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Abstract: Cervical squamous intraepithelial lesions (SILs) are precursor lesions of cervical cancer,
and their accurate diagnosis enables patients to be treated before malignancy manifests. However,
the identification of SILs is usually laborious and has low diagnostic consistency due to the high
similarity of pathological SIL images. Although artificial intelligence (AI), especially deep learning
algorithms, has drawn a lot of attention for its good performance in cervical cytology tasks, the
use of AI for cervical histology is still in its early stages. The feature extraction, representation
capabilities, and use of p16 immunohistochemistry (IHC) among existing models are inadequate.
Therefore, in this study, we first designed a squamous epithelium segmentation algorithm and
assigned the corresponding labels. Second, p16-positive area of IHC slides were extracted with
Whole Image Net (WI-Net), followed by mapping the p16-positive area back to the H&E slides and
generating a p16-positive mask for training. Finally, the p16-positive areas were inputted into Swin-B
and ResNet-50 to classify the SILs. The dataset comprised 6171 patches from 111 patients; patches
from 80% of the 90 patients were used for the training set. The accuracy of the Swin-B method for
high-grade squamous intraepithelial lesion (HSIL) that we propose was 0.914 [0.889–0.928]. The
ResNet-50 model for HSIL achieved an area under the receiver operating characteristic curve (AUC) of
0.935 [0.921–0.946] at the patch level, and the accuracy, sensitivity, and specificity were 0.845, 0.922,
and 0.829, respectively. Therefore, our model can accurately identify HSIL, assisting the pathologist
in solving actual diagnostic issues and even directing the follow-up treatment of patients.

Keywords: high-grade squamous intraepithelial lesion; p16; diagnosis; artificial intelligence; deep learning

1. Introduction

Cervical cancer is the fourth leading cause of morbidity and mortality in women
worldwide, representing a major public health problem [1], while approximately 75% of
cervical cancers occur in developing countries [2]. Epidemiological and molecular studies
have shown that persistent human papillomavirus (HPV) infection has been identified as a
leading factor in cervical cancer. The human papillomavirus deoxyribonucleic acid (DNA)
test and thin-prep cytologic test (TCT) are used to screen the status of cervical lesions
among all women aged 21 to 65 years [3,4]. The implementation of cervical screening
programs has improved the detection rate of precancerous lesions. At the same time, the
number of cervical biopsy specimens has gradually increased, increasing pathologists’
diagnostic workload. Accurate pathological diagnosis allows for the early detection of
cervical precancerous lesions, which increases the chances of successful treatment and cure.

Cervical intraepithelial neoplasia (CIN) is a premalignant lesion of cervical cancer
caused by persistent HPV infection, especially with the high-risk HPV subtype [5]. Accord-
ing to the proportion of basal-like undifferentiated cells in the epithelium, which reflects
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the loss of epithelial cell maturation, CINs are classified into three grades: CIN1, CIN2, and
CIN3 [6]. Since 2012, the lower anogenital squamous terminology (LAST) standardization
project has proposed a two-tiered nomenclature to replace the three-tiered CIN system,
where condyloma and CIN1 are grouped under the low-grade squamous intraepithelial
lesion (LSIL), and CIN2 and CIN3 are classified as a high-grade squamous intraepithelial
lesion (HSIL) [7]. The LSIL is characterized by the proliferation of basal/parabasal-like
cells in the lower third of the epithelium that may show mitotic activity, albeit usually
without atypical mitoses, along with koilocytic atypia with clearly retained features of mat-
uration/differentiation. The HSIL (CIN2) shows basal/parabasal-type atypia in the lower
two-thirds of the epithelium, and the nuclear abnormality is shown to be hyperchromatic
with irregular coarse chromatin membranes. The HSIL (CIN3) shows full-thickness atypia
and mitotic activity extending into the full-thickness epithelium. Clinically, a high-grade
squamous intraepithelial lesion is the cutoff point for cervical excision treatment to prevent
further progression to cervical cancer, which affects patients’ survival, mortality, and health-
care costs [8,9]. Morphological diagnosis and grading of cervical squamous intraepithelial
lesions have significant variability among different seniorities of pathologists. If there is
a professional disagreement in the histologic interpretation, p16 and Ki67 immunohisto-
chemistry (IHC) will be used to assist in the diagnosis. Co-staining of p16 and Ki67 has the
potential to distinguish HSIL from benign lesions, such as basal cell hyperplasia and reac-
tive atypia [10]. Although IHC may be helpful in limiting tissue biopsies and eliminating
interobserver variability, histopathology remains the gold standard for diagnosis. Actual
diagnostic work is still highly dependent on histologic morphology, and women with
inaccurate HSIL diagnoses may be undertreated or overtreated. The treatment options for
cervical precancerous lesions can vary depending on the severity of the lesion. Therefore,
a new and intelligent diagnostic system is required to increase diagnostic accuracy and
reduce the diagnostic burden.

The rapid development of artificial intelligence in digital pathology is quietly revolu-
tionizing tumor diagnosis [11]. The current focus in digital pathology on cervical disease is
primarily centered on classification and grading. For instance, Calik et al. [12] proposed
two different classification schemes that utilize local histograms and cell morphometric
features for tissue classification based on Kullback-Leibler divergence, which achieved an
accuracy of 78.69%. Keenan et al. [13] attempted to develop an objective grading system
using machine vision by analyzing the architectural features of the cervical epithelium.
Their system was able to identify CIN3 in 98.7% of cases. Convolutional neural networks
(CNNs) can identify cervical squamous cell carcinoma (SCC) and cervical adenocarcinoma
(AC) with an AUC of 0.98 and 0.966, respectively [14]. These studies demonstrate that
artificial intelligence models have good performance in the field of cervical pathology.

Currently, the automatic grading of SILs broadly falls into two categories. The
first category involves quantifying features observed by pathologists, such as cellularity
and nuclei, which are then used by classifiers such as support vector machines (SVM) and
linear discriminant analysis (LDA) [15,16]. The second category of methods involves using
CNNs for an end-to-end CIN classification, which has been shown to be more effective [17].
As SILs undergo a complex cell division and differentiation process, the boundaries of
grading are difficult to define, and the end-to-end classification based on CNN is arbi-
trary and not suitable for visual auxiliary pathological diagnosis. In addition, the high
similarity of pathological cervical images and pathologists’ inter- and intra-variation can
lead to misdiagnoses and missed detection of cervical precancerous lesions. In this back-
ground, our study aimed to handle the problem of insufficient feature extraction and
incorporate p16 and Ki67 IHC to enhance the diagnostic accuracy of HSIL, thus helping pa-
tients be cured before cancer develops. Artificial intelligence algorithms can analyze large
amounts of image data and identify patterns that may not be immediately apparent to a
human observer.

Although there are numerous applications of AI in tumor pathology, the study of
precancerous disorders is uncommon. Our study aimed to build an effective deep-learning
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algorithm for HSIL detection. We established the AI model to predict and highlight the
p16-positive areas and HSIL regions using Swin-B based segmentation [18]. Furthermore,
we evaluated the AI model at both the patch level and the patient level. Only the whole
slide images (WSIs) of the cervical biopsy slice are needed for basic analysis. Additionally,
we explored whether pathologists could improve their diagnostic performance with the
assistance of the AI diagnosis model when reading cervical biopsy images. Overall, the
main contribution of this study is the accurate identification of HSIL in the cervical squa-
mous epithelium, thus resolving the problem of missed diagnosis and misdiagnosis due
to the high similarity with cervical LSIL and benign proliferative lesions and ultimately
guiding treatment.

2. Materials and Methods
2.1. Data Collection

The datasets for this study were collected from 111 female patients who underwent
colposcopy and cervical biopsy at Sir Run Run Shaw Hospital, Zhejiang University School
of Medicine (SRRSH), in 2021. Institutional review board approval was obtained for
this study on 6 December 2022 (Approval No. 0471). In total, we collected 111 cases,
111 hematoxylins and eosin (H&E)-stained slides, and 197 IHC slides. Since cervical biopsy
pathology is not a single lesion in most instances and the normal epithelium, LSIL region,
and HSIL region are mixed with each other, it is not possible to simply diagnose a case as
LSIL or HSIL. Therefore, to test the entire algorithm network on a set of independent sides,
80% of the 111 cases were used as the training set and 20% as the test set. All the slides were
formalin-fixed paraffin-embedded (FFPE) sections. H&E slides and immunohistochemical
slides were scanned at 40× magnification (0.25 µm pixel−1) by a digital pathology scanner
(KF-PRO-400, KFBIO). Sensitive information such as the patient’s name, medical record
number, and ID number were removed from the files.

2.2. Data Preparation for Model Training and Evaluation

The dataset is split randomly and stratified according to the distribution of HSIL
and on-HSIL. The labeling processes for training were prepared by pathologists through
annotation and image registration. The normal epithelium, LSIL, HSIL, and mitosis were
annotated by pathologists. The p16-positive region was automatically labeled on the H&E
slides using a pre-trained Whole Image Net (WI-Net) and image registration with the
p16 IHC image.

2.2.1. Dataset Division and Labeling

The ground truth was established on the basis of the original SRRSH pathology report
and confirmed by two experienced pathologists (who worked for more than 10 years)
to ensure an error-free diagnosis. Each H&E slide had corresponding p16 and Ki67 IHC
slides. The diagnosis was made according to the H&E morphology and the expression
of p16 and Ki67. The final ground truth was based on a consensus between the two
pathologists. A third pathologist reviewed the slides and discussed the final diagnosis if
the two pathologists had disagreements. The high-grade squamous intraepithelial lesion
included CIN2 and CIN3, showing full-thickness atypia characterized by basaloid cells
and mitotic activity extending into the upper two-thirds of the full epithelium, with the
upper portions of the epithelium showing a significantly higher ratio of the nucleus to
the cytoplasm than non-HSIL (non-HSIL refers to the normal epithelium) and LSIL. LSIL
is characterized by the lower third of the epithelium demonstrating a proliferation of
basal/parabasal-like cells that may show mitotic activity, showing koilocyte atypia with
clearly retained features of maturation/differentiation.

In this study, the algorithm model was trained on 6171 labeled patches from
111 patients. The process generated 6171 patches, with 4921 patches from the 90 cases of
the training set and 1250 patches from the 19 cases of the test set. We mainly divided the
cervical squamous epithelium into two categories: HSIL and non-HSIL. In the beginning,
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we mainly labeled the normal epithelium as LSIL, HSIL, p16-positive regions, mitosis, etc.
All annotations are mainly outlined by a junior pathologist, with one additional experi-
enced pathologist reconfirming the annotations to ensure accuracy. The automated Slide
Analysis Platform (ASAP) 1.9 software (Radboud University Medical Center, Nijmegen,
The Netherlands) was used to generate corresponding masks.

2.2.2. Image Registration of p16 from IHC to H&E

The annotations of the p16-positive region on the H&E slides were obtained automati-
cally from the registration of the p16-positive region, which was detected in the p16 IHC
images by a pre-trained whole image (WI)-Net [19].

Figure 1 shows the flowchart of the automated labeling of the p16-positive region
on the H&E slides. We outlined the squamous epithelium layer of the H&E slides and
extracted the contour (SH&E), which is a set of contour points:

SH&E =
{
(xi

H&E, yi
H&E)

}
, i = 1, 2, . . . , n (1)

where the (xi
H&E, yi

H&E) represent the position coordinates of the points, n is the number of
contour points. Then, we mapped them to the p16 IHC image based on the registration
relationship. The registration relation was calculated by the open-source medical image
registration toolbox named Elastix [20,21], which is a two-dimensional displacement field
(
[

fx, fy
]
). The corresponding contour of the p16 IHC image is as follows:

SIHC−P16 =
{(

xi
H&E − fx(xi

H&E, yi
H&E

)
, yi

H&E − fy

(
xi

H&E, yi
H&E

)
)
}

, i = 1, 2, . . . , n (2)

Next, the epithelial layer in the p16 IHC image was labeled by the pre-trained WI-Net,
which is a fully convolutional network dividing cells into two groups: p16-positive and
p16-negative. The last step is mapping the p16-positive area back to the H&E slides and
generating the p16-positive mask for training.
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2.3. Algorithm Development

In this work, the algorithm framework for squamous intraepithelial lesions is mainly
composed of two parts: an epithelium segmentation model and a segmentation-based
epithelial classification model. As is well known, CNN-based image segmentation sprang
up from fully convolutional networks (FCN), transforming the classification networks
into end-to-end, pixel-to-pixel architectures [22]. The Swin Transformer is a new general-
purpose backbone whose representation is computed with shifted windows, limiting the
self-attention within the window. Liu et al. [18] built the base Swin Transformer architecture,
named Swin-B.

2.3.1. Squamous Epithelial Detector and Skeleton-Based Partition

In the beginning, the squamous epithelium (SE) segmentation model based on Swin-B
isolated the SE layer from the H&E slides. The WSI slides at 40 × (0.25 µm/pixel) were cut
equally into fragments with a step window size of 4096 × 4096, and the fragments were
scaled to a size of 512 × 512 as the model input. After the model inference, we obtained
the binary mask of all fragments of equal size, where each pixel of the mask refers to
two groups: non-SE area (0) and SE area (1). Then, all the masks were integrated back into
the original slide structure, thus obtaining the mask of the whole slide. By extracting the
contours of the SE area (1) on the mask, we got the corresponding bounding boxes of each
SE layer and cut them out, as shown in Figure 2a,b.
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Figure 2. Skeleton-based partition. (a) The squamous epithelium layer was detected by the squamous
epithelium segmentation model; (b) the mask of the squamous epithelium layer was segmented by the
squamous epithelium segmentation model; (c) the schematic diagram of cutting patches based on the
skeleton, where A and B are the endpoints of a bisection axis, the segment AB is translated along its
vertical direction until there is no intersection with the SE mask, C (C’) and D (D’) are the endpoints of
the segment obtained by translation, SC’CDD’ is the parted patch with the bounding box C’CDD’.
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Then, in order to keep the growth orientation of the epithelium in image patches
for tissue-level analysis, skeleton-based epithelium partition [15,23] was used to obtain
vertically divided patches. The skeleton medial axis of each epithelium was extracted based
on the distance transform, and the shorter axis was cut off. Additionally, the longest axis
was divided equally into the bisection axis, with a length of 4096. As shown in Figure 2c,
A and B are the endpoints of the bisection axis, and AC and AC’ are the vertical direction
segments of the line segment (AB). The line segment AB expands rapidly along AC and
its opposite direction, AC’, until there is no intersection with the SE mask. After that, two
line segments, CD and C’D’, were obtained, which are the bounding line segments of the
patch (SC’CDD’). Additionally, these patches were taken as the minimum units to provide
auxiliary diagnostic indexes.

2.3.2. Squamous Epithelial Tissue Analysis

The whole slide image classification workflow is depicted in Figure 3. After the
epithelial patches were extracted, we carried out the squamous epithelial tissue analysis.
In the diagnosis of the squamous epithelium, the results of immunohistochemistry have a
significant auxiliary effect for pathologists. If it is possible to predict areas on H&E slices
where immunohistochemistry may be positive, then this can force pathologists to pay
attention to these key areas. To this end, we used the Swin-B-based segmentation net to
mark the potential p16-positive area on the patches. Thus, we got the binary mask from
the segmentation, referring to two groups: the p16-negative area (0) and the p16-positive
area (1). The model was trained with cross-entropy loss and dice loss. The formula is as
follows:

the CELoss = −
512

∑
j=1

512

∑
i=1

yi,j log
(
ρi,j
)

(3)

DiceLoss = 1 − 2 × TP + ε

FP + 2 × TP + FN + ε
(4)

where ρi,j is the probability of the pixel (i, j) prediction being positive (respectively repre-
senting the SE, p16-positive, and HSIL among different models); yi,j is the ground truth
label, which is either 0 or 1; TP, FP, and FN represent the pixel numbers of true positive,
false positive, and false negative, respectively; ε is the smoothing parameter, set as 1.
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In the next step, we carried out an HSIL diagnosis on the p16-positive patches. Follow-
ing the common approach in computational pathology, we constructed a CNN classification
model to classify the p16-positive patches into two classes: non-HSIL (0) and HSIL (1).
The classification model was based on the ResNet-50 backbone, whose parameters were
pre-trained with the ImageNet dataset, and the model input size was set to 512 × 512.
In the prediction phase, patches were divided into classes with the highest prediction
probability. To enhance the interpretability of AI model analysis, we used segmentation
technology to transform the direct diagnosis into the segmentation of the HSIL area. The
model used the same model architecture and hyper-parameters as the p16 segmentation
model. After obtaining the binary mask (SHSIL) for each pixel referring to two groups:
non-HSIL (0)/HSIL (1), we calculated the HSIL diffuse proportion (Di f f usePHSIL), and
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in our research, patches were predicted to be HSIL when their Di f f usePHSIL was above
the threshold of 10%. The formula is as follows, where SSE is the SE binary mask of
the patches:

the Di f f usePHSIL =
∑ SHSIL

∑ SSE
(5)

It should be noted that there were only 961 HSIL patches among all 4921 patches in
the training set; therefore, we adopted a balanced sampler to get each batch during the
training phase, and the cross-entropy loss was weighted according to the proportion of the
class sample quantity. The formula is as follows:

the CELoss = −
512

∑
j=1

512

∑
i=1

(1 − wc)yi,j log
(
ρi,j
)

(6)

where wc is the sample proportion of class (c).

2.3.3. Model Training

Our AI models were all built using the OpenMMLab series (https://github.com/
open-mmlab accessed on 5 May 2022), which is the most complete open-source algorithm
system designed for different directions of computer vision, such as MMClassification
for image classification, MMDetection for object detection, and MMSegmentation for
semantic segmentation. All experiments were conducted using the Ubuntu 18.04 sys-
tem with 8 NVIDIA GPUs (GeForce GTX 1080 Ti) for multi-GPU training. Additionally,
the MMSegmentation version we used was 0.25.0, and the MMClassification version
we used was 0.19.0. The software we used included CUDA 10.2 and cuDNN 7.6.5 for
GPU acceleration, PyTorch 1.6.0 and Torchvision 0.7.0 for model construction and training,
OpenCV 4.4.0 for image processing, especially in the skeleton extraction step, and OpenMP 4.5
for multi-GPU training. We applied image augmentation during the training process, such as
RandomRotate, Flip, Blur, RandomBrightnessContrast, and HueSaturationValue. The input
size of the AI models was set to 512 × 512.

All the segmentation models were constructed by means of the MMSegmentation
toolbox; the backbone of the segmentation model is Swin-Base (Swin-B), the decode head is
UPerHead (the decode head of the UPer-Net Unified Perceptual Parsing Network), and
FCNHead is used as the auxiliary head. The AdamW (Adam + weight decay) optimizer
was employed to update the model with the following settings: learning rate: 6 × 10−5;
betas: 0.9, 0.999; weight_decay: 0.01. We preserved the model weights when there was no
improvement after consecutive epochs of training.

2.4. Evaluation of the Clinical Impact of the AI Workflow and Performance of Pathologists

In order to evaluate the effectiveness of the current AI-assisted pathological workflow
and the proficiency of pathologists, a total of 19 WSIs of the cervical biopsy were utilized
for testing. These digital images were subjected to deep learning algorithms to detect
cervical squamous epithelium with pathological variations and assign appropriate labels.
Four pathologists were recruited: two junior pathologists with less than five years of experi-
ence and two senior pathologists with at least ten years of experience. The initial diagnosis,
which was based on the original pathology report from the SRRSH, was considered the
ground truth. Each pathologist reviewed all 19 slides twice, once in regular (R) mode with
only WSIs and once in AI-assisted (A) mode with the model segmentation and classification
results. The p16 segmentation, HSIL segmentation, mitotic result, and conclusion of the
AI model were provided to the pathologists to make a second diagnosis. All slides were
evaluated in a random sequence, initially in R mode, followed by A mode. In order to
minimize human error, the two trials were carried out one month apart.

https://github.com/open-mmlab
https://github.com/open-mmlab
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2.5. Statistical Analysis

We used several different metrics to assess the performance of the model. The speci-
ficity, sensitivity, positive predictive value (PPV), negative predictive value (NPV), F1-score,
accuracy, receiver operating characteristic (ROC), and area under the curve (AUC) were
calculated using the Numpy, Scikit-learn, and Matplotlib packages. The two-sided P values
and confidence intervals (CIs) of the AUCs used in the HSIL identification models were
determined using the Delong method [24]. All the metrics above were calculated as follows:

True negative (TN): the number of patches/cases correctly identified as p16− or
non-HSIL

False negative (FN): the number of patches/cases incorrectly identified as p16− or
non-HSIL

True positive (TP): the number of patches/cases correctly identified as p16+ or HSIL
False positive (FP): the number of patches/cases incorrectly identified as p16+ or HSIL
Specificity: The specificity of a test is its ability to determine the p16− or non-HSIL

patches/cases correctly. To estimate it, the proportion of true negatives in those cases is
calculated. Mathematically, this can be stated as:

Specificity =
TN

TN + FP
(7)

Recall/sensitivity: The sensitivity of a test is its ability to determine the p16+ or HSIL
patches/cases correctly. To estimate it, the proportion of true positives in those cases is
calculated. Mathematically, this can be stated as:

Recall = Sensitivity =
TP

TP + FN
(8)

Positive predictive value (PPV): The PPV of a test is its ability to determine the
proportion of true p16+ or HSIL in the total number of positive patches/cases tested.
Mathematically, this can be stated as:

PPV =
TP

TP + FP
(9)

Negative predictive value (NPV): The NPV of a test is its ability to determine the
proportion of true p16− or non-HSIL in the total number of negative patches/cases tested.
Mathematically, this can be stated as:

NPV =
TN

TN + FN
(10)

F1-score: the F1-score is a measure of the accuracy of the binary classification model
and can be seen as a reconciled average of the model accuracy and recall

F1−core =
2 × recall × precision

recall + precision
(11)

Accuracy: the accuracy of a test is its ability to differentiate the p16− and p16+ (HSIL
and non-HSIL) cases correctly. To estimate the accuracy of a test, the proportion of true
positives and true negatives in all evaluated cases is calculated. Mathematically, this can be
stated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

3. Results

In this section, the experimental results of the segmentation and the classification
models of HSIL are mainly shown, as are the experimental results of the segmentation
models for p16 and whole slices, respectively.
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3.1. AI-Assisted Squamous Intraepithelial Lesion (SIL) Assessment Workflow

Digital pathology now refers to AI-based digital image detection, segmentation, diag-
nosis, and analysis. The workflow interface is displayed in Figure 4. Upon the import of a
WSI, the squamous epithelial detector is triggered to outline the squamous epithelial layers,
after which the squamous epithelial layers are parted into patches. Then, the p16-positive
and HSIL identification module classifies each patch as normal, p16-positive, or HSIL and
highlights the lesion area. To assist pathologists with HSIL assessment, the mitotic cell is
detected and highlighted.
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Figure 4. Two typical steps are involved in artificial intelligence approaches: deep learning and
hand-crafted feature engineering. (a) Epithelial extraction model to isolate the squamous epithelium
layer from the H&E slides; (b) Skeleton-based partition to get vertically divided patches based on a
distance transform-based medial axis; (c) Diagnostic module: tissue-level analysis (HSIL and p16-
positive area segmentation model on H&E) and cell-level analysis (nuclear density, mitotic detection).

3.2. p16-Positive Area Highlights and Analysis

The model highlighted the p16 positive areas of the H&E WSIs. In the quantitative
analysis, the saliency maps generated by the algorithm achieved an intersection over
union (IoU) of 72.64 on the test set. As displayed in Figure 5, the model achieved high
correspondence between the predicted and actual p16-positive areas. In our research, when
the p16-positive diffuse fraction was above the threshold of 5%, the patches were predicted
to be p16-positive. Table 1 shows the performances of the p16 prediction models, with an
average sensitivity of 0.890 [0.871–0.919] and an accuracy of 0.894 [0.874–0.921].

Table 1. Performances of the deep learning models in predicting p16 positive regions.

Model/Class Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%) F1-Score (%)

Swin-B based segmentation

p16+/p16− 89.0
[87.1–91.9]

89.6
[87.2–91.6]

89.4
[87.4–92.1]

87.0
[84.6–89.7]

91.0
[89.7–93.5]

88.0
[86.4–89.7]
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the uterine cervix; (b) p16 IHC of the squamous epithelium of the uterine cervix; (c) the artificial
intelligence model identified the p16-positive area on H&E.

3.3. HSIL Area Highlights and Analysis

In order to evaluate the HSIL classification performance on patches, we compared
the HSIL region segmentation network with the image classification model based on the
ResNet-50 backbone. For the segmentation phase, when the HSIL diffuse proportion of
patches was greater than the threshold of 10%, those patches were predicted to be HSIL.
Swin-B based segmentation achieved 0.914 [0.889–0.928] accuracy in the testing set for
HSIL classification on patches, whereas the ResNet-50 model achieved 0.845 [0.822–0.863]
accuracy (Table 2). As the HSIL region annotation was sparse, the predictions of the HSIL
segmentation were more prudent but accurate. Figure 6A shows the pathologist-labeled
H&E images of HSIL and the AI-predicted images of HSIL. The region of interest of the
segmentation model agreed with that of the pathologist. The model successfully detected
HSIL regions that were characterized by hyperchromatic atypical cells with a high nucleus-
to-cytoplasmic ratio and high mitotic activity. Additionally, Figure 6B depicts the ROC
curves for ResNet50, where the mean AUC was 0.935 [0.921–0.946]. For the Swin-B based
segmentation model, the accuracy and sensitivity for patient level were 84.2% and 90%,
respectively (Table 3).
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Table 2. The HSIL performances of the CNN classification with ResNet-50 and the segmentation
with Swin-B.

Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%) F1-Score (%) AUC (%)

Method 1: Segmentation with Swin-B

HSIL 64.9
[59.1–71.0]

97.0
[95.5–97.9]

91.4
[88.9–92.8]

81.0
[76.5–86.6]

93.0
[91.7–94.3]

72.0
[67.0–77.5] NA

Method 2: CNN classification with ResNet-50

HSIL 92.2
[89.6–95.4]

82.9
[81.4–84.7]

84.5
[82.2–86.3]

53.1
[49.7–58.2]

98.1
[97.2–98.7]

67.4
[64.6–70.8]

93.5
[92.1–94.6]
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Figure 6. (A) The segmentation model can accurately identify HSIL among p16 positive areas.
(a) H&E of the squamous epithelium of the uterine cervix; (b) labeled high-grade squamous intraep-
ithelial neoplasia; (c) areas of high-grade squamous intraepithelial lesions detected by segmentation
with Swin-B. (B) HSIL ROC curves for the ResNet-50 model. The area under the curve (AUC) for
HSIL was 0.94 for ResNet-50.
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Table 3. The whole slide image segmentation confusion table of HSIL.

Model/Class Sensitivity
(%)

Specificity
(%)

Accuracy
(%) PPV (%) NPV (%) F1-Score

(%)

Segmentation with Swin-B

HSIL 90.0
[85.7–94.5]

77.8
[73.4–82.5]

84.2
[80.3–90.2]

81.8
[77.5–86.4]

87.5
[83.0–93.3]

85.7
[80.6–91.6]

3.4. Comparisons with Pathologists and a Pilot Study of AI Assistance

In order to test the AI model in clinical practice, the WSIs of the testing set were tested
by four pathologists. An initial independent diagnosis was made by the four pathologists
reviewing the WSIs, and a second diagnosis was obtained with the AI model. The initial
diagnostic accuracy of the four pathologists was lower than that of the model. Notably,
the consensus among the four pathologists was not unanimous, and some of the initial
diagnoses were altered; however, all four pathologists performed better (Figure 7). The
diagnostic performance of the pathologists alone versus when working with an AI model
indicates that the AI model improved the pathologists’ diagnostic accuracy.
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4. Discussion

We developed a novel AI model that achieved a high accuracy of 0.845, a high recall of
0.922, and an AUC of 0.935 (Table 2). We demonstrated that deep-learning AI can accurately
distinguish HSIL regions among cervical squamous epithelium as well as p16-positive
regions. Furthermore, we showed that with AI diagnostic system assistance, gynecologic
pathologists can diagnose HSIL more accurately.

Extraordinary breakthroughs in artificial intelligence have been made in pathol-
ogy research during the past few decades. The classification of various malignancies
has been widely used to assist in diagnosis, predict prognosis, and monitor molecular
changes [25–27]. Cervical cancer is easily preventable with early screening and diagnosis.
It is acknowledged that the bulk of deep learning-based artificial intelligence has been
used in cytology, colposcopy, and DNA methylation research for cervical intraepithelial
lesions [28–30]. Jian et al. [31] showed that machine learning can identify methylation
signals associated with the development of cervical cancer at qualitative and quantitative
levels. Tan et al. [32] developed a CNN-based TCT cervical-cancer screening model that
improved speed and accuracy and overcame the shortage of medical resources required for
cervical cancer screening. One study of colposcopy conducted by Chen et al. [33] showed
that AI has the potential to assist in colposcopies for the accurate diagnosis of cervical
disease and early therapeutic intervention in cervical precancer. Despite the promising
performance of AI with colposcopy imaging and TCT, there are still shortcomings. For
example, most studies only applied static colposcopy images rather than real cervical
regions to develop AI models, resulting in information bias in cervical lesion feature ex-
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traction. Furthermore, cytology-based cervical screening has poor accuracy, and the gold
standard for the diagnosis of precancerous cervical lesions is histology rather than cytology.
Overall, the findings suggest that AI-based deep learning algorithms have achieved better
performance in all aspects of cervical cancer. Future research should focus on develop-
ing AI models that can effectively analyze histological images to improve the accuracy
of cervical precancer diagnosis. The application of AI to cervical cancer screening and
diagnosis has great potential to improve patient outcomes and reduce the burden of this
preventable disease.

In order to effectively identify HSIL, an AI-based system was developed in this study.
Different from previous studies [34] that segmented the SIL directly on the H&E image,
we used Swin-B based segmentation to automatically predict the p16-positive areas in
the H&E images, and we further identified the HSIL regions in the p16 areas by Swin-B
based segmentation and ResNet-50 based classification. The morphological diagnosis of
cervical biopsy specimens is subjective, with poor inter- and intra-observer agreement.
Pathologically, the IHC of p16 has been shown to contribute to the diagnosis of HSIL/CIN2
and HSIL/CIN3, and its diagnosis is more reliable than morphology based on H&E staining
alone [35]. In addition, Ki67 has been considered a sensitive biological marker of cell
proliferation and CIN progression [36]. Overexpression of p16 and Ki67 correlates with the
severity and progression of the cervical lesion [37,38]. The advantage of our research is that
p16 prediction areas were introduced as auxiliary information to improve the diagnosis
accuracy of HSIL.

The advantage of this study was that p16 prediction areas were introduced as auxiliary
information to improve the accuracy of HSIL diagnosis. The results of this study suggest
that the Swin-B based segmentation model achieved high correspondence between the
predicted and actual p16-positive areas, indicating its potential as a reliable tool for assisting
pathologists in detecting lesion regions and HPV infection. Deep learning algorithms were
effective at classifying the morphological features of lesions observed in WSIs, with the
segmentation model based on Swin-B achieving 91.4% accuracy for HSIL and the ResNet-50
model achieving 84.5% accuracy (Table 2). This suggests that when predicting the masks for
analysis, dividing the squamous epithelium into smaller lesions contributes to improving
diagnostic accuracy. It is worth mentioning that the segmentation model has been improved
in most indexes to a certain degree. We speculate that small patches can better demonstrate
the local features of HSIL.

Additionally, visual inspection showed that the model successfully detected HSIL
regions that were characterized by hyperchromatic atypical cells with a high nucleus-to-
cytoplasmic ratio and high mitotic activity. Furthermore, the ResNet-50 model generated an
AUC of 0.935 [0.921–0.946] in HSIL classification (Figure 6B). These results demonstrate the
potential of deep learning algorithms for detecting precancerous lesions more accurately
and efficiently, with a higher clinical value. Even so, the performance of the classification
model on the test set is generally acceptable; the next step should focus on improving
HSIL detail differentiation. When the pathologists utilized the AI model to make a second
diagnosis, they all performed better. Overall, the results are significant as they suggest
that the AI model has the potential to serve as a valuable tool to assist pathologists in
making more accurate and consistent diagnoses and to solve the problems of the high
similarity of cervical pathological images, the inadequate experience of pathologists, and
larger workloads.

Some limitations should be mentioned in this work. First, cervical intraepithelial neo-
plasia is a spectrum of disease progression. Different degrees of lesions, normal squamous
epithelium, and stroma are mixed. Hence, it is difficult to define a clear ground truth
in certain patches. Additionally, the epithelium embeds in various directions in cervical
biopsy specimens, with asymmetrical forms. These factors make it difficult to extract the
whole layer of the cervical epithelium. Otherwise, a rigorous histological diagnosis should
consider a combination of clinical information, imaging interpretation, and fundamental
histological knowledge. This makes such intricate analyses only using AI seem challenging.
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In our future work, we plan to explore various avenues for improving the performance
of our deep learning model in HSIL diagnosis. One potential direction is to focus on the
development of multi-modal models that can leverage additional sources of information,
such as patient history and clinical exam data, to enhance the accuracy of our predictions.
Additionally, we will investigate methods for improving the interpretability of our model,
which is critical for facilitating its adoption in clinical practice. Furthermore, we will seek
to validate our model on larger and more diverse datasets, including external datasets, to
establish its generalizability and robustness to variations in imaging quality and patient
population. Finally, we will conduct clinical studies to evaluate the clinical utility of our
model and its potential to improve patient outcomes.

The findings in this study demonstrate that the deep learning-based AI model achieves
comparable accuracy to skilled pathologists in detecting HSIL and even surpasses their
accuracy. Additionally, we believe that our model has great potential as an auxiliary
diagnostic tool that can not only significantly improve diagnostic accuracy but also save
diagnostic time and labor costs. Furthermore, the proposed deep learning-based system
can help prevent misdiagnosis resulting from human error and negligence and guide
follow-up treatment.
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