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Abstract: Breast cancer is categorized as an aggressive disease, and it is one of the leading causes of
death. Accurate survival predictions for both long-term and short-term survivors, when delivered
on time, can help physicians make effective treatment decisions for their patients. Therefore, there
is a dire need to design an efficient and rapid computational model for breast cancer prognosis. In
this study, we propose an ensemble model for breast cancer survivability prediction (EBCSP) that
utilizes multi-modal data and stacks the output of multiple neural networks. Specifically, we design
a convolutional neural network (CNN) for clinical modalities, a deep neural network (DNN) for copy
number variations (CNV), and a long short-term memory (LSTM) architecture for gene expression
modalities to effectively handle multi-dimensional data. The independent models’ results are then
used for binary classification (long term > 5 years and short term < 5 years) based on survivability
using the random forest method. The EBCSP model’s successful application outperforms models
that utilize a single data modality for prediction and existing benchmarks.

Keywords: deep learning; breast cancer; prognosis; diagnostics; DNN; CNN; RNN; LSTM

1. Introduction

The human body is made up of approximately 30 trillion cells. Cancer originates
from abnormal cell growth, resulting in the formation of a primary tumor [1]. Breast
cancer predominantly affects women due to the excessive growth of breast cells. It is
a highly invasive tumor and a leading cause of female fatalities [2]. In Pakistan, breast
cancer is prevalent, with one out of every nine women at risk of the disease, and it has the
highest cancer-related mortality rate [3]. According to the World Health Organization’s
2020 report, breast cancer is a significant cause of accidental death in women, with 8.2%
of the Pakistani population dying from cancer. Figure 1 shows that breast cancer is the
most commonly diagnosed cancer type, with a 28.7% diagnosis rate in 2020 [4]. Breast
cancer has two types, including malignant and benign. Benign (non-invasive) cancer is a
type of cancer that does not affect other organs. On the other hand, malignant (invasive)
cancer spreads to neighboring tissues, making invasive cancer prognosis challenging due
to varying clinical outcomes [5]. Thus, early and precise diagnosis and prognosis are crucial
for timely decision making by physicians to improve patients’ survivability. Survivability
can be categorized as short-term (<5 years) or long-term (>5 years). Prognostications aid
physicians who work with short-term survivable patients with a multi-featured disease [6].

During the past few decades, the rapid growth of machine learning and deep learning
techniques with high throughput has provided deep insights into micro-arrays, gene ex-
pression, and clinical data. Machine learning aids in efficiently diagnosing and treating
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life-threatening diseases, whereas deep learning helps extract highly informative features
for disease prediction and prognosis [7]. There are many sources of informative data for
breast cancer prognosis, such as genetic data (gene expression and copy number varia-
tions) and clinical data (age, pregnancy timing, lifestyle factors, early menstruation, late
menopause, etc.). Ensemble learning integrates the prediction of multiple neural networks
to reduce the variability in prediction and decrease generalization errors [8]. Integrating
the available multi-dimensional data can lead to an efficient breast cancer prognosis [9]. In
recent years, researchers have proposed multiple homogeneous prognosis methods based
on neural network models using ensemble techniques.
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Figure 1. Breast cancer diagnosed in 2020; report by WHO.

This works relies on developing heterogeneous models based on a prognostic model
with stacking. The primary concern is to ensure the heterogeneity of the models for multi-
modal data concerning the nature of the data. Different from prior works, we aim to
design an LSTM module for the feature extraction of gene expression data. The proposed
framework operates through three stages, specifically feature extraction, stacking, and
classification. The following are the novel contributions of the proposed framework:

¢  To obtain highly informative features, we implement an individual neural network
for each data modality, including clinical data, gene expression data (Gene-Exp), and
copy number variations (CNV).

*  Specifically, we design a CNN for clinical data, a DNN for CNV, and an LSTM ar-
chitecture for the gene expression modality. The output features generated by the
individual neural networks are stacked to validate the generalization of the result.

e To confirm that integrating multi-modal data improves the prognostic power, we com-
pare this technique with existing benchmarks. The results validate the effectiveness of
the EBCSP in terms of accuracy.

2. Related Work

Machine learning has become a popular approach for predicting various diseases,
including those affecting the lungs, breast, and oral cavities. In one study, the authors [10]
presented an overview of machine learning in primary lung cancer, highlighting both the
strengths and weaknesses of these methods. Another study [11] explored the performance
of different machine learning models, such as logistic regression, random forest, K-nearest
neighbors, and decision trees. The results showed that logistic regression outperformed the
other models. In a separate study, Zhou et al. [12] used the Bayesian approach to relate
gene expression with class labels, utilizing the Markov chain Monte Carlo (MCMC) method
to identify essential genes. The researchers implemented the Gibbs sampler and MCMC
using the posterior distribution of the selected genes and validated their proposed method
using large micro-array datasets.
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In [13], another overview was presented, which showcased recent advancements
in radiomics utilizing deep learning. The authors investigated the effectiveness of deep
learning in developing predictive and prognostic models. In [14], the authors integrated a
CNN and RNN to predict colorectal cancer using tumor tissue samples. The study aimed
to directly use patient outcomes, eliminating the need for intermediate tissue classification.
Furthermore, a comprehensive analysis of deep learning-based models, including Cox-net,
Deep Surv, and Auto-Encoder with Cox regression networks (AECOX), was performed on
the TCGA cancers dataset [15]. The study’s findings emphasized the relationship between
survival learnability on a pan-cancer level and patient characteristics.

Deep learning with ensemble models is gaining popularity for predicting various
types of cancer. In [16], the authors presented a pre-processing data approach that involved
feature selection and aggregating random under-sampling. The results showed that an
ensemble classifier with a BILSTM or BiGRU model and a CNN model achieved the best
classification performance, with accuracy and F1-score ranging between 91% and 96% for
different types of heart disease. This proposed framework can potentially lead to highly
accurate models suitable for real clinical data and diagnostic use.

In [17], the authors proposed a novel methodology for classifying human cancer
diseases based on gene expression profiles. The proposed system combined Information
Gain and Standard Genetic Algorithm for feature selection and reduction, respectively, and
Genetic Programming for cancer type classification. The methodology was evaluated on
seven cancer datasets and compared with other machine learning approaches. Using a
Genetic Algorithm improved the classification performance compared to other classifiers.
In [18], the researchers proposed a deep learning-based approach for detecting red lesions
in fundus images, which is relevant for detecting early signs of diabetic retinopathy. The
method combined deeply learned features with manually engineered features and used a
random forest classifier to identify true lesion candidates. The proposed approach showed
improved results and reported the highest performance on the DIARETDB1 and e-ophtha
datasets.

Breast cancer prognosis is a critical need, alongside the prognosis of various other
cancers. In pursuit of this objective, an ensemble approach that incorporates multiple
machine learning models was investigated in [19]. The authors considered five differ-
ent classification models and applied gene expression analysis to these models to obtain
informative gene data. The proposed model was validated in lung cancer, stomach ade-
nocarcinoma, and invasive carcinoma samples. The results confirmed the effectiveness of
the proposed ensemble model. Another ensemble model was proposed in [20]. Here, the
authors considered three classifiers, including support vector machines, logistics regression,
and stochastic gradient descent optimization, for breast tumor classification. The proposed
complex voting mechanism provided better results in comparison to existing benchmarks.

In [21], a multi-modal ensemb]e classification approach was investigated for human
breast cancer prognosis. The authors proposed a deep learning-based stacked ensemble
model using three datasets: CNV, clinical, and gene expression. They proposed a novel
two-phase framework where features were extracted using a convolutional neural network
in the first phase and RF was implemented in the second phase for output prediction. The
results validated the effectiveness of the proposed multi-modal classification. However,
there is still a need for a model that can effectively predict breast cancer patient prognosis
and survivability. Existing benchmark models only work for a limited number of gene
signatures or use similar neural networks for multi-modal data. Therefore, this work
aims to design a heterogeneous model for multi-modal data to test the effectiveness of the
proposed model in terms of accuracy.

3. Methods and Materials
3.1. Dataset

The METABRIC dataset is used for this work, extracted from 1980 valid patient records.
The METABRIC dataset comprises multi-dimensional data forms such as gene expression,
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copy number variation, and clinical information for breast cancer [21]. The total number of
samples (patient count = 1980) was categorized into two subdivisions: long-term survivors
(>five years) and short-term survivors (<5 years). The total number of samples comprises
1489 patient records for long-term survivors and 491 for short-term survivors. The remain-
ing 64 patients of the total samples are alive, but the records of 3.2% of the total sample had
incomplete five-year follow-up records. In these cases, we cannot determine whether the
patients were long-term survivors or if they died within five years. Therefore, we continue
our study by labeling these records as long-term survivors in EBCSP frameworks. This
assumption is based on the very high survival chances reported by METABRIC for 64 un-
published patients. The duration of survival for the recorded patients was 125.1 months,
whereas the median diagnosis age was 61 years. Using the survival threshold of five years,
long-term survivors are labeled as ‘0" and short-term survivors are labeled as ‘1" for the
binary classification model. The gene-expression (gene exp) and copy number variation
(CNV) data have missing values, which are imputed using the weighted nearest neighbor
algorithm [22]. The features of gene exp were categorized into three subdivisions according
to Gevearat et al. [23]: underline, baseline, and overexpression [—1,0,1]. Underline genes
are expressed at a lower level than expected, baseline genes are expressed at the expected
level and are used as a control for the comparison of underline and overexpression, and
overexpression refers to genes that are expressed at a higher level than expected. These
categorized subdivisions help us to understand the state of the cancer and give deep insights
into the molecular mechanisms. Clinical data need to be normalized between certain ranges.
The min—-max algorithm is a simple way of scaling clinical data into a specified range [0,1]
by identifying the minimum value [min(x;)] and maximum value [max(x;)] from the dataset.
For each value in the clinical data, subtract the minimum value and divide it by the range
max(x;) — min(x;). This will scale the clinical data into a range of [0,1]. The clinical data are
normalized using the following equation:

) Xip —min(x;)

X, = i (%) — min (%) (nMax — nMin) + nMin. 1

The overall summary of the dataset is shown in Table 1 and is publicly available at
https://github.com/USTC-Hllab/MDNNMD (accessed on 6 October 2021).

Table 1. METABRIC Dataset Summary.

Renounce # Year 5 Year
Patient Count 1980
Survivors #Long Term 1489
Survivors #Short Term 491
Diagnosis Median Age 61
Average Survival Month 125.1

3.2. Feature Extraction

The well-known problem in sequenced data is the dimensionality curse or high dimen-
sionality, low samples size (HDLSS) for human breast cancer prognosis [24]. Our work focuses
on three data modalities: gene exp, CNV, and clinical data, with 24,000, 26,000, and 27 features,
respectively. The HDLSS may lead to the worst results for deep learning algorithms [25].
Simultaneously, the success of a learning algorithm is heavily dependent on feature selection
when dealing with a large number of features. One popular method for reducing dimen-
sionality is the Minimum Redundancy Maximum Relevance (mRMR) [26,27]. Therefore,
mRMR was applied for feature selection from the available data modalities and to reduce
the dimensionality without losing significant information. The final selection of features was
made by considering the AUC value of a different set of features. An incremental approach
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was used for feature selection by applying the mRMR algorithm, selecting the top 100 features,
and evaluating the model performance. Then, the top 200 and 500 features were validated
using the AUC in this way. By evaluating the AUC for the selected set of features, we found
N'’s best features with a step size of 100. At last, 400 gene exp, 200 CNV, and 25 clinical data
features were considered for the EBCSP framework, which can be viewed in Table 2.

Table 2. Count of selected features.

Data Set Total Features Selected Features
CNV 26,298 200

Gene Expression 24,368 400

Clinical 27 25

4. Experimental Setup

Ten cross-folds were used to evaluate the EBCSP framework in an experimental setup.
The available dataset of 1980 samples was randomly divided into 10 subgroups. We merged
nine of these subgroups to create the training set, while one subgroup was set aside as the
testing set. Additionally, the training set was further divided into an 80% training set and a
20% validation set. Figure 2 provides a visual representation of the entire experimental setup
for the EBCSP framework.
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Figure 2. Proposed EBCSP framework working view.

4.1. DNN, CNN, and LSTM for Individual Modalities

The proposed EBCSP model utilizes a deep neural network, convolutional neural net-
work, and recurrent neural network for predicting human breast cancer prognosis. These
models extract features from the individual data modalities to be used in the subsequent
phase of the EBCSP model. Specifically, the EBCSP model composed of a DNN, CNN, and
RNN-LSTM has been used with multiple learning filters applied directly to the data modalities.
Among these models, the CNN is applied to the clinical data, the DNN works on the CNV
data, and the RNN-LSTM is designed for the gene expression data modality. A hierarchy
of hidden layers was designed for the DNN architecture of the CNV data modality. The
combination of lower-level features was used to extract higher-level features. The DNN
consists of an input layer, multiple hidden layers, and an output layer, with fully connected
units in each layer, as shown in Figure 3. The number of layers (N) is five, including an output
layer, and the Tanh activation function is used on the hidden layer to capture the nonlinear
relationships within the data. The sigmoid activation function is used in the output layer for
efficient binary classification. To prevent overfitting, the dropout regularization technique
was applied to each hidden layer [28].
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Figure 3. DNN architecture designed for CVN data.

Similarly, a CNN architecture is designed for the clinical data modality that extracts
features from the previous layers for the next layer. A CNN captures the input from the
dataset and passes each datum through a convolutional layer of specific filters. As a result of a
convolutional process, a feature map is produced. A feature map is an element-wise product
followed by the addition of an input matrix between the filter matrix and the corresponding
value. The CNN architecture consists of five layers, including an input layer, a convolutional
layer, a flattening layer, a dense layer, and an output layer, as shown in Figure 4. To control
the feature size, padding is used after the flattening is performed for the output of the
convolutional layer. The flattened output is then passed through the fully connected dense
layer. L2 regularization is used to prevent the overfitting of the model [29].

Feature map Dense layer Dropout layer
Input shape *4 Hidden units=150  Dropout= 0.5

Fllter CMM Clinlcal = 25
Size= (1571) ‘

-

Flattening

=15

IP Clinical

Convolution Layer

Figure 4. CNN architecture designed for Clinical data.

For gene expression data, a LSTM (long short-term memory) model is designed. LSTM is
an improved version of a recurrent neural network that contains a set of memory blocks [30].
By adding the cell states, LSTM saves that state for a long time. LSTM is used to recall and
collaborate the data from the previous layer and the active layer. The model comprises an
LSTM layer, a dense layer with a dropout regularization technique, and an output layer that
can be seen in Figure 5. The Relu activation function is used in this model because it does
not activate all the neurons at a single moment and reduces the negative value to zero. In
the above three models, the Glorot normal initializer [31] is used to obtain the initializing
filter values. The initializer selects the values whose mean is equal to zero and the standard

deviation range is in between —,/ n,zno ,1/+2—, where n; and n are the input and output
ir

nj,Mo’
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values. DNN, CNN, and LSTM use the constant seed value 0.1. The Adam optimizer is used
for model training. The parallel cross-entropy is used and upgraded with an enhancer, as it is
computationally efficient, requires little memory, and is well-suited to large problems with
additional data. A loss function is used to measure how well a deep learning classifier fits the
empirical data [32]. As our problem is a binary classification problem, the ground truth (y) can
only have two states, one or zero. Therefore, a binary cross-entropy loss was applied in this
study to assess the prediction performance of the deep learner. The loss function is defined as:

nk mk

N+ 5 nZEZW}f )

N
L) = 7 | E i)logy(i) — (1= yi(i))log (1 — yi(i
i=0 k=1j=1i=1

In the above equation, L represents the cost function, which measures the errors between
the actual and the predictive score. y;(i) and §;(i) are the actual label and predictive scores for
class i. The detailed parameters of the models are shown in Table 3.

Feature map
input shape *4

Dropout layer
Dropout= 0.5

Dense layer
Hidden unlts=256

LSTM winits = 64

Gene Expr = 200

Recurrent Layer

- -
* L

Figure 5. RNN-LSTM architecture designed for Gene Expression data

Table 3. Learning parameters of EBCSP framework.

Features CNN-Clinical DNN-CNV LSTM-Gene Exp
Initializer Adam Adam Adam
Initializer constant 0.1 0.1 0.1
Number of layers 1 (convolutional) 4 (hidden) 1 (hidden)
Number of filters 25,4 - -

Kernel size 15 64 -

Stride 2 - -

Padding Same - -
Learning Rate 10-3 10-3 10-3
Number of hidden layers 1 4 1

Hidden units 150 [1024,512,512,512] 256
Dropout - 0.5 0.5
Training Epoch 20 20 52

Batch size 8 8 8
Activation Function Tanh Tanh Relu

Loss Function

L2 regularization, Binary cross entropy

L2 regularization, Binary Cross entropy

L2 regularization, Binary Cross entropy
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4.2. EBCSP Model for Multi-Dimensional Data

The proposed EBCSP model is characterized into two sub-divisions, as explained below.

4.2.1. Feature Extraction and Stacking Phase

Multi-modal datasets have different data representations when combined directly as an
input to a deep learning model, and the model may therefore not produce efficient results [33].
Therefore, in the EBCSP framework, the concerned modalities were not combined directly.
Instead, a single data modality is passed to the learning model for feature extraction, ensuring
heterogeneity between the different models of each data modality. The proposed model uses
three types of multi-modal data, namely, clinical, copy number variation, and gene expression
data, for breast cancer prognosis using different learning models such as CNN, DNN, and
LSTM. In the feature extraction phase, we use neural networks to extract features and use the
AUC as the performance measurement criterion. We then combine the extracted features to
form stacked features.

4.2.2. Prognosis Phase

The stacked features obtained from the previous phase are passed to the random forest
algorithm. According to the literature, various machine learning classifiers have been applied
to breast cancer datasets, such as support vector machine, logistic regression, Naive Bayes, and
random forest [6,21]. Among them, random forest has been shown to predict breast cancer
diagnosis better than other classifiers. The proposed model is generic, so any machine learning
classifier can be used for the final binary classification, i.e., short-term and long-term survival.
The predicted output from the random forest is the final output for the EBCSP framework.
To evaluate the performance of the model, we plot the Receiver Operating Characteristics
Curve (ROC) [34] between the false positive (1-specificity) and true positive (sensitivity) rates
and compute the AUC. Furthermore, the evaluation metrics for the proposed framework
are sensitivity (Sn), specificity (Sp), precision (Pre), and accuracy (Acc) [31] and are defined
as follows:

Sensitivity = Tp]:l—pFn ©)
Specificity = % (4)
Precision = sz_p]:p ©)

In the above equations, Ty, F,, T, and F, indicate true positive, false positive, true
negative, and false negative, respectively.

5. Results and Discussions

The section below present a detailed comparison of the EBCSP framework with existing
benchmarks.

5.1. EBCSP Model Performance Evaluation

To confirm the effectiveness of multi-modal data, we employed individual deep learning
models for each data modality. The key evaluation parameter for feature extraction from
individual models was the AUC plot, along with the accuracy. The model with a higher AUC
value was considered to be better than the one with a lower AUC value. The AUC plot gain for
CNN-Clinical is 0.78 (epoch = 20); for DNN-CNYV, it is 0.73 (epoch = 20); and for LSTM-gene
exp, we observe a 0.57 gain with 20 epochs and 0.59 with 32 epochs, as depicted in Figure 6.
For the EBCSP model, we used features extracted from 32 epochs. The accuracy gained by
the individual models were 78.28%, 74.65%, and 76.26% for CNN-clinical, DNN-CNV, and
LSTM-Gene Exp, respectively.
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Figure 6. ROC curve for the EBCSP model feature extraction for prognosis prediction.

To address the variance problem caused by the limited dataset, we utilized ten cross-folds
to evaluate the EBCSP model using the Metabric dataset, which includes 1980 samples. The
samples were randomly divided into 10 subgroups; among these, 9 subgroups were taken
as training sets and 1 as the validation set. The output of the individual learning models
is integrated and considered as stacked features. It is evident from the literature that RF
outperforms stacked features as compared to other classifiers [18]. Therefore, we used RF for
the stacked features for the final classification and validated the classification with different
parameters, where we acquire the confusion metrics, sensitivity, F1 score, precision, specificity,
and accuracy of the EBCSP framework.

For the validation set, we have 495 total samples. Among these samples, we have
368 samples accurately predicted as long-term survivors and 121 are genuinely predicted as
short-term survivors. There were no false predictions for long-term survivors, but six samples
were falsely predicted as short-term survivors. The absence of false positives may be due to
imbalanced classes. The discussion above shows that 489 samples were predicted correctly,
and 6 samples were falsely predicted; the results are statistically shown in Table 4.

Table 4. Confusion Metrics for the validation set.

Long-Term Survivors Short-Term Survivors

Long-Term Survivors 368 0

Short-Term Survivors 6 121

As the proposed model is designed for binary classification, it was evaluated for each
class using precision, recall, and F1 score parameters. The results show that the model had
scores of 0.98, 1.0, and 0.99 for precision, recall, and Fl-score, respectively, for the long-term
class, whereas the short-term class model had scores of 1.00, 0.95, and 0.98 for the considered
evaluation parameters, as shown Table 5.
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Table 5. Class evaluation of the model.

Precision Recall F1 Score
Long-Term Survivors 0.98 1.00 0.99
Short-Term Survivors 1.00 0.95 0.98

The final evaluation of the model is performed after passing the stacked features to the
RF, where the model produces the final prediction. The final results from the RF are evaluated
based on Sn, Sp, Pre, Fl-score, and Acc. The model generates outstanding prediction results
with a 1.0 sensitivity rate, 0.95 specificity, 0.98 precision, 0.99 Fl-score, and 0.98 accuracy. The
overall result metrics are given below in Table 6.

Table 6. Overall model performance.

Evaluation Parameters EBCSP Results
Sensitivity (Sn) 1.00
Specificity (Sp) 0.95
Precision (Pre) 0.98
F1-Score 0.99
Accuracy (Acc) 0.98

5.2. EBCSP Model vs. Existing Benchmarks

The above results indicate that the EBCSP model outperforms existing benchmarks. We
compare the proposed EBCSP model with existing models such as multi-modal deep neural
networks by integrating multi-dimensional data (MDNNMD) [6] and the Stacked RF-based
ensemble model [18]. We compute the AUC for learning models and prediction results. The
learning models exhibit AUC scores of 0.60, 0.75, and 0.80 for LSTM gene exp, DNN CNV, and
CNN clinical data, respectively. The accuracy measures of the learning models were 0.78, 0.74,
and 0.80 for LSTM gene exp, DNN CNV, and CNN clinical data, respectively. The individual
training model results were up to the mark compared to the existing benchmarks, as shown
in Figure 7.

WGene expr ECNV BClinical W Gene Expr @CNV @ Clinical
1 0.82
09
08

07 078
06 076
05 8
2
04 074
03 072
02
07
01
0 068

EBCSP Stacked RF MDNNMD EBCSP Stacked RF MDNNMD

AUC

Figure 7. AUC and ACC comparison between data modalities.

The final prediction made by the EBCSP model shows a higher AUC value of 0.97,
whereas the Stacked RF and MDNNMD models score AUCs of 0.93 and 0.84, respectively.
After the prognosis of breast cancer, telemedicine can be adapted for treatment as it is a safe
healthcare method [35,36]. The AUC value ensures the adequate performance of the proposed
model. In terms of accuracy, the EBCSP model shows better prediction, with an accuracy
score of 0.98%, which is higher than the 0.90% and 0.82% accuracy scores of the Stacked RF
and MDNNMD models. The proposed model is also evaluated according to Sn, Sp, Pre, and
F1-score, with results of 1.0, 0.95, 0.98, and 0.99, respectively. The EBCSP model shows better
results than the existing benchmarks, as shown in Figure 8.
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Figure 8. Result evaluation of EBCSP model with existing benchmarks.

6. Conclusions

Breast cancer is a severe illness that often results in poor outcomes and is a leading cause
of mortality. Physicians can make informed decisions about patient care by assessing patients’
survival rates. Therefore, there is a pressing need for a rapid and effective computational
model to predict human breast cancer prognosis. This study aims to develop a prognostic
model for human breast cancer by using independent neural networks for each relevant data
modality. The EBCSP model, which stacks multi-dimensional data, is presented in this study
for predicting the survival rate (long-term or short-term) of patients with human breast cancer.
Clinical, gene expression, and copy number variation data are all informative sources for
breast cancer prognosis. Individual neural network models were designed for each data
modality, and the outputs were combined using RF for final classification. The predicted
output can be validated or integrated with other sources of information before being used
for clinical decision making. The EBCSP model outperforms existing benchmarks, including
MDNNMD and stacked RF, and can be extended to similar critical diseases. However, it is
important to note that the proposed work is limited to additional data modalities such as
miRNA and gene methylation data, and future studies will explore these modalities using
innovative methodologies.
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Abbreviations

The following abbreviations are used in this manuscript:

EBCSP Ensemble model for breast cancer survivability prediction
DNN Deep Neural Network
CNN Convolutional Neural Network

RNN Recurrent Neural Networks
LSTM Long short-term memory
RF Random Forest

AECOX  Auto-Encoder with Cox regression networks
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