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Abstract: The use of medical images for colon cancer detection is considered an important problem.
As the performance of data-driven methods relies heavily on the images generated by a medical
method, there is a need to inform research organizations about the effective imaging modalities,
when coupled with deep learning (DL), for detecting colon cancer. Unlike previous studies, this
study aims to comprehensively report the performance behavior for detecting colon cancer using
various imaging modalities coupled with different DL models in the transfer learning (TL) setting to
report the best overall imaging modality and DL model for detecting colon cancer. Therefore, we
utilized three imaging modalities, namely computed tomography, colonoscopy, and histology, using
five DL architectures, including VGG16, VGG19, ResNet152V2, MobileNetV2, and DenseNet201.
Next, we assessed the DL models on the NVIDIA GeForce RTX 3080 Laptop GPU (16GB GDDR6
VRAM) using 5400 processed images divided equally between normal colons and colons with cancer
for each of the imaging modalities used. Comparing the imaging modalities when applied to the five
DL models presented in this study and twenty-six ensemble DL models, the experimental results
show that the colonoscopy imaging modality, when coupled with the DenseNet201 model under the
TL setting, outperforms all the other models by generating the highest average performance result of
99.1% (99.1%, 99.8%, and 99.1%) based on the accuracy results (AUC, precision, and F1, respectively).

Keywords: deep learning; transfer learning; classification; colon cancer; medical imaging

1. Introduction

Cancer is an oftentimes rapidly spreading disease that drastically affects human
health [1]. One of the most common types of cancer is colon cancer, which is sometimes
caused by polyps in the colon wall, as shown in Figure 1 [2]. Colon cancer is the second
and third most prevalent cancer in terms of death and incidence rates, respectively [3].
Consequently, previous studies have proposed many methods for improving the detection
of colon cancer [4–7]. Medical imaging is one method used for detecting colon cancer.
However, dealing with large numbers of medical images causes difficulties for specialists,
which results in delays in the detection of colon cancer and, thus, delays in treatment.
Therefore, automating the detection of colon cancer using deep learning (DL) attends to
these challenges effectively.

Patino-Barrientos et al. [8] employed the VGG16 DL model to classify colon polyps as
either malignant or nonmalignant, using an image dataset that consisted of 600 colonoscopy-
derived images (from a private institution) based on Kudo’s method. The VGG16 model
was utilized in two different ways, as demonstrated as follows: for the first situation, a
pre-trained VGG16 model on ImageNet was used for the feature extraction, freezing layers
pertaining to the convolutional feature extraction while changing the densely connected
classifier to address the new binary classification problem. The convolutional feature
extraction of the VGG16 model was then applied to the training data related to colon cancer,
and the resulting features were used as inputs for the densely connected classifier to induce
the model to perform predictions of unseen colon cancer images. For the second situation,
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a pre-trained VGG16 with fine tuning was used, which freezes the bottom layers while
unfreezing the remaining layers. Compared to other machine-learning-based methods
that use hand-crafted features of histograms of an oriented gradient, the results from a
testing subset of the dataset demonstrate the superiority of the VGG16 model. Sarwinda
et al. [9] aimed to classify colon cancer as malignant or benign using histology-based
images. They utilized ResNet-based DL models, namely ResNet-18 and ResNet-50. Their
approach worked as follows: firstly, the images were pre-processed using the contrast
limited adaptive histogram equalization technique to generate improved images. Then,
employing ResNet-18 and ResNet-50 and using feature extraction, they froze all the layers
except for the densely connected classifier to deal with the binary classification problem.
Features were extracted from pre-processed training images and given to the densely
connected classifier, which was followed by the performing of predictions on the testing
images. In terms of the evaluation, the dataset was divided into training and testing three
times according to user-specified percentages. The reported results demonstrated the
feasibility of ResNet-based DL models.
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1 March 2023).

Ponzio et al. [10] aimed to classify colon cancer based on histological images. They
utilized the VGG16 DL model in three different ways, including transfer learning. The
first suggested model (a fully trained VGG16) consisted of training a VGG16 from scratch
on colon cancer data and performing predictions of unseen histology-based images that
were related to colon cancer. The second suggested model (a pre-trained VGG16 model
on ImageNet with feature extraction) was applied to histology-based training images to
extract features, and provided with corresponding labels for the machine learning algo-
rithm (SVM). The induced SVM model was then applied to a testing set (consisting of
feature vectors constructed from a pre-trained VGG16) to generate predictions. The third
suggested model (a pre-trained VGG16 model on ImageNet with fine tuning) froze some
layers while unfreezing the remaining layers. The experimental results demonstrated that
pre-trained VGG16 models utilizing transfer learning (i.e., the second and third VGG16
models) outperformed the supervised learning approach of the VGG16 which was fully
trained from scratch. Basha et al. [11] developed a CNN called RCCNet to classify colon can-
cer nuclei into four categories: miscellaneous, fibroblast, epithelial, and inflammatory. Their
developed model was compared with various DL models: WRN, GoogLeNet, AlexNet,
softmaxCNN, and softmaxCNN_IN27, and their proposed model achieved the best per-
formance results. Ribeiro et al. [12] used CNN with data augmentation to classify colon
images into two classes: healthy and abnormal. The experimental results demonstrated the
good performance of the utilized CNN.

The problem with detecting colon cancer using medical images depends on the data-
driven methods used and the images generated by an imaging modality. Unlike previous



Diagnostics 2023, 13, 1721 3 of 16

studies that have focused on evaluating the performance behavior of DL models in terms
of detecting colon cancer [8–12], our contributions can be summarized as follows:

(1) We utilized three imaging modalities, namely, CT [13], colonoscopy [14], and histology [15,16],
with five DL architectures, including VGG16 [17], VGG19 [17], ResNet152V2 [18], Mo-
bileNetV2 [19], and DenseNet201 [20].

(2) We comprehensively reported the performance behavior for the detection of colon
cancer, including generated images via different modalities coupled with DL models
in the transfer learning setting. Moreover, we constructed 26 ensemble DL models
and compared their performance against the 5 studied DL models.

(3) We identified the best overall imaging modality and DL model for the detection
of colon cancer. Specifically, our results reported that colonoscopy-based images
outperformed CT-based (and histology-based) images when coupled with DL models.

(4) Our reported results demonstrate the superiority of DenseNet201 compared to 30 other
DL models, including 4 DL methods and 26 ensemble DL models. According to the
average performance results, measured using a 5-fold cross-validation of the whole
dataset of colonoscopy-based colon cancer images, DenseNet201 generated the highest
average accuracy of 99.1%, the highest average area under the ROC curve of 99.1%,
the highest average F1 of 99.1%, and the highest average precision of 99.8%. Since
the 26 ensemble DL models generated inferior performance results, we moved their
results into the Supplementary Materials File.

2. Materials and Methods
2.1. Datasets

This study used four publicly available datasets for detecting colon cancer. Firstly,
we used the Cancer Genome Atlas Colon Adenocarcinoma Collection (TCGA-COAD)
dataset of CT imaging modalities (accessible at https://doi.org/10.7937/K9/TCIA.2016
.HJJHBOXZ accessed on 6 January 2023), which includes 8387 CT images of colon can-
cer [21–23]. Secondly, we used the CT COLONOGRAPHY dataset of CT imaging modalities
(accessible at https://doi.org/10.7937/K9/TCIA.2015.NWTESAY1 accessed on 6 January
2023), which includes 941,771 CT images, 268,652 of which are relevant to the current
field of study [24–26]. Thirdly, we used the HyperKvasir Dataset of colonoscopy imaging
modalities (accessible at https://doi.org/10.17605/OSF.IO/MH9SJ accessed on 6 January
2023), which includes 10,662 images and 374 videos that represent 23 and 30 categories,
respectively, and 99,417 undefined images. Among the identified dataset, there are four
videos of an instance of colon cancer and one video of a normal colon [27,28]. Fourthly, we
used the NCT-CRC-HE-100K-NONORM Dataset of histology imaging modalities (accessi-
ble at https://search.datacite.org/works/10.5281/zenodo.1214456 accessed on 6 January
2023), which includes 100,000 histology images and 23,080 images related to our study,
which were divided into 14,317 images of instances of colon cancer and 8763 images of
normal colons [29].

2.2. Pre-Processing

Pre-processing is a necessary phase of a medical image. It significantly affects the
prediction results for colon cancer [30]. The datasets were obtained from various sources
and techniques, including a subset of videos and poor-quality images with highlighted
information, black borders, blurred contrast, and noise, which could influence the learning
and prediction of the model. Therefore, we applied pre-processing to clean datasets,
enhanced medical image conversion, generated a dataset of images from the videos, deleted
blurred colon images, improved image quality, removed unwanted objects, and balanced
class distribution. Firstly, we cleaned the datasets of lesions that were unrelated to our
study. Then, we generated an image dataset for the colonoscopy technique by extracting
frames from videos of the HyperKvasir dataset depending on FPS [31]. Thereafter, we
removed the highlighted information by converting the color colon images to grayscale
and using the THRESH_BINARY method to generate a binary mask and distinguish high

https://doi.org/10.7937/K9/TCIA.2016.HJJHBOXZ
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and low pixel values; this was followed by the inpainting technique, which reconstructs the
colon image using nearby pixels [32,33]. Next, we processed highly unbalanced datasets
using a random undersampling technique that randomly selects samples from the majority
class to equate to the minority classes [34]. Table 1 shows the number of images used for
detecting colon cancer after applying the random undersampling method. Additionally,
we enhanced the contrast of images using the CLAHE method followed by the Gaussian
blur technique to remove any noise that the CLAHE method may have caused [35–37].
Moreover, we removed the black borders from the images to focus on processing the
important features [38]. Finally, we changed the multiscale of images to fit the inputs of
the CNN models using the INTER_LINEAR technique to 224 × 224 [39]. Figure 2 shows
images of the colon before and after the pre-processing procedure.

Table 1. The number of CT, histology, and colonoscopy images used for detecting colon cancer.

Dataset Modality
Distribution

POS 1 NEG 2

TCGA-COAD CT 900 -
CT COLONOGRAPHY CT - 900

NCT-CRC-HE-100KNONORM Histology 900 900
HyperKvasir Colonoscopy 900 900

1 POS refers to positive samples (cancer). 2 NEG refers to negative samples (normal).
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Figure 2. From left to right, the colon images of CT, colonoscopy, and histology, respectively, (a) before
and (b) after pre-processing.

2.3. Deep Learning Approach

The DL approach used for predicting colon cancer and distinguishing between normal

colons (negative) and colon cancer (positive) is shown in Figure 3. S = {(xi, yi)}
m

i = 1
is

a training set that includes m-labeled images obtained from various imaging modalities.
Each training example has a class label (0 or 1), where 0 indicates a normal colon and
1 indicates colon cancer. This study used five pre-trained CNN models, including VGG16,
VGG19, ResNet152V2, MobileNetV2, and DenseNet201. We adapted the five DL models to
our problem using a transfer learning method based on the ImageNet dataset and feature
extraction technique [40], whereby all layers were frozen with weights of ImageNet except
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for the last layer, which was replaced by a new dense layer that had one neuron and
sigmoid activation and was trained independently on each of the colon cancer datasets, as
shown in Figure 4. Each of the five DL models were trained independently on processed
images of a given modality. Then, the unseen datasets were tested on the trained models of
the same modality to generate predictions mapped to 0 and 1 as follows: if the prediction
is greater than 0.5, it is set to 1, which thus indicates colon cancer; otherwise, it indicates a
normal colon.
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3. Results
3.1. Classification Methodology

For each image dataset, we investigated the performance of three imaging modalities
(CT, histology, and colonoscopy) through five DL models (VGG16, VGG19, ResNet152V2,
MobileNetV2, and DenseNet201) for predicting colon cancer. The five DL models were
utilized in the transfer learning setting to address the classification task. After training,
the DL models were applied to the testing images to generate predictions, which were
mapped according to the following specified thresholds: 0 (normal colon) or 1 (colon
cancer). Furthermore, we constructed 26 ensemble DL models. Since the 26 ensemble DL
models did not outperform DenseNet201, we recorded their results in the Supplementary
Materials File. To evaluate the performance of the models, we used five performance
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metrics: accuracy (ACC), precision (PRE), recall (REC), F1, and area under the ROC curve
(AUC) [40,41]. To validate the performance of the DL models over the entire dataset, we
applied a five-fold cross-validation by partitioning each dataset into five folds. For each
run, we assigned five folds: four for the training set and one for the test set, where the
prediction was applied to the testing fold. Finally, we reported the average performance
results of the five runs using the following performance metrics:

ACC =
TP + TN

TP + TN + FP + FN
(1)

PRE =
TP

TP + FP
(2)

REC =
TP

TP + FN
(3)

F1 =
2 ∗ PRE ∗ REC

PRE + REC
(4)

where TP stands for true positive, referring to the number of colon cancer images that were
correctly classified as colon cancer. FN stands for false negative, referring to the number of
colon cancer images that were incorrectly classified as a normal colon. TN stands for true
negative, referring to the number of normal colon images that were correctly classified as a
normal colon. FP stands for false positive, referring to the number of normal colon images
that were incorrectly classified as colon cancer.

3.2. Implementation Details

In this experiment, we used the Spyder editor (Version 4.2.5), which we accessed using
Anaconda (Version 4.12.0) in Python (Version 3.8.8) [42,43]. We used the Keras library to
run five DL models [44]. The datasets were processed in the pre-processing stage using
OpenCV and NumPy libraries [45,46]. The training and testing of the DL models were
conducted on the NVIDIA GeForce RTX 3080 Laptop GPU with 16 GB GDDR6 VRAM.
For assessing the five DL models, we used the Sklearn library [46]. To obtain the box plot
statistics for the training and testing phases, we utilized ggplot2 in R [47].

3.3. Classification Results

The datasets used in this study included 5400 processed images that were divided
equally between normal colon and colon cancer and related to three types of medical
images. Based on that, we assessed the image datasets obtained from three imaging
modalities using five DL models (and we moved twenty-six ensemble DL models to the
Supplementary Materials File because they produced inferior results), which was then
followed by reporting their performances using a five-fold cross-validation.

3.3.1. Training Results

Figure 5 illustrates the performance of the DL models when applied to images derived
from imaging modalities on the training sets during a five-fold cross-validation based
on the ACC, PRE, REC, and F1 performance measurements. The boxplots showed that
DenseNet201 generated the highest performance results, according to ACC and PRE,
when coupled with images derived from colonoscopy and CT imaging modalities. When
DenseNet201 was coupled with images derived from CT imaging modality, it generated
the highest results. The DL models achieved poor performance results when they were
coupled with images that were derived from a histology imaging modality.
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3.3.2. Testing Results

Figure 6 shows that DenseNet201 achieved the best average performance results when
coupled with images that were derived from colonoscopy and CT imaging modalities.
Specifically, DenseNet201 (when coupled with colonoscopy-based images) achieved 99.1%
(99.8% and 99.1%) according to ACC (PRE and F1, respectively). Moreover, it obtained the
best average REC of 99.4% for images that were derived from a CT imaging modality, as
shown in Table 2. For images derived from a histology imaging modality, MobileNetV2
achieved the lowest average performance results (66.6–71.4%) based on employed perfor-
mance measures. According to Table 2, the colonoscopy imaging modality, when coupled
with the DenseNet201 model, achieved the most reliable performance results. Figure 7
illustrates the combined confusion matrices of a five-fold cross-validation on the test sets.
For each DL model and imaging modality, the sum of five test splits corresponds to the
combined confusion matrices, and the sum of entries indicates that the whole dataset was
used. Figure 8 displays the ROC curves for five DL models applied to the image datasets
obtained from CT, histology, and colonoscopy imaging modalities. The DL model with the
highest curve indicates the highest AUC results. It can be seen that DenseNet201 archives
the highest AUC values, which are recorded in Table 2.

Table 2. A performance comparison between the CT, histology, and colonoscopy imaging modalities
using different deep learning (DL) models during the 5-fold cross-validation on test sets for accuracy
(ACC), precision (PRE), recall (REC), F1, and area under the ROC curve (AUC). MACC is mean
accuracy, MPRE is mean precision, and MREC is mean recall. MF1 is mean f1. MAUC is mean AUC.
Bold represents the highest mean performance measure.

Imaging Modality Method MACC MPRE MREC MF1 MAUC

CT

VGG16 0.970 0.954 0.988 0.971 0.970
VGG19 0.933 0.935 0.931 0.933 0.933

ResNet152V2 0.945 0.939 0.950 0.945 0.945
MobileNetV2 0.816 0.889 0.727 0.798 0.816
DenseNet201 0.976 0.961 0.994 0.977 0.976

Histology

VGG16 0.868 0.851 0.892 0.871 0.868
VGG19 0.857 0.873 0.842 0.855 0.857

ResNet152V2 0.815 0.819 0.810 0.813 0.815
MobileNetV2 0.678 0.714 0.666 0.675 0.678
DenseNet201 0.912 0.911 0.912 0.912 0.912

Colonoscopy

VGG16 0.987 0.997 0.977 0.987 0.987
VGG19 0.982 0.994 0.971 0.982 0.982

ResNet152V2 0.964 0.978 0.950 0.963 0.964
MobileNetV2 0.945 0.992 0.895 0.942 0.945
DenseNet201 0.991 0.998 0.984 0.991 0.991
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4. Discussion

Our DL system included four parts: (1) data acquisition; (2) data pre-processing; (3) the
handling of the issue of binary classification under different medical imaging techniques,
where we aimed to detect colon cancer by distinguishing between normal colon and
colon cancer; and (4) the investigating of various imaging modalities through different
DL models in the transfer learning setting. After the image dataset acquisition, which
included 5400 images from normal colon and colon cancer of different imaging modalities,
we provided the processed image datasets to DL models and reported the performance
results using a five-fold cross-validation.

The technical contributions of this study are as follows: (1) the application of DL
models to detect colon cancer under different imaging modalities; (2) the conducting of ex-
perimental studies in the transfer learning setting using processed datasets of 5400 images
(900 of normal colons and 900 of colon cancer for computed tomography images; 900 of
normal colons and 900 of colon cancer for histology images; and 900 of normal colons and
900 of colon cancer for standard colonoscopy images); (3) the inclusion of an extensive per-
formance comparison of 5 DL models and 26 ensemble methods; and (4) the identification
of the best DL model associated with images generated by an imaging modality.

For an explanation pertaining to transfer learning, we passed the colon cancer image
samples through the feature extraction part of a pre-trained CNN on ImageNet to extract
the features, which were provided to a new densely connected classifier that was trained
from scratch. In other words, we reused the feature extraction part of a pre-trained CNN on
ImageNet by freezing the involved layers to extract the features from colon cancer images
while changing the densely connected classifier of the pertained CNN on ImageNet to
address the binary class classification problem in this study. It is worth noting that the term
‘feature extraction part’ refers to layers in the CNN that are related to feature extraction,
such as convolutional and pooling layers. Additionally, freezing a layer prevents its weight
from being updated [48]. It is evident that transfer learning is attributed to the weights
kept in the feature extraction part of the pre-trained CNN.

In this study, we employed deep transfer learning models to (1) report the perfor-
mance behavior of DL models when coupled with images generated via studied imaging
modalities; (2) assess the feasibility of DL; and (3) promote the use of AI as a tool that
can help doctors in the detection of colon cancer by identifying which imaging modality
leads to high performance results when coupled with a DL model. All the studied datasets,
which are cited in the datasets subsection, are labeled by domain experts and are publicly
available. The colon cancer CT image dataset (and the other colon cancer datasets obtained
from different modalities) consisted of 1800 images with a uniform class distribution. For
the training phase during a 5-fold cross-validation, we utilized a batch size set to 20 as
in [49,50], set the learning rate for the SGD optimizer to 0.0001 as in [51], and used bi-
nary_crossentropy as the loss function. Moreover, we trained the models for 20 epochs
coinciding with Ref. [50]. We used the testing fold to assess the performance of each
trained model. As the five-fold cross-validation ran five times, we reported the average
performance on the testing folds. In other words, we utilized the five-fold cross-validation
to report the performance on the whole dataset, as combining the images on the five testing
folds corresponded to the 1800 images in the colon cancer CT image dataset. It is worth
mentioning that during an iteration of a 5-fold cross-validation, the testing fold included
360 images from the 2 categories (180 images from each category), and the training splits
included 1440 images from the 2 categories (720 images from each category).

For the ensemble methods, the 26 (i.e.,
(

5
2

)
+

(
5
3

)
+

(
5
4

)
+

(
5
5

)
) ensemble DL

models were constructed using a majority vote as follows: for an ensemble of two DL

models, where
(

5
2

)
was the number of different ensemble DL models, each ensemble

consisted of two DL models out of five, and
(

n
r

)
denoted the binomial theorem. The



Diagnostics 2023, 13, 1721 13 of 16

five DL models included VGG16, VGG19, ResNet152V2, MobileNetV2, and DenseNet201.
Therefore, we created ten ensemble DL models by taking combinations of two out of the

five DL models. For an ensemble composed of three DL models,
(

5
3

)
was the number of

different ensemble methods, where each ensemble consisted of three DL models out of five.
Therefore, we created ten ensemble DL models by taking combinations of three out of the

five DL models. For the ensemble DL models composed of four DL models,
(

5
4

)
was the

number of different ensemble DL models. Therefore, we created five ensemble DL models
by taking combinations of four out of the five DL models. The last ensemble DL model

consisted of five DL models. Therefore, we created one (i.e.,
(

5
5

)
) ensemble DL model. We

used majority vote when making a prediction in each of the 26 ensemble methods. Since all
the 26 ensemble DL models did not perform well compared to DenseNet201, we moved
their results to the Supplementary Materials File.

5. Conclusions and Future Work

To assess image modalities for the task of colon cancer detection, we proposed using
DL models under transfer learning. For the image dataset preparation, we performed
the following tasks: cleaning, extracting frames, removing unwanted objects, handling
imbalanced categories, image enhancement, noise removal, removing black borders, crop-
ping, and resizing images. Then, several DL models (VGG16, VGG19, ResNet152V2,
MobileNetV2, and DenseNet201) were coupled with colon cancer images from various
imaging modalities (CT, histology, and colonoscopy) to discriminate between instances
of normal colons and colon cancer. Each DL model was independently trained on the
colon cancer image datasets of a given modality and then applied to the test set to perform
predictions. For an assessment of the DL models, including the 26 ensemble-based DL
models, we used a 5-fold cross-validation and several performance measures, including
accuracy, precision, recall, and F1. Unlike histology-based (and CT-based) images, the
experimental results demonstrated that DenseNet201 (under transfer learning with feature
extraction) coupled with images derived from standard colonoscopy achieved the best
average accuracy of 99.1%, the best average AUC of 99.1%, the best average precision of
99.8%, and the best average F1 of 99.1%.

Future work in this field should include the following: (1) the utilization of the
presented deep transfer learning method to investigate other imaging modalities, such
as MRI and PET, coupled with different pre-trained models, and (2) the expansion of the
binary classification problem to attend to the multiclass classification problem in order to
address classification tasks that are related to different cancer types.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/diagnostics13101721/s1.
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