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Abstract: Background: Lumbar degenerative disc disease (LDDD) is a leading cause of chronic lower
back pain; however, a lack of clear diagnostic criteria and solid LDDD interventional therapies have
made predicting the benefits of therapeutic strategies challenging. Our goal is to develop machine
learning (ML)–based radiomic models based on pre-treatment imaging for predicting the outcomes
of lumbar nucleoplasty (LNP), which is one of the interventional therapies for LDDD. Methods: The
input data included general patient characteristics, perioperative medical and surgical details, and
pre-operative magnetic resonance imaging (MRI) results from 181 LDDD patients receiving lumbar
nucleoplasty. Post-treatment pain improvements were categorized as clinically significant (defined as a
≥80% decrease in the visual analog scale) or non-significant. To develop the ML models, T2-weighted
MRI images were subjected to radiomic feature extraction, which was combined with physiological
clinical parameters. After data processing, we developed five ML models: support vector machine,
light gradient boosting machine, extreme gradient boosting, extreme gradient boosting random forest,
and improved random forest. Model performance was measured by evaluating indicators, such as
the confusion matrix, accuracy, sensitivity, specificity, F1 score, and area under the receiver operating
characteristic curve (AUC), which were acquired using an 8:2 allocation of training to testing sequences.
Results: Among the five ML models, the improved random forest algorithm had the best performance,
with an accuracy of 0.76, a sensitivity of 0.69, a specificity of 0.83, an F1 score of 0.73, and an AUC
of 0.77. The most influential clinical features included in the ML models were pre-operative VAS and
age. In contrast, the most influential radiomic features had the correlation coefficient and gray-scale
co-occurrence matrix. Conclusions: We developed an ML-based model for predicting pain improvement
after LNP for patients with LDDD. We hope this tool will provide both doctors and patients with better
information for therapeutic planning and decision-making.

Keywords: degenerative disc disease; radiomics; machine learning; T2W image; lumbar spine; low
back pain
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1. Introduction

Lumbar degenerative disc disease (LDDD) is a leading cause of lower back pain [1,2]
and often serves as the first indicator of lumbar spinal degeneration, which will progress to
lumbar disc herniation, spurs formation, spinal stenosis, and finally degenerative spondy-
lolisthesis [3,4]. The ideal goals of LDDD treatment are both relieving symptoms and
postponing the degenerative process [5]. To achieve these purposes, current therapeutic
approaches to LDDD often involve a stepwise manner, which starts from conservative
treatment (medication and rehabilitation); interventional intradiscal therapies (IDTs) such
as lumbar nucleoplasty (LNP) and cooled radiofrequency ablation; discectomy; and ends
with the last solution of fusion fixation surgery [6,7]. IDTs represent a critically impor-
tant shift from conservative approaches to open surgery, and the efficacy of IDTs is the
determinantal factor of whether to adopt the next step of LDDD management [8]. Thus,
a modality that is able to predict the prognosis of IDTs is likely to be beneficial both in
helping patients to decide when/whether to receive IDTs and in helping doctors to plan
therapeutic strategies [8]. In response to the increasing clinical need to accurately predict
pain and functional outcomes following lumbar surgery, several authors have attempted
to develop models to approach these requirements [9–17]. For example, several previous
studies have discussed how machine learning can aid in the detection and classification
of LDDD using magnetic resonance imaging (MRI) [14,15]. Oktay et al. even claimed that
with the use of machine learning in MRI, the diagnosis of LDDD can achieve an accuracy
rate of 92.8% [13]. However, these studies only focused on diagnosis and grading without
addressing clinical solutions or prognosis. A well-known report proposed a segmenta-
tion network for diagnosing LDDD from T2-weighted images (T2WIs) and established
an automated quantitation system for LDDD evaluation to improve diagnostic accuracy
and efficiency [16]. Nevertheless, this model also did not provide suitable suggestions for
further treatment or outcome prediction. D’Antoni et al. discussed the current state of arti-
ficial intelligence (AI) in diagnosing chronic low back pain but did not focus on the decisive
roles of intervertebral discs in lower back pain [17]. In addition, Wirries et al. explored
how AI can facilitate decision-making for the treatment of lumbar disc herniation [12].
Staartjes et al. first investigated the pre-operative prediction of prognosis after lumbar
discectomy [18]. However, both studies only discussed the choices between and results of
conservative treatment and discectomy but omitted the crucial role of intervertebral discs.

MRI is a non-invasive method and represents the gold standard for detecting and
diagnosing LDDD. Axial T2WI during lumbar MRI (L-MRI) improves tissue contrast and
provides higher sensitivity than traditional computerized tomography (CT) imaging. Axial
T2WI is used as an image target to provide richer information on the status of the nucleus
pulposus of the intervertebral disc; the nucleus pulposus is mainly composed of 66% to 86%
water, with the remainder consisting primarily of type II collagen and proteoglycans. The
matrix of cartilage (soft bone) is made up of glycosaminoglycans, proteoglycans, collagen
fibers, and sometimes elastin. The similarities in materials between the intervertebral
disc and soft bone construct the intervertebral fibrocartilaginous joint. To better interpret
the differences between them and surrounding tissues in various characteristics, such as
collagen content, texture characteristics, annular tearing, degree of degeneration, flavum
ligament status, nerve impingement, canal stenosis, soft bone, and porosity tissue, T2WI
axial MRI is most helpful. The differentiation of these tissues in image presentation is
relevant to the improvement of patients’ surgical pain [19–21]. Therefore, L-MRI is a routine
imaging examination performed prior to lumbar spinal surgery.

Radiomic feature analysis refers to a quantitative approach for converting images into
parameters that can be used in advanced mathematical analyses, and it has been adopted
for a wide range of medical applications, including the evaluation and interpretation of
radiologic and pathologic images [22]. To analyze and quantify image textures, the AI-
assisted mathematical extraction of spatial distributions for signal intensities and inter-pixel
relationships has been effectively applied to the interpretation of medical images [23]. The
term “texture” originates from the surface characterization of textiles and can be used to
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describe the arrangement of any material composition visible in medical imaging. For
example, the lung or blood vessel texture is the most important property and concept
bridge to personalized medicine [24,25]. However, no unified or perfect mathematical
model currently exists that can be applied to all medical needs.

The technological analysis of medical imaging has rapidly advanced over recent
years [26], accompanied by an increase in the scale of available data, resulting in an
increased interest in the field of medical radiomics [27]. High-throughput calculations are
used to extract quantitative features from standard medical images, such as tomographic
images (CT, MRI, positron emission tomography) [28]. Radiomics is applied in many
fields through the numerical quantitative analysis of image intensity, texture, or shape,
minimizing the subjectivity of image reading and reducing inaccurate interpretations and
misdiagnoses [23,25,29].

The present study represents the first attempt at developing a predictive model using
AI and radiomic feature analysis for LNP prognosis in patients with LDDD. The model
provides predictions for therapeutic prognosis to support clinicians’ decision-making about
treatment strategies for LDDD. In addition, the model also has the potential to reduce
patients’ unnecessary suffering resulting from treatment delays. It could also lead to a
more personalized approach to patient care, optimized treatment plans, and ultimately
improved patient outcomes.

2. Materials and Methods
2.1. Population

This retrospective study enrolled 181 patients diagnosed with LDDD who received
LNP. Information was obtained from the China Medical University Hospital Information
System, including pre-operative L-MRI results, sex, age, height, weight, body mass index
(BMI), and medical history data, such as perioperative medical and surgical details and
clinical outcomes.

The exclusion criteria included patients younger than 20 years and patients lacking
L-MRI data within 180 days before the operation. A total of 181 de-identified patients
(associated with 314 axial T2WIs) were enrolled in this study (Figure 1). The data used in
this project were approved by the Institutional Review Board of China Medical Univer-
sity Hospital under certificate number CMUH109-REC3-033. All patients had signed an
informed consent form with a clear comprehension of the study details.

Figure 1. A flow chart showing the patient selection process for the present study (part I).

2.2. Primary Outcomes

The outcome of interest was the visual analog scale (VAS) value, including the values
recorded within 1 month before surgery (pre-VAS) and 1 month after surgery (post-VAS).
In addition, sex, age, height, weight, BMI, and disc level were recorded (Table 1). All axial
T2WIs from L-MRI were collected from the picture archiving and communication system
(PACS). This study compared the differences between VAS values before and after surgery
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(dVAS), calculated as dVAS = post-VAS − pre-VAS. An improvement rate (improvement
rate (IR) = −dVAS/pre-VAS) greater than or equal to 80% (IR ≥ 80%) was defined as a
significant improvement; all other values were defined as a non-significant improvement.
We divided all subjects into two groups based on the IR: group A contained patients
who showed significant improvement, and group B contained patients who showed non-
significant improvement. In the final analysis, group A included 84 patients, and group B
included 97 patients (Table 2).

Table 1. Patient’s characteristics.

Clinical Characteristics (n = 181)

Male 98 (54.1%)
Age (years) * 45.4 ± 10.4

Height (cm) *,a 165.6 ± 8.4
Weight (kg) *,b 69.0 ± 12.7

BMI *,c 25.3 ± 3.7
BMI, body mass index. * Values are expressed as the mean ± SD. Percentage of data deficient: a Height = 17.1%,
b Weight = 30.4%, c BMI = 34.3%.

Table 2. Operation characteristics.

Operation Items
Non-Significant

Improvement
(IR < 80%)

Significant
Improvement

(IR ≥ 80%)

Number of patients 97 84
Date Interval Between Image and Op (days) * 17.5 ± 23.5 17.5 ± 27.6

Op Segment Num * 1.8 ± 0.7 1.7 ± 0.7
Op Segment/MRI Axial T2 Total Num 171 143

L2/L3 12 (7.0%) 2 (1.4%)
L3/L4 24 (14.0%) 25 (17.5%)
L4/L5 76 (44.4%) 68 (47.6%)
L5/S1 59 (34.5%) 48 (33.6%)
VAS

Before Op * 7.0 ± 1.8 7.7 ± 1.8
After Op * 3.6 ± 1.3 0.7 ± 0.5

Op, Operation; VAS, Visual Analog Scale; L, Lumbar spinal; S, Sacrum. * Values are expressed as the mean ± SD.

2.3. MRI Parameters

All L-MRI data were performed within 180 days before operation. These images were
acquired by two 1.5T MR scanners (Signa Excite 1.5T MR system, 71 persons; Toshiba MRT
200 MR system, 150 persons) in China Medical University Hospital. The parameters loaded
from these two MRIs were the following: (1) Signa Excite 1.5T (GE Healthcare, IL, USA)
with the following parameters: axial T2-weighted frFSE (TR range/TE range, 4800/114.66;
echo train length, 15; bandwidth, 81 kHz; matrix, 320 × 224; slice thickness, 4 mm; and
Percent Phase FOV, 100. (2) Toshiba MRT 200 1.5T (Canon Medical Systems, CA, USA) with
the following parameters: axial T2-weighted (TR range/TE range, 5600/120; echo train
length, 23; matrix, 320 × 192; slice thickness, 4 mm; and Percent Phase FOV, 100.

2.4. Data Preprocessing

In addition to image information, physiological patient data were used to develop
the machine learning (ML) models, including sex, age, operative level, pre-VAS, and
post-VAS (Figure 2). Prior to generating the ML models, L-MRI axial-T2WI and clinical
physiological parameters underwent data preprocessing, which involved the following
five steps (Figure 3).
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Figure 2. Flow chart showing the study procedures (part II).

Figure 3. Methodology pipeline.

2.4.1. Rescale

Image size varied as images were acquired using multiple MRI scanners. The original
DICOM image pixel sizes were 320 × 320, 320 × 356, 512 × 512, and 512 × 568. We
collected the pixel spacing value in every DICOM file and counted the plural of these
figures. We rescaled all images to display at the same scale by adjusting the images based
on the pixel spacing value (the plural was approximately 0.35). After rescaling, the image
size changed to 511 × 511, 512 × 512, 540 × 540, 568 × 511, 568 × 512, 568 × 568, 625 × 625,
and 654 × 654. These images were obtained from multiple MRI scanners, and differences in
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image scaling can affect feature calculations. We then extended outwards from the critical
hot spots of disc degeneration and cropped the images to a size of 224 × 224 to facilitate
focused calculation of critical features in subsequent analyses. We used the radiomic toolkit
to extract features from the images, including descriptors of the intensity histogram, size-
and shape-based features, voxel relationship descriptors, e.g., size zone matrix (SZM), gray-
level co-occurrence matrix (GLCM), etc.; there were 91 features. Finally, we standardized
the clinical and radiomic feature data by transforming them from their natural range (e.g.,
age range from 1 to 100) into a standardized range of 0 to 1.

2.4.2. Crop

In order to focus on disc degeneration of the lumbar spine. Our study cropped the
MRI image size to 224 × 224 by extension from the image center, which contained the
critical hot spots of disc degeneration.

2.4.3. Radiomic Features Extraction

Radiomic features can be classified into five categories: descriptors of the intensity
histogram, size, and shape-based features, voxel relationship descriptors [e.g., SZM, GLCM,
run length matrix (RLM), neighborhood gray-tone difference matrix (NGTDM)-derived
textures, and filtered image], and fractal-based textures. In this study, 91 radiomic features
were extracted from these five categories—please see (Table 3).

Table 3. Radiomic features.

Radiomic Feature Items
Non-Significant
Improvement
(dVAS < 80%)

Significant
Improvement
(dVAS ≥ 80%)

p Value

diagnostics_Image-original_Mean 1368.18 ± 743.97 1504.12 ± 732.85 0.406
diagnostics_Image-original_Minimum −26.80 ± 153.84 −23.14 ± 168.39 0.310
diagnostics_Image-original_Maximum 5235.06 ± 2482.10 5612.69 ± 2411.79 0.481
original_firstorder_10Percentile 608.20 ± 371.87 677.73 ± 373.53 0.320
original_firstorder_90Percentile 2600.52 ± 1342.56 2830.89 ± 1314.54 0.333

original_firstorder_Energy 163,674,023,588.18 ±
132,128,707,225.62

188,331,818,772.32 ±
132,077,417,316.23 0.800

original_firstorder_Entropy 6.30 ± 1.04 6.47 ± 0.99 0.223
original_firstorder_InterquartileRange 1033.82 ± 606.15 1114.88 ± 629.7 0.780
original_firstorder_Kurtosis 4.57 ± 1.81 4.7 ± 1.76 0.985
original_firstorder_Maximum 5235.06 ± 2482.1 5612.69 ± 2411.79 0.481
original_firstorder_MeanAbsoluteDeviation 657.37 ± 331.50 710.06 ± 333.02 0.551
original_firstorder_Mean 1368.17 ± 743.97 1504.11 ± 732.84 0.406
original_firstorder_Median 1066.95 ± 619.43 1187.38 ± 617.89 0.863
original_firstorder_Minimum −26.80 ± 153.84 −23.14 ± 168.39 0.310
original_firstorder_Range 5261.86 ± 2543.46 5635.84 ± 2446.62 0.436
original_firstorder_RobustMeanAbsoluteDeviation 450.48 ± 249.17 484.75 ± 256.48 0.931
original_firstorder_RootMeanSquared 1601.56 ± 837.35 1754.75 ± 824.08 0.427
original_firstorder_Skewness 1.34 ± 0.45 1.36 ± 0.46 0.788

original_firstorder_TotalEnergy 163,674,023,588.18 ±
132,128,707,225.62

188,331,818,772.32 ±
132,077,417,316.23 0.800

original_firstorder_Uniformity 0.02 ± 0.02 0.02 ± 0.02 0.248
original_firstorder_Variance 839,905.29 ± 626,984.51 957,832.26 ± 655,527.73 0.633
original_glcm_Autocorrelation 5530.37 ± 4687.35 6248.81 ± 4372.8 0.996
original_glcm_ClusterProminence 163,352,102.96 ± 173,653,483.58 205,207,752.11 ± 205,943,224.75 0.047
original_glcm_ClusterShade 543,555.56 ± 482,508.89 655,848.32 ± 571,342.03 0.092
original_glcm_ClusterTendency 5231.25 ± 3910.18 5971.74 ± 4095.13 0.626
original_glcm_Contrast 145.71 ± 110.52 161.72 ± 116.18 0.323
original_glcm_Correlation 0.95 ± 0.01 0.95 ± 0.02 0.207
original_glcm_DifferenceAverage 6.98 ± 3.76 7.43 ± 3.78 0.832
original_glcm_DifferenceEntropy 3.99 ± 1.01 4.10 ± 0.97 0.233
original_glcm_DifferenceVariance 81.62 ± 60.34 90.76 ± 63.17 0.294
original_glcm_Id 0.32 ± 0.15 0.30 ± 0.14 0.101
original_glcm_Idm 0.25 ± 0.17 0.23 ± 0.16 0.077
original_glcm_Idmn 1.00 ± 0.00 1 ± 0.00 0.320
original_glcm_Idn 0.97 ± 0.01 0.97 ± 0.01 0.356
original_glcm_Imc1 −0.28 ± 0.07 −0.28 ± 0.06 0.336
original_glcm_Imc2 0.98 ± 0.01 0.98 ± 0.01 0.354
original_glcm_InverseVariance 0.23 ± 0.13 0.21 ± 0.12 0.089
original_glcm_JointAverage 56.78 ± 32.27 62.09 ± 30.8 0.360
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Table 3. Cont.

Radiomic Feature Items
Non-Significant
Improvement
(dVAS < 80%)

Significant
Improvement
(dVAS ≥ 80%)

p Value

original_glcm_JointEnergy 0.00 ± 0.01 0.00 ± 0.01 0.569
original_glcm_JointEntropy 10.86 ± 2.08 11.14 ± 1.98 0.183
original_glcm_MCC 0.95 ± 0.01 0.95 ± 0.01 0.260
original_glcm_MaximumProbability 0.01 ± 0.02 0.01 ± 0.03 0.255
original_glcm_SumAverage 113.56 ± 64.53 124.17 ± 61.59 0.360
original_glcm_SumEntropy 7.26 ± 1.04 7.42 ± 0.99 0.235
original_glcm_SumSquares 1344.24 ± 1003.55 1533.37 ± 1049.85 0.627
original_glrlm_GrayLevelNonUniformity 882.08 ± 595.29 793.96 ± 546.74 0.174
original_glrlm_GrayLevelNonUniformityNormalized 0.02 ± 0.02 0.02 ± 0.02 0.170
original_glrlm_GrayLevelVariance 1356.41 ± 1003.47 1544.7 ± 1048.67 0.648
original_glrlm_HighGrayLevelRunEmphasis 5689.55 ± 4760.94 6421.58 ± 4446.22 0.976
original_glrlm_LongRunEmphasis 1.64 ± 0.86 1.58 ± 1.07 0.588
original_glrlm_LongRunHighGrayLevelEmphasis 6413.82 ± 5129 7259.89 ± 4796.66 0.994
original_glrlm_LongRunLowGrayLevelEmphasis 0.03 ± 0.07 0.03 ± 0.11 0.719
original_glrlm_LowGrayLevelRunEmphasis 0.01 ± 0.01 0.01 ± 0.01 0.321
original_glrlm_RunEntropy 6.89 ± 0.64 7.01 ± 0.61 0.357
original_glrlm_RunLengthNonUniformity 36,993.99 ± 9660.69 38,071.55 ± 8999.26 0.069
original_glrlm_RunLengthNonUniformityNormalized 0.82 ± 0.14 0.83 ± 0.13 0.087
original_glrlm_RunPercentage 0.88 ± 0.11 0.90 ± 0.10 0.095
original_glrlm_RunVariance 0.28 ± 0.43 0.26 ± 0.59 0.762
original_glrlm_ShortRunEmphasis 0.92 ± 0.07 0.92 ± 0.07 0.113
original_glrlm_ShortRunHighGrayLevelEmphasis 5532.21 ± 4666.78 6239.28 ± 4356.67 0.976
original_glrlm_ShortRunLowGrayLevelEmphasis 0.00 ± 0.01 0.00 ± 0.01 0.162
original_glszm_GrayLevelNonUniformity 468.18 ± 123.28 447.00 ± 123.74 0.781
original_glszm_GrayLevelNonUniformityNormalized 0.02 ± 0.01 0.02 ± 0.01 0.273
original_glszm_GrayLevelVariance 1388.83 ± 1007.04 1575.18 ± 1050.35 0.687
original_glszm_HighGrayLevelZoneEmphasis 5945.45 ± 4826.46 6695.76 ± 4512.44 0.949
original_glszm_LargeAreaEmphasis 69.67 ± 225.12 227.45 ± 1642.76 0.013
original_glszm_LargeAreaHighGrayLevelEmphasis 12,476.00 ± 7380.85 14,578.55 ± 17,349.9 0.219
original_glszm_LargeAreaLowGrayLevelEmphasis 4.33 ± 18.45 23.47 ± 179.94 0.006
original_glszm_LowGrayLevelZoneEmphasis 0.00 ± 0.01 0.00 ± 0.01 0.244
original_glszm_SizeZoneNonUniformity 22,268.19 ± 11,103.95 23,395 ± 10,680.69 0.170
original_glszm_SizeZoneNonUniformityNormalized 0.61 ± 0.17 0.62 ± 0.16 0.186
original_glszm_SmallAreaEmphasis 0.79 ± 0.12 0.81 ± 0.11 0.149
original_glszm_SmallAreaHighGrayLevelEmphasis 5360.88 ± 4462.06 6022.88 ± 4164.8 0.947
original_glszm_SmallAreaLowGrayLevelEmphasis 0.00 ± 0.00 0.00 ± 0.00 0.170
original_glszm_ZoneEntropy 7.71 ± 0.31 7.79 ± 0.30 0.622
original_glszm_ZonePercentage 0.67 ± 0.23 0.69 ± 0.21 0.068
original_glszm_ZoneVariance 65.35 ± 220.24 223.42 ± 1635.93 0.012
original_gldm_DependenceEntropy 7.84 ± 0.48 7.94 ± 0.48 0.476
original_gldm_DependenceNonUniformity 21,414.15 ± 8701.89 22,337.35 ± 8387.78 0.208
original_gldm_DependenceNonUniformityNormalized 0.43 ± 0.17 0.45 ± 0.17 0.208
original_gldm_DependenceVariance 1.21 ± 1.26 1.06 ± 1.14 0.042
original_gldm_GrayLevelNonUniformity 1220.12 ± 1123.5 1084.80 ± 1108.27 0.248
original_gldm_GrayLevelVariance 1343.93 ± 1003.18 1532.64 ± 1048.85 0.633
original_gldm_HighGrayLevelEmphasis 5605.65 ± 4740.08 6331.07 ± 4425.20 0.994
original_gldm_LargeDependenceEmphasis 5.65 ± 5.46 5.07 ± 5.33 0.133
original_gldm_LargeDependenceHighGrayLevelEmphasis 11,425.26 ± 7930.90 13,104.71 ± 7636.59 0.951
original_gldm_LargeDependenceLowGrayLevelEmphasis 0.14 ± 0.36 0.13 ± 0.42 0.741
original_gldm_LowGrayLevelEmphasis 0.01 ± 0.01 0.01 ± 0.01 0.399
original_gldm_SmallDependenceEmphasis 0.61 ± 0.22 0.63 ± 0.21 0.090
original_gldm_SmallDependenceHighGrayLevelEmphasis 4552.78 ± 4029.25 5112.5 ± 3752.87 0.964
original_gldm_SmallDependenceLowGrayLevelEmphasis 0.00 ± 0.00 0.00 ± 0.00 0.075

Values are expressed as the mean ± SD.

2.4.4. Normalization

Normalization is widely known to improve the performance and training stability of
the model. Our study converted clinical data and radiomic feature data from their natural
range (for example, age range from 1 to 100) into a standard range of 0 and 1.

2.4.5. K-Fold (Cross-Validation)

To avoid model training bias, we take the K-fold cross-validation widely used to
abstain the specific data separation in the training and testing dataset. First, split the training
dataset into K pieces, taking one piece as the validation set each time, and the remaining
data as the training set, so we can obtain the results of K validation sets. The results
obtained by averaging multiple test sets are often more representative. The advantage of
this step is that when there is not much training data, the model’s generalization ability
is tested multiple times in the limited training set, and the results obtained by averaging



Diagnostics 2023, 13, 1863 8 of 16

over multiple validation sets are usually more representative. When separating the data,
we avoided repeated patient data from being mixed in the training and test sets.

2.5. Model Development and Validation
2.5.1. Support Vector Machine (SVM)

SVM maps the training data to the hyperplane to maximize the margin of the gap
between the two categories. The farther the classification boundary is from the nearest
training data point, the better because this can reduce the generalization error of the
classifier. In cases where the data is not linearly separable, we need to transform the data to
a higher dimensional space to accommodate the support vector classifier.

2.5.2. Light Gradient Boosting Machine (LGBM)

LGBM uses a histogram algorithm to segment continuous features to speed up the
training process and reduce memory load. In addition, LBGM takes advantage of the leaf-
wise best-first method to determine DT growth, which reduces losses and avoids overfitting.

2.5.3. Extreme Gradient Boosting (XGB)

XGB is a DT-based boosting algorithm that utilizes a new generalized gradient boost-
ing DT algorithm to speed up model construction.

2.5.4. Extreme Gradient Boosting Random Forest (XGBRF)

XGBRF is an ensemble learning method for classification, regression, and other tasks,
which operates by constructing a multitude of decision trees (DTs) during training. The
advantage of this algorithm is the ability to accommodate a high noise margin and high-
dimensional feature data.

2.5.5. Categorical Boosting (CatBoost)

CatBoost is a gradient boosting library based on binary decision trees. Target leakage
and prediction shifts are avoided by grouping categories with target statistics (TS). The log
loss and zero-one loss were better than the traditional greedy algorithm.

2.5.6. Improved Random Forest (iRF)

The random forest used in this study underwent some optimizations. Random forest
is an ensemble machine learning algorithm that uses multiple decision trees to make
predictions. Each decision tree in the random forest is trained on a random subset of the
available data and features. The final prediction is made by aggregating the predictions of
all the individual trees. The essential advantage of the random forest algorithm is that it
reduces the risk of overfitting by introducing randomness to the training process.

In this study, we used optimization parameters to control the leaves and depth of
the decision trees. They experimented with different values of the maximum depth of the
trees, and a minimum number of samples were required to split an internal node. These
parameters have a significant impact on the performance of the random forest model as
they control the complexity of the decision trees and the degree of overfitting.

We used a cross-validation approach to select the optimal values of these parameters.
We split the available data into training and validation sets. We then trained multiple ran-
dom forest models on different subsets of the training data set with different combinations
of the optimization parameters. The models were then evaluated using the validation data
set, and the combination of parameters that performed the best was selected as the optimal
configuration.

In addition to the optimization parameters, we used a random seeding mechanism to
choose the best model after a certain number of random seeds. Random seed ensures that
the random forest model is trained on a different subset of the data and features each time
it is run, thereby introducing additional randomness to the training process. By running
the model multiple times with different random seeds and selecting the best-performing
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model, we ensured that the final model was not overly sensitive to the initial random seed
and was robust to variations in the training data. Overall, the combination of optimization
parameters and the random seeding mechanism used in the study allowed us to build a
high-performing random forest model robust to overfitting and variations in the training
data (Figure 4).

Figure 4. Schematic diagram of the iRF model. This study used the iRF algorithm to analyze the
feature importance of a data set. The iRF model is based on the random forest algorithm, but it
includes additional steps to eliminate less essential features and iteratively retrain the model. The
dark green squares represent the classification results at the endpoints of each tree branch.

2.6. Model Training Parameters

Most of the models were generated using default parameters in Scikit-learn. The SVM
algorithm used radial based function kernel, the complexity of model was 100, and the
gamma was 0.6. For the LGBM algorithm, the number of DTs was 202, the maximum tree
depth was 40, learning rate was 0.05, the number of leaves was 25, and the proportion of
features used when built per tree was 0.53. For the XGB algorithm, 305 DTs were used, the
depth was 29, learning rate was 0.6, the number of leaves was 46, and the proportion of
features used when built per tree was 0.52. For the XGBRF algorithm, the number of DTs
was 451, the maximum tree depth was 29, learning rate was 1, the number of leaves was 46,
and the proportion of features used when built per tree was 0.52. The iRF algorithm was
implemented using MATLAB; the maximum tree number was 20, the number of leaves
was 20, and the learning rate was 1.
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2.7. Model Training Equipment

All models were trained on the NVidia DGX-2 system (NVIDIA, CA, USA): central
processing unit, Dual Intel Xeon Platinum 8168 (Intel, CA, USA), 2.7 GHz, 24-cores × 2;
system memory, 1.5 TB RAM; storage, 960 GB solid-state drive (SSD) × 2, 30 TB internal
SSD; graphics processing unit (GPU), 16-slice NVIDIA Tesla V100 (NVIDIA, CA, USA);
GPU memory, 512 GB; software: Ubuntu Linux operating system (OS, version 18.04.3), Red
Hat Enterprise Linux OS (version 9.2); the total training time was about 12 h. The software
versions and environment packages are detailed as follows: python 3.10.9, pandas 1.5.3,
tensorflow 2.12.0, matplotlib 3.7.0, scikit-learn 1.2.1.

2.8. Evaluation Index

To ensure the fairness of the model, the performance of each model was evaluated
using the same testing set. We split the modeling dataset into training and testing sets using
the K-fold cross-validation method, which assigns 80% of data points to the training set
and the remaining 20% of data points to the testing set. As mentioned above, we avoided
repeated patient data from being mixed in the training and test sets. Evaluation indicators,
including the confusion matrix, accuracy, sensitivity, specificity, F1 score, and area under
the receiver operating characteristic (ROC) curve (AUC), were used to measure model
performance. The Scikit-learn suite was used to establish the derivation among evaluation
parameters and verify each model.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Sensitivity =
TP

TP + FN
(2)

F1 score = 2 ∗ Recall ∗ Precision
Recall + Precision

(3)

Speci f icity =
TN

FP + TN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

TP, True Positive; TN, True Negative; FP, False Positive; FN, False Negative.

3. Results
3.1. Models

This study developed various ML models for predicting pain relief following LNP
based on the pre-operative L-MRI T2WI and physiological parameters of patients with
LDDD and verified the predictive efficacy of each developed model. Physiological parame-
ters included sex, age, disc level, and VAS. Both L-MRI T2WI and physiological data were
preprocessed before model training. Six types of ML models were trained and compared,
including SVM, LGBM, XGB, and XGB, based on RF and iRF, and the results are shown in
(Table 4). The best-performing model was the iRF model, which had an accuracy of 0.76 for
outcome prediction. CatBoost was the next-best-performing model, with an accuracy
of 0.63. It was the best-performing model for sensitivity (0.70). iRF’s sensitivity was close
to 0.69, followed by XGB based on RF, LGBM, XGB, and SVM, which all had sensitivity
values less than 0.6. The iRF model had the best performance for specificity (0.83), followed
by XGB based on RF (0.62). The F1 scores of the iRF and CatBoost models were 0.73 and 0.63,
respectively. We next evaluated the AUC of each model. iRF achieved an AUC of 0.77, and
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XGB based on RF, CatBoost, and LGBM achieved an AUC of about 0.6. The ROC curve
for one data re-sampling run is shown in Figure 5. The AUCs of most models were close
to 0.6, except for SVM, which had an AUC of 0.53. The AUC of iRF was 0.77, which was
the closest to 1 among the AUCs of all the models tested.

Table 4. Performance summary of algorisms used in the present study.

Model Accuracy Sensitivity Specificity F1 Score AUC

SVM 0.52 (0.44–0.56) 0.52 (0.45–0.62) 0.52 (0.37–0.60) 0.49 (0.46–0.54) 0.53 (0.44–0.56)
LGBM 0.59 (0.52–0.69) 0.57 (0.41–0.79) 0.60 (0.29–0.89) 0.56 (0.52–0.60) 0.59 (0.52–0.67)
XGB 0.59 (0.48–0.69) 0.55 (0.42–0.69) 0.61 (0.40–0.86) 0.55 (0.44–0.64) 0.56 (0.49–0.68)
XGB based on RF 0.61 (0.50–0.67) 0.59 (0.46–0.66) 0.62 (0.38–0.76) 0.58 (0.51–0.62) 0.61 (0.51–0.66)
CatBoost 0.63 (0.56–0.69) 0.70 (0.52–0.86) 0.58 (0.44–0.80) 0.63 (0.56–0.74) 0.60 (0.57–0.70)
iRF 0.76 (0.70–0.80) 0.69 (0.62–0.77) 0.83 (0.65–0.94) 0.73 (0.71–0.76) 0.77 (0.73–0.83)

SVM, support vector machine; LGBM, light gradient boosting machine; XGB, extreme gradient boosting;
RF, random forest; CatBoost, categorical boosting; iRF, improved random forest; AUC, area under the receiver
operating characteristic curve.

Figure 5. Receiver operating characteristic curves for the performance of the machine learning
algorithms when analyzing the testing sets.

3.2. Radiomic Features

The iRF model was the best performing in comparison with four other machine
learning models. The iRF model was trained using a combination of L-MRI T2WI and
physiological parameters to develop a predictive model of postoperative pain improvement.

To obtain texture information from T2WI and volumes of interest in L-MRI, the
Pyradiomics suite was used to extract five sets of radiomic features, resulting in 91 radiomic
features used for training the ML models.

We ranked the top five influential factors after analyzing the influences of the various
features used to train the ML models (Figure 6). The pre-VAS parameter was found to
have the highest weight ratio for patients with significant postoperative pain improvement
(Group A) and those with non-significant improvement (Group B). The second highest
weight ratio was assigned to the diagnostics image original minimum, which showed
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a marked disparity from the first coefficient of the pre-VAS parameter. The third most
influential parameter was the maximum probability of GLCM, the fourth was the patient’s
sex ranking, and the fifth was the zone variance of GLSZM.

Figure 6. Top features used to train the iRF model. The histogram describes the proportions of feature
importance for the iRF model. The green columns represent features from basic clinical characteristics,
while the blue columns represent radiomic features.

Based on these findings, we concluded that the patient’s physiological parameters
had a more significant impact on the accuracy of the ML models than radiomic features.
This highlights the importance of incorporating physiological parameters into predictive
models for postoperative pain improvement. Overall, the iRF model trained using the
combination of L-MRI T2WI and physiological parameters proved to be a highly accurate
and effective predictive model of postoperative pain improvement.

The optimization strategy used in this study was control of the depth of the tree and
the number of leaves in the iRF model. The depth of the tree refers to the number of feature
segmentation points used in the decision tree, while the number of leaves determines the
granularity of the tree structure. We aimed to achieve an optimal balance between model
complexity and accuracy by adjusting these parameters.

Once the iRF model was trained, we used it to analyze the feature importance of the
data set. We did this by computing branch prediction performance from the last leaf of
each decision tree in the forest. By examining the feature segmentation points associated
with the best-performing leaves, we determined the influence of each feature on overall
model performance.

The iRF algorithm was particularly useful because it allowed us to identify the data
set’s most essential features while accounting for their interactions with other features. We
obtained a more accurate and interpretable model that provided valuable insights into the
underlying data. Overall, the iRF model proved to be a robust tool for feature selection and
analysis in this study.

4. Discussion

Our iRF model had the best performance among all evaluation indicators, with accu-
racy, F1 score, sensitivity, and specificity values of 0.76, 0.73, 0.69, and 0.83, respectively.
Table 5 shows the confusion matrix for test sets in the iRF algorithm and the other five
algorithms. iRF outperformed the other five models in the most evaluated aspects. Aging
is a primary contributor to intervertebral disc degeneration, which cannot be prevented [4].
However, we can attempt to postpone the final sequela of degenerative spinal instability
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or reduce the symptoms and signs accompanying the natural course of degeneration to
achieve a longer and better quality of life [12]. Fusion surgery is likely the final therapeutic
choice when degenerative spinal instability occurs [6]. When conservative treatments
fail, patients are likely to seek more advanced therapies for their back pain. Therefore,
the decision and timing of IDTs play a critical role in developing stepwise therapeutic
strategies [8]. The decision to pursue LNP can shorten the unnecessary painful duration
and help timely intervention for preventing the deterioration of the clinical course. Thus,
the importance of developing a reliable predictor of prognosis based on LNP outcomes
using clinical or imaging data cannot be over-emphasized.

Table 5. Confusion matrix for the prediction of all methods.

Model TP TN FP FN

SVM 74 89 82 69
LGBM 82 102 69 61
XGB 79 105 66 64
XGB based on RF 84 106 65 59
CatBoost 100 99 72 43
iRF 98 142 29 45

TP, True Positive; TN, True Negative; FP, False Positive; FN, False Negative; TP, True Positive; TN, True Negative;
FP, False Positive; FN, False Negative; SVM, support vector machine; LGBM, light gradient boosting machine;
XGB, extreme gradient boosting; RF, random forest; CatBoost, categorical Boosting; iRF, improved random forest.

Traditionally, the decision of who receives or when to receive LNP relies solely on
the experience and suggestions of physicians. Most prognostic and outcome assessments
are based on three factors: (1) general patient data such as age, sex, and body mass index;
(2) physicians’ subjective reading of images, e.g., of the positive hyperintensity zone,
black disc, and Modic changes of the end plates; and (3) invasive challenge discography
results [30]. Furthermore, most previous studies have only demonstrated the efficacy of
LNP, but few have discussed the outcome prediction or prognostic factors [31–33]. With
AI-assisted assessments based on patients’ general data and objective analysis of image
radiomic features, we can not only prevent human errors but also reduce the invasiveness
of diagnostic tools such as discography.

Klessinger et al. reported a short-term repeat surgery rate as high as 18.7% for LNP,
making pre-operative assessment crucial for preventing poor outcomes [34]. However, the
meta-analysis by Eichen et al. showed that LNP reduces pain in the long term and improves
patients’ functional mobility [32]. Cincu et al.’s report, based on 10 year follow-up data,
concluded that LNP might provide intermittent pain relief in contained disc herniation
without significant complications [35]. These differences between studies may be due to
variability in patient selection and decision-making [36]. Based on the therapeutic methods
of LDDD, Huo et al. compared the efficacy between LNP and endoscopic discectomy
and showed that LNP is more appropriate for young and middle-aged patients, a finding
consistent with our results [37]. Although there are several IDTs in addition to open
discectomy, their outcomes vary and may depend on the interventionalist’s expertise
and careful patient selection [38]. In addition, as there are many uncertainties regarding
the therapeutic outcomes of LNP, AI-assisted prediction models may provide objective
references for decision-making in the medical needs assessment.

Six ML algorithms were used to develop the models, including SVM, LGBM, XGB,
XGBRF, CatBoost, and iRF, and their performance was compared. As a result of comparing
overall performance, including accuracy, sensitivity, specificity, F1 score, and AUC (Figure 5
and Table 4), the iRF model proved to be the most successful. In this study, SVM is an
overly simplistic approach. Large variance and complex cases make LGBM and XGB less
effective [39,40]. Insufficient training data may degrade the performance of XGBRF when
faced with high-dimensional feature data [41]. The iRF optimizes the number of trees and
leaf branches to prevent overfitting, as well as the tree number, leaf depth, and seed. This
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study shows that iRF has the best performance for classification problems involving a large
number of features.

ML algorithms analyze data automatically and generate rules for predicting unknown
data [42]. Deep learning (DL) is a branch of ML in which algorithms learn data features
by using artificial neural network architecture [43]. Deep learning is capable of processing
more complex data, and the performance usually increases as more data is available,
allowing the network to recognize more features. As a result of the small amount of data
collected in this study, DL algorithms were not able to learn effectively, which led to poor
performance. In order to improve the results of deep learning algorithms, additional data or
data augmentation techniques are likely to be used [44]. DL models, such as convolutional
neural networks, can be used to learn the graphs for further classification after converting
features into histograms or graphs [45].

According to the results of feature importance based on these influential factors
(Figure 6), patients’ pre-operative VAS scores ranked first. This could indicate that patients
who experience more pain before LNP have more room for subjective improvement. Fur-
thermore, the patient’s age is also a critical pathophysiological influencing factor. This
is consistent with the mechanism of LNP, in which the younger and collage-richer the
pulposus nucleus contained in the intervertebral disc, the more effective the disc coblation
will be [36,46,47]. Compared to the radiomic features, the overall physiological parameters
had a greater impact on building the ML models, which suggests that the AI-assisted image
reading played the role of an assistant rather than a replacement. On the other hand, three
of the top five most significant features were directly related to L-MRI axial-T2WI image
radiomic features. These outcomes indicate that the iRF ML model in our study possesses
high clinical value beyond image analysis. It may serve as a reliable predictor, as outcomes
were highly correlated with LNP prognosis.

5. Conclusions

In this study, the iRF ML model achieved the highest accuracy for predicting pain
improvements in patients with LDDD following LNP. It can contribute to LDDD prognostic
prediction and provide a reference for LNP decision-making. However, this retrospective
study has several limitations. (i) The case number was small, resulting in the unsuccessful
fitting of DL models. (ii) Uniformity of images was difficult to achieve due to differences in
the MRI machines used to obtain images or in the image format. (iii) No indicators of LDDD
severity were available beyond the VAS score. (iv) Individual differences in IDTs were not
examined in this study. (v) Missing data might also have affected the study outcomes. It
is essential to compare prospective differences between iRF ML model predictions and
real-world results. Therefore, further work on model validation based on a comparison of
results is required.
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