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Abstract: The glenohumeral joint (GHJ) is one of the most critical structures in the shoulder complex.
Lesions of the superior labral anterior to posterior (SLAP) cause instability at the joint. Isolated
Type II of this lesion is the most common, and its treatment is still under debate. Therefore, this
study aimed to determine the biomechanical behavior of soft tissues on the anterior bands of the
glenohumeral joint with an Isolated Type II SLAP lesion. Segmentation tools were used to build a 3D
model of the shoulder joint from CT-scan and MRI images. The healthy model was studied using
finite element analysis. Validation was conducted with a numerical model using ANOVA, and no
significant differences were shown (p = 0.47). Then, an Isolated Type II SLAP lesion was produced in
the model, and the joint was subjected to 30 degrees of external rotation. A comparison was made for
maximum principal strains in the healthy and the injured models. Results revealed that the strain
distribution of the anterior bands of the synovial capsule is similar between a healthy and an injured
shoulder (p = 0.17). These results demonstrated that GHJ does not significantly deform for an Isolated
Type II SLAP lesion subjected to 30-degree external rotation in abduction.

Keywords: isolated type II SLAP; biomechanics; glenohumeral joint; nonsurgical treatment;
computational biomechanics

1. Introduction

The shoulder complex is the major joint in the upper body. It comprises five joints that
act together to allow upper limb mobility [1,2]. One of these is the glenohumeral joint (GHJ),
which is the most prone to suffer injuries and cause instability pathologies [3]. Superior
labral anterior to posterior (SLAP) lesions involve the soft tissues of the GHJ, specifically,
the upper edge of the glenoid components. Moreover, they can induce chronic pain and
decreased stability of the GHJ in active persons [4]. Possible causes of these lesions are
hyperextension falling on the outstretched extremity, heavy lifting, and direct trauma [5].
Overhead athletes are the most prone to suffer SLAP tears [6]. The SLAP tear is classified
into four subtypes depending on the extent of the labral tear and biceps anchor damage [7].
However, it has been further subdivided to delineate ten different types of SLAP tears [8,9].
Type I is defined as the degeneration of the tissue, which is generally asymptomatic. Type II
is a complete detachment between the labrum and humeral glenoid, and it is generally
diagnostic by both pain and instability. Type III and Type IV are defined as bucket handle
tears in the central portion of the structure. The difference between Type III and Type IV is
that the long tendon of the bicep does not have any lesion in Type III, whereas the bicep
tendon is displaced in Type IV. Type V is a mix between SLAP and Bankart lesion, and
Type VI is based on an unstable labrum. Type VII is a SLAP lesion that involves the Medium
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Glenohumeral Ligament (MGHL), and Type VIII is a Type II SLAP that extends until the
inferior posterior region. Type IX SLAP lesion is characterized as a complete labral injury
that extends throughout the entire circumference of the glenoid. A Type X SLAP lesion
refers to a tear of the superior labrum, which is also accompanied by a posterior-inferior
labral tear, commonly known as a reverse Bankart lesion.

On the other hand, Snyder et al. [10] indicated that Isolated Type II SLAP tear is the
most common type of SLAP lesion, involving about 55% of the total diagnosed lesions. It is
well-known that non-operative management is the first option for patients with a SLAP
lesion [11]. However, surgical treatment is needed when nonsurgical intervention fails.
The three most common options for surgical treatment in an Isolated Type II SLAP are
arthroscopic SLAP repair, biceps tenodesis alone [12], or biceps tenotomy [13]. There is still
a controversy about which surgical technique is preferred and if surgical treatment is the
best option [14,15]. Although some authors support the fact that nonsurgical treatment is
unsuccessful [7], others promote nonsurgical treatment [16,17]. Return-to-play for over-
head athletes ranged from 22% to 94%, and recent research shows around 64% success in
nonsurgical treatment [18]. SLAP Type II lesions are typically classified into three subtypes:
(i) an anterosuperior type II SLAP lesion, (ii) a posterosuperior type II SLAP lesion, and (iii)
a combined anterior and posterior type II SLAP lesion [19].

In this sense, a computational approach may support treatment for Isolated Type II
lesions based on the results of the biomechanical models. For example, several studies
have used finite element analysis (FEA) to evaluate the labrum effect over capsular strain
distribution [20–22]. Moreover, some authors have developed kinetic models of the shoul-
der to evaluate the instability lesions from the labrum without a capsule, studying the
influence of geometrical parameters of the humeral head on the mechanics of cuff tear
arthropathy [23,24]. However, no studies have assessed the effect of an Isolated Type II
SLAP lesion. Furthermore, the effect of SLAP lesions in isolated regions can be investigated
by determining the principal maximum strain in each region.

The present study aims to evaluate the mechanical response of the soft tissues on the
glenohumeral joint with an Isolated Type II SLAP lesion of Snyder classification, defined as a
slight tear between the upper part of the labrum and the glenoid components. The objective is
to clarify the biomechanics of the Isolated Type II SLAP lesion subjected to 30-degree external
rotation in abduction by comparing the biomechanical performance of a healthy shoulder
against a shoulder with SLAP Isolated Type II, considering the three subtypes.

2. Methods
2.1. 3D Model

A 3D model of the GHJ was conducted using computational segmentation from CT
scans and MRI images. The patient was a 23-year-old Hispanic male, with a height of
174 cm, without previous shoulder pathologies. We assume symmetry of the biomechanical
conditions; thus, only one shoulder is studied [25]. DICOM files were used for obtaining
the 3D model of bones using the imaging segmentation software 3D Slicer v4.11 [26],
applying semi-automatic segmentation. The slide thickness for the image was 0.7 mm,
0.5 mm, and 0.4 mm in sagittal, transverse, and coronal, respectively. Then, the model
was processed with the CAD software SolidWorks v29 to prepare the geometry. The
capsular joint was manually reconstructed using borders from the MRI, insertion lines
from CAD, and theoretical data, including synovial cavity thickness, tendon thickness, and
insertion zones [1]. The GHJ acts as having rotation without translation on some axes of
the glenohumeral head [1]. In addition, the capsule was built to preserve the insertion area
of the soft tissues defined in the CAD model.

2.2. Surface Reconstruction

The natural axes of rotation of the humerus were generated to represent movements
with greater anatomic precision. The metaphyseal cylinder was connected to the epiphyseal,
which was generated as a sphere. The center of this sphere was set as the center of rotation
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of the humerus, and the longitudinal axis of the cylinder was set as the humerus axis. In
addition, an offset ratio table with an epiphyseal sphere radius was interpolated to obtain
the actual offset of this model [27].

The retroversion axis was found perpendicular to the center of the junction line of
the ends of the cartilage, in a cutting plane that coincides with half of the sphere from the
transversal view. Then, the bicipital distance (BD) was evaluated as the perpendicular
distance between the retroversion axis and the end of the tuberosity of the humeral head.
Equation (1) shows the retroversion angle [28].

Retroversion = −2.33BD[mm]− 0.1 (1)

Then, the trans-epicondylar axis was drawn from one end of the humeral head to
the other. This axis must have an angle concerning the retroversion axis equal to the
retroversion angle. A bicipital distance of 12.1 mm and retroversion of −28.89◦ were
calculated, the negative sign means an angle in the posterior direction. All anatomical
axes are shown in Figure 1. With these data, the axes were drawn in the CAD model,
having the axis of retroversion parallel to the axis perpendicular to the face of the glenoid
component [29]. Finally, another line was drawn on the face of the glenoid component that
crosses the center point of the same [30].
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Figure 1. (A) Humerus presenting the epiphyseal sphere insertion and the metaphyseal cylinder
front view, (B) model top view.

The structure was taken to the initial position, defined as a humerus at 90◦ of abduction,
0◦ elevation, and 0◦ of external rotation. Notice that due to the relative movement of the
scapula, the 90◦ of the abduction of the humerus is 60◦ of inclination against the glenoid
component [29], as shown in Figure 2. The capsule was reconstructed according to the
measures of the regions in the patient’s data, as shown in Figure 3. A surface of 4 mm of
thickness is included at the edge of the capsule, between the capsule and bones, to represent
the labrum [21].

The capsule was divided into five regions, and their limits were determined based
on the surface grooves of the GH ligaments, where both structures work like one flexible
body. Differences in biomechanical properties and thickness characterize these regions: (i)
the anterior band of the inferior glenohumeral ligament (AB-IGHL), (ii) the axillary pouch
(AP), (iii) the posterior band of the inferior glenohumeral ligament (PB-IGHL), (iv) the
super anterior capsule, and (v) the posterior capsule [31]. The CAD model with the sections
is shown in Figure 4. The thickness reported in previous studies was used for each section,
including the labrum [20].
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Figure 2. (A) Shoulder in the neutral position on the top view, (B) shoulder in the neutral position on
the front view, (C) shoulder bones in the initial position on the front view.
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Figure 3. Shoulder with the capsule divided into five sections according to their material.
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3. Materials

Several models of glenohumeral articulation have been presented in the literature,
considering elastic [21] and hyperelastic [30] isotropic materials. In general, hyperelastic
isotropic materials adjust better to the mechanical behavior of soft tissues of the gleno-
humeral joint [20,21]. Therefore, the Veronda–Westmann and the Yeoh models for hypere-
lastic isotropic material were considered based on this.

Hyperelastic materials are defined by their strain energy density function W, which
can be expressed in terms of the invariants of the deformation. For an incompressible
isotropic material, three invariants are defined by the principal stretches λ according to
Equation (2). Additionally, the principal Cauchy stress σ1 under uniaxial tension, with
σ2 = σ3 = 0, is obtained from the derivative of the strain energy density concerning the
invariants, as shown in Equation (3).

I1 = λ2 +
2
λ

; I2 = 2λ +
1

λ2 ; I3 = 1 (2)

σ1 =
∂W
∂λ

= 2
(

λ2 +
2
λ

)(
∂W
∂I1

+
1
λ

∂W
∂I2

)
(3)

3.1. Yeoh Model

The Yeoh model, which is often expressed in third order, is a phenomenological model
characterized by using only a polynomial base and the first invariant diverter of stress [32].
Equation (4) shows the strain energy density function, where C10, C20, and C30 are material
constants for a third-order polynomial base [33].

W = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 (4)

Table 1 shows the values for the coefficients used in the Yeoh model for the different
regions of the joint capsule. These values were evaluated using least squares fitting from
the Veronda–Westmann constants provided in [30] for the glenohumeral ligaments with
capsule, with the coefficient of determination r2 > 0.97. The properties for the labrum are
used 45.6 MPa as tensile modulus [21], and 0.449 of Poisson’s ratio [20].

Table 1. Material constants in the Yeoh model for the different regions of the joint capsule.

Region C1 [MPa] C2 [MPa] C3 [MPa] R2 Thickness [mm]

Antero Superior 20.5 −26.5 185.3 0.99 2.8
Posterior 13.2 −19.6 125.9 0.99 1.5
AB-IGHL 11.9 −11.1 95.8 0.99 2.8
PB-IGHL 29.1 −18.4 206.5 0.99 1.3

Axillary pouch 0.22 −17.4 111.9 0.99 4.3

3.2. Finite Element Model and Boundary Conditions

Modeling was conducted using the general-purpose finite element software ANSYS
v2020R1 [34]. The FE model analyzed the capsule as a structure composed of five regions
according to ligaments, as proposed by [21]. Thus, the mechanical behavior of each ligament
can be calculated independently. The capsule was considered a surface and meshed with
SHELL181 elements, using triangular elements for irregular geometries and quadrilateral
elements for regular geometries where structured meshes can be produced. The humerus
was considered a rigid body meshed with 7836 elements. The scapula was considered a
fixed structure to study the relative displacement of the humerus [21,35,36]. A rotation in
the humerus was applied in an axial direction from 0 degrees to 30 degrees to simulate
an external rotation test [21], as shown in Figure 5. In addition, an internal pressure of 0.7
KPa was applied to the capsule to represent the internal pressure produced by the synovial
capsule [30,37,38].
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Figure 5. (a) Front view, and (b) isometric view for the boundary conditions applied to the 3D model:
uniformly distributed pressure caused by the synovial capsule (A), external rotation applied on the
humerus in the axial direction (B), and labrum fixed boundary (C).

The finite element model was based on a simple stability test which consists of com-
pression and external rotation of the humerus [39]. Tendons were not included, and the
study focused on the biomechanical behavior of the joint capsule and their ligaments. The
compression test was selected with simple rotation because of its low false positive rate and
its high rate of true positives [40]. A mesh independence test was performed to guarantee
asymptotic convergence of the equivalent elastic strain, for a final element size of 2 mm.
Then, the values of maximum principal strain in the main regions were determined to
perform the validation of the nonpathological model.

Bonded contact conditions were defined between the insertion line of the capsule
and the humeral head, the glenoid components bonded along the edges, and a frictionless
contact between the humeral head and the inner surface of the synovial capsule. Once
the biomechanical calculations of the glenohumeral articulation without pathologies were
conducted, validation was made. One-way ANOVA was performed in each tendon to
compare the maximum principal strains for the 3D model used in the present study and the
3D model used in a previous study [21]. We used an odd number of samples to ensure no
data repetition, and the statistical power was defined as 80%. In addition, the significance
level was 5%. The two models had no significant differences (p = 0.47) for the AB-IGHL
section. Then, the model is modified to represent the Isolated Type II SLAP lesion. Finally,
maximum principal strains were obtained for an injured and healthy shoulder.

3.3. A Joint Model with an Isolated Type II SLAP

SLAP lesions are prevalent, accounting for as much as 26% of injuries detected during
shoulder arthroscopy. Among them, Isolated Type II lesions are the most widespread [5,41,42].
Based on this pathological model, the numerical model was defined using the same contact,
displacements, and boundary conditions. The Isolated Type II lesion of the model was
built using data from medical images and CAD software. Labrum and glenoid component
tears were simulated by changing the fixed support ratio of the insertion zone. First, the
entire insertion area was fixed, and then, the contact was eliminated in the superior-anterior
zone. Consequently, there were simulated examples of the three subtypes of Isolated
Type II SLAP lesions [19], this kind of lesion can be determined with the glenoid labral
division [43]. Figure 6 shows how the glenoid can be divided into clock zones, and the
labrum is compared to a clock face where its superior section is situated at 12 o’clock and
its inferior section at 6 o’clock [44], where anterior SLAP is a lesion from 12 to 1, posterior
SLAP is a lesion from 11 to 12, and anterior to posterior SLAP is a lesion from 11 to 1.
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Figure 6. The glenoid labral division in time zones used to define subtypes of SLAP lesions. From
12 to 1: anterior SLAP, from 11 to 12: posterior SLAP, and from 11 to 1: anterior to posterior SLAP.

4. Results

The process of obtaining and defining an aligned 3D model of the GJ was based on
previous studies [45–47]. It allowed the calculation of the retroversion without the epi-
condyle, the anatomical structure used to measure the retroversion angle from the humeral
head [48]. Maximum principal strains of the healthy model show differences of 19%, 3%,
and 16% in AB-IGHL, axillary pouch, and PB-IGHL, respectively. These results agree with
the work by Drury [21]. The highest strain was shown in the lower regions of the capsule
AB-IGHL (28.6%) at 30-degree external rotation movement in abduction. It was followed
by the axillary pouch (25.2%), which helps withstand rotation and anterior displacement.
In addition, the posterior band of the glenohumeral (17.8%) ligament exhibited less strain
due to its function to limit the translation when this movement is performed.

The four models, the healthy glenohumeral joint and the three Isolated Type II SLAP
lesions, allowed a comparison of the strain distribution in the anterior bands. Three
pathological cases obtained the same results. Consequently, the anterior Type II SLAP was
used as a reference. Notice the strain in both cases is slightly similar (p = 0.17), as seen in
Figures 7 and 8. The detachments and their surrounding area are the only exceptions, but
they do not affect the rest of the structure.
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5. Discussion

No previous studies address the three subtypes of Isolated Type II lesions from the
computational point of view. Therefore, this work aimed to determine how the soft tissue
of the GHL responds to a rotation of 30◦. Previous computational models have assessed the
response of the bone structure to SLAP lesions but not the response of the soft tissue [23].

Maximum principal strain results of the healthy shoulder model suggested that the
anterior band of the inferior glenohumeral ligament is a region of high strain (28.6%)
for small rotations (up to 30◦). Considering its small size with slightly same properties
compared to the axillary pouch or the anterosuperior region, it is the most prone region to
injury [49]. The lowest maximum principal strains were shown in the PB-IGHL (17.8%).
Furthermore, the translation prefers the anterior direction due to the external rotation
movement, and the axillary pouch also has an important role in the shoulder movement
holding the humeral head. On the contrary, the PB-IGHL band showed a strain to hold it
in an elongated position during rotation. Therefore, this computational model supports
previous results showing that 95% of dislocations occur in the anteroinferior direction [2].

Moreover, the results confirm the role of the labrum in the movement of the gleno-
humeral joint due to maximum principal strains increased by up to 70% for only 30 degrees
of external rotation in abduction. In addition, the capsule can maintain the stability of the
entire joint despite the anterior SLAP. The model evaluated the strains for 30 degrees of
external rotation in abduction where the biceps have maximum participation [50], and the
authors expect a similar behavior for higher rotations considering the relation between the
biceps tendon and SLAP [51].

The results of this study are significant because the similarity in strains between the
healthy and lesion models suggests a minimum involvement of the upper section of the
capsule for small external rotations in abduction. The capsular structure can carry out an
external rotation without adverse effects on the shoulder up to 30 degrees from the biome-
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chanics point of view. This result can be associated with using external rotation movement
at 90 degrees in abduction as a recommended exercise for the nonsurgical treatment of
SLAP lesions, allowing the strengthening of muscles without hurting the capsule [42,52].
Further studies could assess higher rotations to determine the response of the capsule.
Usually, baseball players lead the shoulder in high external rotations; thus, computational
models can be used to validate nonsurgical treatments [53]. Moreover, a relevant percentage
of baseball players health the injure with nonsurgical treatments (32 of 44) [53]. Despite
this, it is notorious how the nonsurgical treatment for SLAP is a tentative alternative, with
some aspects to improve. Variations in both the therapy movements and the safe angles for
these movements can expand options for health professionals [42,50,52].

The similarity of the results between the healthy and the pathology model suggests
that the role of the upper section of the glenoid is minimum for small external rotations.
Therefore, other movements should be studied to clarify whether the SLAP can be treated
only with nonsurgical therapy. For that reason, it is suggested to model numerically and
experimentally other stability tests, such as the Hawkins–Kennedy test, which will help
clarify the involvement of the posterior band during a SLAP. Surgeons could use the results
obtained in this study to help decide on the most appropriate treatment for an Isolated
Type II SLAP lesion.

This study has some limitations. The bicipital tendon was not included in the compu-
tational model for the sake of simplicity. However, the detachment of the labrum is applied
in the insertion area of the long head of the bicipital tendon. From this point of view, adding
a body to the model to simulate the tendon behavior in the test is recommended. The
tendon could be represented as a body with a load collected from experimental data [36].
In addition, some values varied between this study and the studies in [21,22], probably due
to geometrical differences between models. These differences are the humeral retroversion
and the capsule size of the patient. However, how each band operates concerning the
others is preserved. In other words, the axillary pouch is the region that showed more
strain compared to the others, and the posterior region has the lowest maximum principal
strain. Moreover, results could vary with the use of different models, as only the shoulder
segmentation of an average Hispanic male was utilized. Considering the assumptions and
limitations of the model, there is a need for subject-specific studies and models with higher
degrees of rotation for future work.

6. Conclusions

In summary, an isolated SLAP does not generate a significant change in the biome-
chanical performance of the shoulder, and no negative effects are expected at 30 degrees
of external rotation in abduction for anterior Isolated Type II SLAP lesions. Therefore,
external rotation movement can be considered an appropriate exercise for the nonsurgical
treatment of athletes who carry out movements with small external rotations and workers
who do not carry weights above their height. Results do not differ considerably from the
non-operative treatment [54], and nonsurgical measures or surgery are recommended even
for failed SLAP repair [42]. The results obtained in this study will also help with upgrading
surgical algorithms for SLAP lesions proposed by some authors [11].
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