collected from CheXpert [44]

Mask R-CNN and Reti-
naNet SEN = 95.60%

4.3. Tuberculosis Detection

According to the WHO, TB is ranked on the top 10 diseases leading to death. TB
is ranking as the second infectious disease leading to death after COVID-19 and above
HIV/AIDS. In 2020, around 10 million people suffered from TB (1.1 million children). It
killed a total of 1.4 million people in 2019 and 1.5 million people in 2020. TB is caused by
the bacillus mycobacterium TB, which spreads when people who are sick with TB expel
bacteria into the air (by coughing or sneezing). The disease typically affects the lungs [10].

An early diagnosis of TB saved an estimation of 66 million lives between 2000 and
2020. The variety of manifestations of pulmonary TB on CXR images makes the detection
a challenging task. DL proved its high efficiency in the detection and the classification of
TB. Ahmed et al. [116] proposed an approach to overcome TB detection problem using an
efficient DL network named TBXNet. TBXNet is implemented using five dual convolution
blocks with different filter sizes of 32, 64, 128, 256 and 512, respectively. The dual convo-
lution blocks are merged with a pre-trained layer in the fusion layer of the architecture.
Moreover, the pre-trained layer is used to transfer pre-trained knowledge into the fusion
layer. The proposed TBXNet obtained an ACC of 99.17%. All experiments are performed
using image data acquired from different sources (Montgomery, a labeled dataset created
by different institutes under the ministry of health of the Republic of Belarus and a labeled
dataset, that was acquired by the kaggle public available repository). Tianhao and Zhen-
ming [117] proposed an automated TB detection model called VGG16-CoordAttention.
The proposed approach involves implementing a coordinated attention mechanism to the
architecture of VGG-16. A comparative analysis of over five different deep learning models
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including Version-Transformer (VIT), VGG-16, ResNet-50, MobileNet-V2 and the proposed
model to determine which is the most effective type model to detect TB. All models were
frozen for 30 epochs and unfrozen for the rest of the 90 epochs during the training process.
All experiments carried out were performed using the Shenzhen dataset. Results show
the effectiveness of the attention mechanism with an ACC of 92.73%, a PRE of 92.73%, an
F1-score of 92.82% and an AUC of 97.71%. Eman et al. [118] introduced a DCNN model
(ConvNet) trained from scratch to automatically detect TB on CXR images. Furthermore,
a transfer learning techniques with five different pre-trained models (VGG-16, VGG-19,
Inception-V3, ResNet-50 and, Xception) was used to evaluate the performance of each
model with the proposed technique. CXR images from Montgomery dataset and Shenzhen
datasets were used for this experiment. The proposed DCNN architecture (ConvNet)
achieved an 88.0% PRE, an 87.0% SEN, an 87.0% F1-score, an 87.0% ACC and an AUC
of 87.0%. Lakhani et al. [119] employed an ensemble learning method using two DCNN
models (AlexNet and GoogleNet) to classify CXR images from Shenzhen dataset into TB
or normal. Different preprocessing techniques such as image contrast enhancement and
rotations were applied to improve the ACC in cases where classification is uncertain and
ambiguous. The used model achieved 99.00% in terms of AUC. Hwang et al. [60] used a
DCNN AlexNet model with transfer learning to overcome the challenges of training from
scratch and to improve the performance of the system. Three datasets were used in this
study (KIT, Montgomery, and Shenzhen). The model achieved high results, achieving an
ACC of 90.30% and an AUC of 96.40%. Seelwan et al. [11] developed a DCNN model using
two CXR datasets. They acquired TB images from Shenzhen and non-TB images from
National Institute of Health Clinical Centers (NIH). A set of tests were applied and the
DCNN model obtained high results (AUC of 98.45%, SEN of 72.00%, and SPE of 82.00%).
Tawsifur et al. [120] created a dataset of 3500 TB and 3500 normal CXR images using several
public datasets such as Montgomery and Shenzhen datasets. They used nine pretrained
DCNN models (ResNet-101, ResNet-50, ResNet-18, SqueezeNet, Inception-V3, CheXNet,
VGG-19, DenseNet-201, and MobileNet) and transfer learning. DenseNet-201 achieved
the highest results with an ACC of 98.60%, a PRE of 98.57%, a SEN of 98.56%, F1-score
of 98.56%, and an SPE of 98.54% for the segmented lung images. Subhrajit et al. [121]
proposed a framework that combines multiple DCNN models pre-trained on ImageNet
dataset including DenseNet-121, VGG-19 and ResNet-50. The type-1 Sugeno fuzzy inte-
gral based ensemble technique was used to average the predictions of used models. The
proposed framework achieved a high classification ACC of 99.75% outperforming the
state-of-the-art works. All experiments were performed using the CXR dataset created by
Tawsifur [120]. Hooda et al. [122] presented a DL approach to classify CXR images into two
classes (normal and TB) using Montgomery and Shenzhen datasets. They used a DCNN
model with three different optimizers. The best results were obtained using Adam as an
optimizer, with an 82.09% ACC. Nguyen et al. [123] used a pre-trained DenseNet model
for the classification of CXR images into normal and TB. The images used in this work
are acquired from two datasets (Shenzhen and Montgomery). Using an improved transfer
learning method with DenseNet-121, the model obtained an AUC of 99.00% on Shenzhen
dataset and an AUC of 84.00% on Montgomery dataset. Lopes et al. [124] employed an
ensemble learning approach using different pre-trained DCNN models as features extrac-
tors to classify CXR images into TB and normal. To evaluate the models, they used two
public datasets (Shenzhen and Montgomery). The best model achieved an ACC of 80.00%.
Meraj et al. [125] used four DCNN models to evaluate their limits using the ACC and the
AUC metrics for classification of TB. The used models are: GoogleNet, ResNet-50, VGG-19,
and VGG-16. Two public datasets were used in this study (Montgomery and Shenzhen).
The tests proved that VGG-16 model achieved the highest scores with an ACC of 86.74%
and AUC of 92.00% outperforming the three other models. Abbas et al. [126] opted for
an approach based on a class decomposition method to deal with the complexity of data
distribution, and consequently to increase the performance of ImageNet pre-trained models
using transfer learning techniques. Several DCNN models were trained with and without
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class decomposition (e.g., AlexNet, GoogleNet, ResNet). This approach achieved high ACC
for TB detection on the publicly available JSRT dataset [43], achieving 99.80% in terms
of ACC.

In Table 9 we summarize the deep learning methods used for TB detection, the used
datasets, the evaluation metrics, and the obtained results.

Table 9. Summary of different DL architectures used for tuberculosis detection.

Ref. Dataset Model Results

[11] Shenzhen and Indiana InceptionV3 with transfer
learning

AUC = 98.45%
SEN = 72.00%
SPE = 82.00%

[60] Montgomery, Shenzhen, and KIT Custom DCNN model based
on AlexNet

AUC = 96.40%
ACC = 90.30%

[116]

Images from three datasets (Mont-
gomery, a dataset created by differ-
ent institutes under the ministry of
health of the Republic of Belarus,
and a kaggle repository).

Custom DCNN model called
TBXNet ACC = 99.17%

[117] Shenzhen
VGG-16 with coordinate at-
tention mechanism (VGG16-
coordattention)

AUC = 97.71%
ACC = 92.73%
PRE = 97.71%

[118] Montgomery and Shenzhen
ConvNet model trained from
scratch

AUC = 87.00%
SEN = 87.00%
PRE = 88.00%

[119] Shenzhen AlexNet and GoogleNet
AUC = 99.00%
SEN = 97.30%
SPE = 100%

[120]

Custom dataset of 3500 TB and
3500 normal CXR images acquired
from different open-access datasets
such as Montgomery and Shenzhen
datasets

DenseNet-201 model using
transfer learning

ACC = 98.60%
PRE = 98.57%
SEN = 98.56%
SPE = 98.54%
F1-score = 98.56%

[121] A dataset of 7000 CXR images
(3500 normal and 3500 TB) [120]

Ensemble learning of three
DCNN models (ResNet-50,
VGG-19, and DenseNet-121)

ACC = 99.75%

[122] Montgomery and Shenzhen
DCNN model with seven con-
volutional layers and three
fully connected layers

ACC = 82.09%

[123] Shenzhen and Montgomery DenseNet-121 AUC = 99.00%
AUC = 84.00%

[124] Montgomery and Shenzhen
Ensemble learning of DCNN
models (GoogleNet, ResNet,
and VGGNet)

ACC = 84.60%
AUC = 92.60%

[125] Montgomery and Shenzhen VGG-16 ACC = 86.74%
AUC = 92.00%

[126] JSRT DCNN model (ResNet) with a
class decomposition approach

ACC = 99.80%
SEN = 98.00%
SPE = 99.00%

4.4. COVID-19 Detection

In late 2019, COVID-19 first appeared in Wuhan, China. It was officially announced as
a pandemic by the WHO in early 2020 due to its rapid spread and dangerous effects on
humans. The detection of COVID-19 virus in humans is usually performed using different
clinical techniques that are costly and time-consuming. To deal with this challenge, CXR
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images were used for the detection of COVID-19. Millions of people have died because
of this pandemic, and the number is still increasing on a daily basis. DL techniques using
CXR images are helpful in detecting and monitoring the effects of COVID-19 on lung tissue.
The use of DL algorithms for COVID-19 detection and classification was a challenge at
the beginning of the pandemic because of lack of CXR for positive images. The challenge
for the research community was to create open access CXR datasets with COVID-19 cases
to advance the research and develop solutions to help overcome this pandemic. Several
techniques and models of DL were conducted, and they showed high performances that
ranged from 89.00% to 98.00% for multi-class classification and from 90.00% to 99.00%
for two and three-class classification. In Table 10 we present an overview of obtained
results for COVID-19 detection. Islam et al. [127] proposed a DCNN model with five
convolutional blocks to autonomously diagnose COVID-19 disease in CXR images. Each
block is composed of multiple layers, and every layer has a ReLU (rectified linear unit)
activation function. In the third and fourth blocks a dropout layer was implemented to
reduce the over-fitting issue. Two FCLs (fully connected layers) were used in this study. The
first FCL was employed with the dropout layer, and the last FCL was used with the softmax
classifier. This architecture achieved 97.00% SPE, 96.30% ACC, 96.00% PRE, 96.00% SEN,
and 96.00% F1-score. A dataset of 10,293 CXR images was used in this experimentation
(2875 COVID-19, 4200 pneumonia, and 3218 normal CXR images). It was collected from
COVID Chest X-ray dataset, Pediatric-CXR dataset and a kaggle repository [128]. Alqahtani
et al. [129] proposed a DL approach that uses readily available CXR images to identify
COVID-19 cases. They employed an Inception-V4 model with transfer learning for the
automatic detection of COVID-19 using CXR images. A total of 1504 chest images (504
images of COVID-19 cases, and 1000 normal cases) were used in this study collected
from Pediatric-CXR and COVID-19 Chest X-ray datasets. The proposed model detected
COVID-19 infection with an overall ACC of 99.63%.

Malathy et al. [130] presented a DL model called CovMnet to classify CXR images into
normal and COVID-19. The layers in CovMnet include a convolution layer along with a
ReLU activation function and a MaxPooling layer. The output of the last convolutional layer
in the architecture is flattened and fit to fully connected neurons of four dense layers, activa-
tion layer and Dropout. Experiments are carried out for deep feature extraction, fine-tuning
of CNNs (convolutional neural networks) hyperparameters, and end-to-end training of
four variants of the proposed CovMnet model. The introduced CovMnet achieved a high
ACC of 97.40%. All experiments were performed using CXR images from Pediatric-CXR
dataset. Şengür et al. [131] employed three approaches for detecting COVID-19. Two of
them were based on transfer learning and fine-tuning approaches (deep feature extraction).
The third was an end-to-end new DCNN model. A dataset composed of 200 normal and
180 COVID-19 CXR images from COVID Chest X-ray and Pediatric-CXR datasets was used
for the experiment. All images in this dataset were labeled by specialists. Techniques of
data-augmentation were used for both fine-tuning and end-to-end training. Fine-tuning
of five pretrained models (VGG-16, VGG-19, ResNet-18, ResNet-50, and ResNet-101) was
performed to accurately extract deep features. The best results were obtained by ResNet-50,
achieving 95.79% for ACC, 94.00% for SEN and 97.78% for SPE. Brunese et al. [132] adopted
a three-step approach to detect pneumonia and COVID-19. The first step is based on the
detection of the presence of pneumonia on CXR images. The second step is to distinguish
between the two diseases (pneumonia and COVID-19). The last step focuses more on the
localization of areas that show the presence of COVID-19. A dataset of 6523 CXR images of
the thorax acquired from different sources were used in this study (ChestX-ray14 dataset
and COVID Chest X-ray dataset). The VGG-16 model achieved a mean ACC of 97.00%.
Ahsan et al. [133] proposed a DL model to detect COVID-19 patients on two different
datasets, one of which is composed of CT scan images and the second contains 400 CXR
images (200 normal and 200 COVID-19). They used eight DL models with modifications
on the hyperparameters. For CXR images, the model that was able to achieve the best
results is NasNetMobile, overcoming seven other models by attaining an ACC of 93.94%.
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Apostolopoulos et al. [134] trained a DCNN models to detect COVID-19 from common
pneumonia. Different public repositories were used to collect images. The authors collected
images from COVID Chest X-ray dataset, Pediatric-CXR dataset and a medical repository
available on kaggle [135]. Five models were trained on the dataset using transfer learning
parameters (Inception, MobileNet-V2, VGG-19, Inception, and ResNet-v2). MobileNet-
V2 performed better than other models, achieving an ACC of 96.78%, an SEN of 98.66%
and an SPE of 96.46%. Nguyen et al. [136] trained the DenseNet-121 DCNN model on
21,165 CXR images from different datasets including COVID-19-Radiography, RICORD,
BIMCV-COVID19+, and Pediatric-CXR. After applying a HE technique and a geometric
data-augmentation technique, the proposed model achieved a 97% ACC for binary clas-
sification of COVID-19 cases. Bekhet et al. [137] proposed a DCNN model for COVID-19
detection. The model was trained on COVID Chest X-ray public dataset [53] which contains
nine types of pneumonia (e.g., SARSr-CoV-1, SARSr-CoV-2, and MERS-CoV). The used
dataset contains 316 CXR images. Data-augmentation techniques were performed to reduce
the effect of overfitting [138]. The proposed model achieved an ACC of 96.00%. Sethy
et al. [139] investigated 13 different DCNN models (AlexNet, ShuffleNet, Inception-V3,
InceptionResNet-V2, Resnet-18, Resnet-50, Densenet-201, Resnet-101, MobileNet-V2, VGG-
19, VGG-16, Xception, and GoogleNet) using transfer learning technique. VGG-19 obtained
the best ACC (99.81%) using a CXR dataset composed of 700 images from COVIDx CXR-3
(350 COVID-19 and 350 normal) outperforming 39 ML approaches. Chetoui et al. [140]
proposed an explainable approach for binary and multi-disease classification. Nine datasets
were merged to train the fine-tuned DCNN (EfficientNet-B5). An explainable approach
was performed using the Grad-CAM (Gradient-weighted Class Activation Mapping) algo-
rithm [141] to output the heatmaps. More than 3200 COVID-19 CXR images from COVIDx
repository and Perdiatric-CXR dataset were used in this experimentation. EfficientNet-B5
obtained an average AUC of 98.00% for binary classification of COVID-19 and an average
AUC of 97.00% for multi-classification of pneumonia, COVID-19 and normal. Hemdan
et al. [142] proposed COVIDX-Net framework automatic detection of COVID-19. The
framework has seven different architectures of DCNN models that are InceptionResNet-V2,
DenseNet-201, Inception-V3, ResNet-V2, Xception, VGG-19, and MobileNet-V2. COVID
Chest X-ray dataset was employed to train the models. VGG-19 and the DenseNet models
obtained the best results, achieving respectively an F1-score of 89.00% and 91.00% for Nor-
mal and COVID-19. Khan et al. [143] used three fine-tuned DCNN models (EfficientNet-B1,
MobileNet-V2, and NasNetMobile) with data-augmentation to detect and classify CXR
images into four classes (normal, COVID-19, pneumonia, and lung opacity). EfficientNet-B1
achieved an ACC of 96.13%, outperforming the other models. A collection of 21,165 CXR
images collected from different public datasets including BIMCV-COVID19+, Pediatric-
CXR, RSNA-Pneumonia-CXR, and COVID-19-Radiography was used in this study. Wang
et al. [144] proposed a custom ResNet model used with the multi-head self attention
mechanism (MHSA-ResNet) for the classification of CXR images into three classes (normal,
pneumonia, and COVID-19). A GLCM algorithm was used to extract the texture features
from the CXR images. A custom dataset of 5173 CXR images from COVIDx CXR-3 dataset
were used in this study. The model obtained an ACC of 95.52% and a PRE of 96.02%.



Diagnostics 2023, 13, 159 24 of 36

Table 10. Summary of different DL architectures for COVID-19 detection.

Ref. Dataset Model Results

[127]
CXR images collected from COVID
Chest X-ray dataset, Pediatric-CXR
dataset and a kaggle repository [128]

Custom DCNN model with
five convolutional blocks

ACC = 96.30%
SEN = 96.00%
PRE = 96.00%
SPE = 97.00%
F1-score = 96.00%

[129]

Custom dataset of 1504 CXR images
(504 for COVID-19, and 1000 for nor-
mal cases) collected from Pediatric-
CXR and COVID-19 Chest X-ray

Inception-V4 with transfer
learning ACC = 99.63%

[130] 648 CXR images acquired from
Pediatric-CXR dataset

Custom DCNN model
(CovMnet) ACC = 97.40%

[131]

Custom dataset consists of 180
COVID-19 and 200 Normal CXR
from COVID Chest X-ray and
Pediatric-CXR datasets

ResNet-50
ACC = 95.79%
SEN = 94.00%
SPE = 97.78%

[132]

Custom dataset contains, 6523 CXR
images acquired from ChestX-ray14
dataset and COVID Chest X-ray
datasets

Transfer learning with VGG-
16 ACC = 97.00%

[133] 400 CXR collected from Pediatric-
CXR dataset NasNetMobile ACC = 93.94%

[134]

Custom dataset by merging images
from three datasets (COVID Chest
X-ray dataset, Pediatric-CXR dataset
and a medical repository available
on kaggle [135])

Transfer learning with
MobileNet-V2

ACC = 96.78%
SEN = 98.66%
SPE = 96.46%

[136]
COVID-19-Radiography, Pediatric-
CXR, BIMCV-COVID19+, and RI-
CORD

DenseNet-121 ACC = 97.00%

[137] COVID Chest X-ray Custom DCNN model ACC = 96.00%

[139] COVIDx CXR-3 VGG-19 ACC = 99.81%

[140]

Custom dataset with more than
3200 COVID-19 CXR images col-
lected from COVIDx CXR-3 repos-
itory, Perdiatric-CXR, Montgomery,
Shenzhen, and ChestX-ray14

EfficientNet-B5 AUC = 98.00%

[142] COVIDx CXR-3 VGG-19 F1-score = 91.00%

[143]

Custom dataset with 21,165 CXR
images from BIMCV-COVID19+,
Pediatric-CXR, RSNA-Pneumonia-
CXR, and COVID-19-Radiography

EfficientNet-B1 ACC = 96.13%

[144] Custom dataset with 5173 CXR im-
ages from COVIDx CXR-3

Custom DCNN model
(MHSA-ResNet)

ACC = 95.52%
PRE = 96.02%

4.5. Multiple Disease Detection

In some cases, a patient may suffer from more than one disease at the same time,
which can put his life at higher risk. It may be difficult for radiologists to detect more than a
pathology using CXR images due to the similarities between the signs of diseases. In such a
situation, more details and more exams may be needed. To deal with this challenge, several
DL systems were carried out using different algorithms. For instance, Majdi et al. [145]
proposed a fine-tuned DenseNet-121 to classify CXR images into pulmonary nodules and
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cardiomegaly diseases. Images from CheXpert dataset were used for the experiment. The
model obtained an AUC of 73.00% for pulmonary nodule detection and 92.00% for car-
diomegaly detection. Bar et al. [146] employed a DL technique for the detection of pleural
effusion, cardiomegaly, and normal versus abnormal disease by using a combination of fea-
tures extracted by the DCNN model and the low-level features. Preprocessing techniques
were applied on the used dataset that contains 93 CXR images collected from Sheba Medical
Center. They attained an AUC of 93.00% for pleural effusion, 89.00% for cardiomegaly,
and 79.00% for normal versus abnormal cases. Cicero et al. [147] used GoogleNet model
to classify frontal chest radiograph images into normal, consolidation, cardiomegaly, pul-
monary edema, pneumothorax, and pleural effusion. GoogleNet achieved an AUC score
of 86.80% for edema, 96.20% for plural effusion, 86.10% for pneumothorax, 96.40% for
normal, 87.50% for cardiomegaly and 85.00% for consolidation. The study proved that
the DCNN model can achieve high performance even if trained with modest-sized med-
ical dataset. Wang et al. [39] used a weak-supervised method for the classification and
detection of eight chest diseases presented on ChestX-ray8 dataset. The used method
showed higher results for the detection of large abnormalities compared to small ones,
achieving an average AUC of 80.30%. Using ChestX-ray8 dataset and based on the results
attained in [39], Yao et al. [148] applied an LSTM (Long Short-Term Memory) based method
to show the dependency inter-labels after extracting the features of the diseases using a
DenseNet model. This approach obtained High performance, achieving an average AUC
of 79.80% Rajpurkar et al. [102] employed a DenseNet-121 model (CheXNet) using the
ChestX-ray14 dataset. The model achieved state-of-the-art results using binary relevance
classification for the 14 diseases of the used dataset, achieving an average AUC of 84.11%.
Ait Nasser and Akhloufi [64] performed an ensemble learning of three different DCNN
models (Xception, DenseNet-201, and EfficientNet-B5) to classify CXR images into three
classes (normal, lung disease, and heart disease). A dataset of 26,316 CXR images was
created by merging images from VinDr-CXR and CheXpert datasets. Data-augmentation
techniques were applied to increase the number of samples and to prevent the overfitting.
The proposed ensemble learning approach showed high performance when used with
data-augmentation techniques, achieving an average AUC of 94.89%. Kumar et al. [149]
used the ChestX-ray14 dataset to classify the 14 diseases using a cascade neural network.
DenseNet-161 model was used for a binary relevance classification. To prevent the bias
due to imbalanced data, under-sampling and over-sampling techniques were applied. The
introduced model reached competitive performance to state-of-the-art. It achieved an
average AUC achieved of 79.50%. Zhao et al. [150] proposed a DCNN model with attention
mechanism (AMDenseNet) to predict the presence of 14 chest diseases using CXR images
from the Chest-Xray14 dataset. The model based on DenseNet-121 achieved a high average
AUC of 85.37% outperforming the state-of-the-art works, such as [39,149]. Kim et al. [151]
used EfficientNet-V2M with transfer learning as end-to-end approach to classify CXR im-
ages into three classes (normal, pneumonia, and pneumothorax). Preprocessing techniques
were applied on images form ChestX-ray14 dataset before generated feeding data to the
used model. EfficientNet-V2M achieved impressive results with a mean ACC of 82.15%, an
average SEN of 81.40% and a mean SPE of 91.65%. The model achieved an average ACC
of 82.20% when experimented on a dataset with four classes (normal, pneumonia, pneu-
mothorax, and tuberculosis) collected from Cheonan Soonchunhyang University Hospital
(SCH) [152]. Blais and Akhloufi [153] employed multiple models using binary relevance
for the detection of chest diseases from CheXpert dataset. The Xception DCNN model
performed better than other models when used with Adam optimizer, achieving a mean
AUC of 95.87% on 6 diseases and 94.90% on the 14 diseases of the used dataset. Table 11
gives an overview of works developed for multi-disease CXR classification.
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Table 11. Overview of different DL architectures for multiple disease detection.

Ref. Dataset Diseases Results

[39] ChestX-ray8 8 thoracic diseases AUC (Mean) = 80.30%

[102] ChestX-ray14 14 thoracic diseases AUC (Mean) = 84.20%

[140] Merged 9 datasets
Normal
Pneumonia
COVID-19

AUC (Mean) = 97.00%

[145] CXR images from CheXpert Cardiomegaly (CA)
Pulmonary nodule (PUN)

AUC (CA) = 92.00%
AUC (PUN) = 73.00%

[146] 93 CXR images collected from
Sheba Medical Center

Pleural Effusion (PE)
Cardiomegaly (CA)
Normal (N)
Abnormal (AB)

AUC (PE) = 93.00%
AUC (CA) = 89.00%
AUC (N Vs AB) = 79.00%

[147] 35,038 CXR images exported
from the PACS repository

Normal (N)
Cardiomegaly (CA)
Pleural effusion (PE)
Pulmonary edema (E)
Pneumothorax (PN)
Consolidation (CO)

AUC (N) = 96.40%
AUC (CA) = 87.50%
AUC (PE) = 96.20%
AUC (E) = 86.80%
AUC (PN) = 86.10%
AUC (CO) = 85.00%

[64]
A consolidated dataset of 26,316
CXR images collected from
CheXpert and VinDr-CXR

Lung disease
Heart disease
Normal (N)

AUC (Mean) = 94.89%

[149] ChestX-ray14 14 thoracic diseases AUC (Mean) = 79.50%
[150] ChestX-ray14 14 thoracic diseases AUC (Mean) = 85.37%

[151] ChestX-ray14
Normal
Pneumonia
Pneumothorax

ACC (Mean) = 82.15%

[153] CheXpert 14 thoracic diseases AUC (Mean) = 94.90%

5. Discussion

This section is split into two main parts. The first part is related to data labeling
and preprocessing, in which we discuss a number of limitations encountered by most
researchers, and propose alternative techniques to address these challenges. The second
part deals with the importance of interpretability of models in medical analysis, which is
less considered in most of published papers.

5.1. Data Preprocessing

The publication of labeled datasets is fundamental to advancing the state of the art
in medical analysis and driving research into new methods and techniques. However,
collecting well-labeled datasets is costly and time-consuming. Most existing datasets are
labeled using automatic labelers based on keywords matching methods (e.g., CheXpert and
ChestX-ray14 datatsets) or NLP methods (e.g., CheXbert [154]) to extract labels from free-
text radiology reports. The use of automatic labeling techniques can generate large-scale
labels in less time, but they can produce errors in the labels [48] for a variety of reasons,
such as lack of details in medical reports (some abnormalities may not be mentioned)
and the performance of the algorithm used for labeling may be poor, which may lead
to failures [112]. To cope with this situation, Calli et al. [155] trained DL models for the
classification of emphysema using ChestX-ray14 dataset with noisy labels. They proved
that the existence of a reasonable amount of uncertainty and erroneous labels in the
training set has no impact on the performance of DCNN models. Another experiment was
performed by Rolnick et al. [156] by training DCNN models on corrupted data from MNIST,
CIFAR, and ImageNet. High performance was obtained despite the fact that the data were
corrupted. Using a gold-set of test data labels is highly recommended for testing and
evaluating the qualities of models. Another point to consider is label-dependencies, which
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has an important impact on medical diagnosis, as it may lead to a loss of vital information
if not taken into account. This aspect (label-dependencies) has been overlooked in most
studies, particularly when it comes to multi-disease classification.

It can be seen from Table 1 that datasets we presented in this literature have thousands
of CXR images with multiple abnormalities collected from several hospitals. The majority
of them are imbalanced, especially when it comes to normal cases (healthy), which in
some datasets constitute more than half of the total number of images. On the other hand,
the number of CXR images for some abnormalities is extremely limited. For example,
VinDr-CXR dataset has 10,606 images for normal cases and 58 images for pneumothorax.
Training a model on an imbalanced dataset may lead to overfitting, which impacts the
performance of the model. Therefore, preprocessing techniques were used by most of
the studies, and they proved to be effective, especially when used with deep learning
techniques that require the existence of a large amount of data. For data-augmentation, the
recent papers employed traditional techniques [64], where others used GANs to generate
artificial CXR images. This technique (GAN) is becoming widely used by researchers
because of the results obtained, particularly in the medical field [157–159].

The availability of large strongly-labeled CXR datasets will also help in developing
CAD systems capable of integrating the degree of infection by a specific disease. This
quantitative dimension in disease detection is not very present in research. In addition,
the majority of presented works used only frontal CXR, whereas lateral CXR can provide
more detail on disease features. It was showed that lateral CXR can show up to 15% of lung
cancer features hidden by other structures on frontal CXR [160].

Access to data that belong to external hospitals remains limited due to medical privacy
rules. Therefore, in the great majority of research, the same datasets are used for training
and testing models. However, the most effective models tend to perform weaker when
tested on external data, as shown by Hwang et al. [161] who investigated the performance
of a DCNN model for the classification of CXR images from an emergency department.
This proved that the efficiency of the model decreased with at least 2% in terms of AUC.
This may be related to several factors, including the quality, the resolution, the size and the
content of images (deformed lungs, collapsed parts of the lungs, etc.). Limited access to
data from external institutions is a real challenge for the research community. For this, the
best technique suggested is what is called federated learning. This technique allows using
data from several hospitals with a high level of security and without violating privacy rules.
For COVID-19 detection, the major concern is the availability of large public datasets. It can
be seen from Table 2 that there is a lack of labeled images for COVID-19, which led some
researchers to merge images from available sources to increase the amount of data samples.
Where others used federated learning to train models on data from multiple institutions
without breaching the data privacy. Feki et al. [162] used federated learning for COVID-19
detection. Their results were competitive to what is obtained when models were trained
on centralized data. Liu et al. [163] compared the performance of models used with and
without federated learning for COVID-19 detection. The obtained results may inspire the
research community to spend more time on federated learning.

5.2. Models Interpretability

ML algorithms were among the first automatic methods used to detect diseases on
medical images. Multiple papers showed the potential of ML models on small datasets [23,24].
The process of detecting anomalies using ML is technically decomposed into multiple
parts to be resolved first, before combining the results in the final step. For example, the
extraction of features process is usually performed manually in a separated part using
specific algorithms before applying a classifier to provide predictions. This requires the
intervention of specialists to select features from the input data before feeding the models.
This represented a challenge as the performance of ML models decreases when used on
large datasets. On the other hand, DL showed impressive results, especially with the
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availability of large datasets and high computation resources, which helped to overcome
the limitations of ML.

Disease detection using DL techniques is an end-to-end process, where the models
take an image as input and provide a prediction as output. Feature extraction is performed
incrementally through the hidden layers. Despite the successes of DL techniques, they
are considered to be black boxes whose performance or failure is hardly explainable. This
process of explainability and interpretability of the models was not taken into account by the
majority of studies. However, explainability is not a purely technical concern, but involves
a multitude of medical, legal, moral, and social concerns that require careful consideration.
It is very important to highlight the features that the model extracts to provide a decision,
as performed by Singh et al. [164] and Chetoui et al. [140] who proposed explainable
approaches for COVID-19 detection based on Grad-CAM algorithm [141] to output the
heatmaps and show how the most interesting findings were achieved by the models.

Providing explainable results gives radiologists more confidence to implement CAD
systems in medical analysis operations. Multiple commercial products for the CXR im-
age analysis are available, such as Samsung Healthcare system (Auto Lung Nodule De-
tection) [165] which performs the detection and localization of lung nodule, Siemens
Healthineers system [166] (AI-Rad Companion Chest X-ray) which performs the localiza-
tion of multiple diseases (pleural effusion, pneumothorax, lesion, and other), and Oxipit
system [167] (ChestEye CAD) which is a CXR support tool for radiologists. All those
commercial systems detect and localize chest diseases by providing reports and heatmaps
visualization, and they are all approved by Food and Drugs Administration (FDA).

Increasingly, researchers are exploring DL techniques on all medical imaging modali-
ties, especially chest radiography (CXR), which is the most cost-effective modality with
large publicly available datasets collected over the years by different institutions. The
release of CXR datasets was a good opportunity for researchers to discover the multiple
uses of DL in order to develop efficient CAD systems for chest disease detection. These
advances are not intended to replace the radiologist, but to work hand-in-hand with them
to improve the performance and speed up the diagnosis.

Based on works presented in this review, we noticed that some DL models were more
used than others for the detection of different diseases. For instance, several architectures
based on fine-tuned ResNet models were proposed for the classification of COVID-19,
pneumonia, tuberculosis, and pulmonary nodule. ResNet models showed promising
performances by achieving high scores on different datasets. We also found that transfer
learning techniques were widely present in multiple experiments. They allowed obtaining
higher results especially in the case of scarcity of data [129,132,134].

6. Conclusions

Deep learning (DL) has become one of the most effective technologies for analyzing
and processing medical images. It offers a plethora of methods and solutions to develop
tools that help clinicians predict the risk of diseases and prevent them at an early stage.
Medical image processing using DL techniques is a very promising research area where
the fields of medicine and computer science intersect. In this review, we summarize
research in the following direction. First, the most widely used and publicly available
X-ray datasets were described in detail. Second, the performance metrics for classification
and segmentation were briefly introduced and various preprocessing techniques, such as
data-augmentation, image enhancement, lung segmentation, and bone suppression were
presented and discussed by showing their impact on the performance of DL models. Third,
recently published DL architectures were introduced with more focus on chest disease
classification rather than localization, and this is a point that can be further developed.
Finally, the main challenges published works have faced were covered and an in-depth
discussion of alternative solutions to be considered in future works was held.

In a future work, we would like to highlight the power of up-to-date proposed trans-
former models for chest disease detection. Many transformers’ architectures have been
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published recently, showed promising results in different fields. We foresee to elaborate
an in-depth comparison between these architectures and popular DCNN models to show
the achievements of these two approaches, their impact on the medical field and the main
challenges to be addressed. A study of new advances on the subject of explainability and
interpretability of models can also be conducted.
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