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Abstract: Bayesian optimization (BO) is commonly used to optimize the hyperparameters of transfer
learning models to improve the model’s performance significantly. In BO, the acquisition functions di-
rect the hyperparameter space exploration during the optimization. However, the computational cost
of evaluating the acquisition function and updating the surrogate model can become prohibitively
expensive due to increasing dimensionality, making it more challenging to achieve the global opti-
mum, particularly in image classification tasks. Therefore, this study investigates and analyses the
effect of incorporating metaheuristic methods into BO to improve the performance of acquisition
functions in transfer learning. By incorporating four different metaheuristic methods, namely Particle
Swarm Optimization (PSO), Artificial Bee Colony (ABC) Optimization, Harris Hawks Optimization,
and Sailfish Optimization (SFO), the performance of acquisition function, Expected Improvement
(EI), was observed in the VGGNet models for visual field defect multi-class classification. Other
than EI, comparative observations were also conducted using different acquisition functions, such
as Probability Improvement (PI), Upper Confidence Bound (UCB), and Lower Confidence Bound
(LCB). The analysis demonstrates that SFO significantly enhanced BO optimization by increasing
mean accuracy by 9.6% for VGG-16 and 27.54% for VGG-19. As a result, the best validation accuracy
obtained for VGG-16 and VGG-19 is 98.6% and 98.34%, respectively.

Keywords: metaheuristic method; Bayesian optimization; acquisition function; VGGNet; visual
field defect

1. Introduction

Deep learning (DL) is a subfield of machine learning (ML) involving the training of
artificial neural networks to automatically learn complex features and representations of the
input data, allowing them to perform various tasks such as image and speech processing
from large amounts of data [1]. Transfer learning utilizes a previously trained neural
network model to improve the training of a new deep learning model on a related task [2,3].
The pre-trained model is adapted or fine-tuned using less training data for the new task
or problem. Transfer learning can be beneficial when there is insufficient training data or
when training a new model is time-consuming or computationally costly.

The error of a deep learning model can be minimized by selecting the optimal set of
hyperparameters to maximize the model’s performance on the validation set. This optimal
set of hyperparameters can be retrieved efficiently and effectively through optimization
to achieve high performance in a particular task [4]. In DL, optimization significantly
enhances the model’s performance by minimizing the errors or maximizing accuracy as an
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objective function during training. In the case of transfer learning, optimization is applied
to fine-tune a previously trained model to improve a new related task.

Many previous works have proposed Bayesian Optimization (BO) [5–8] as an opti-
mization method that uses a probabilistic model of the objective function. This probabilistic
model, also called a surrogate model, searches the optimal set of hyperparameters and
predicts the model’s performance at untested points in the hyperparameter space. The
performance of the surrogate model will be evaluated at different parameter settings by
maximizing the Expected Improvement (EI) of the surrogate model. First, the EI is mea-
sured to identify how much the objective function is expected to improve the model’s
performance, or in other words, it measures the potential gain that can be obtained by
evaluating the model at a new set of hyperparameters. Then, the acquisition function
in BO is used to determine which set of hyperparameters should be evaluated next by
balancing the trade-off between exploring regions of the search space where little is known
and exploiting regions where the objective function is believed to be optimal [9]. However,
the repeated process of evaluating the acquisition function in BO and updating the sur-
rogate model can cause the computational cost to become prohibitively expensive due to
increasing dimensionality, making it more challenging to achieve the global optimum.

In recent years, DL and transfer learning have become popular image classification
techniques due to their high performance and ability to learn complex features from large
amounts of data, and BO has grown in popularity as an optimization method. Previously,
Shankar et al. [10] proposed a hyperparameter tuning of the BO framework to deal with
the hyperparameter estimation problem in ML for diabetic retinopathy classification. They
evaluate the performance of the CNN model with different hyperparameter settings,
including batch size, learning rate, number of epochs, and weight decay. On the other hand,
Hung et al. [9] have discussed contextual bandit problems, specifically in EI Contextual
bandit problems involve making a decision based on contextual information with the
goal of maximizing a reward for BO. From the experiment results, their proposed method
outperformed other existing contextual bandits in Upper Confidence Bound (UCB) and
Thompson Sampling (TS) by achieving a cumulative reward. Another related work was
conducted by Abu et al. [11]. The authors discussed a thorough analysis of the transfer
learning method when the hyperparameter tuning was performed using BO in a visual
field defect classification problem.

Inspired by previous works [12–14], this study aims to expand their investigation by
incorporating the metaheuristics methods on EI function BO for multi-class classification of
VF defects. The metaheuristics can be broadly classified into four categories of swarm-based
algorithms [5,15], evolutionary algorithms [16,17], physics-based algorithms [16,18], and
human-based algorithms [16]. These algorithms are based on the behavior of a population
of social organisms. These algorithms simulate the behavior of a swarm of agents collabo-
rating to find the best solution to an optimization problem. Previously, a metaheuristics
method, the PSO method, was employed by Li et al. [5] to optimize the hyperparameter
of BO in the Random Forest (RF) classifier, Adaptive Boosting (AdaBoost), and Extreme
Gradient Boosting (XGBoost). A few works in medical imaging examine the classification
of a specific eye disease. For instance, Omer et al. [19] combined DL and metaheuristic
methods to diagnose diabetic retinopathy. In another work, Nagaraja et al. [20] proposed a
metaheuristic method to optimize the Principal Component Analysis (PCA) and HHO to
optimize the CNN method for detecting diabetic retinopathy. Most previous research has
focused on optimizing the binary classification problem using fundus images.

Therefore, this work aims to enhance the efficiency and accuracy of multi-class image
classification by integrating the BO acquisition function with the metaheuristic approach.
This work incorporates the Swarm-based algorithms [5], namely Particle Swarm Opti-
mization (PSO) [5,21], Artificial Bee Colony (ABC) Optimization [13,22], Harris Hawks
Optimization (HHO) [23], and SFO [24], with the acquisition function EI in BO. The meta-
heuristic functions are expected to enhance the acquisition function by optimizing the
Exploration (mean) and Exploitation (variance) of the posterior distribution of the objective
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function. These four methods were chosen because swarm-based metaheuristic methods
have produced remarkable results in solving complex optimization problems [25]. Further-
more, it is due to their capability of decentralized control of search agents to explore the
search environment more effectively [25]. The novelty of this work can be summarized
as follows:

1. To optimize the exploration and exploitation process by incorporating with the swarm-
based metaheuristic methods (PSO, ABC, HHO, and SFO) with BO default acquisition
function, EI.

2. To conduct a comprehensive investigation and analysis of the performance of the ac-
quisition function in BO when incorporated with four different metaheuristic methods
against the VGGNet pre-trained models.

3. To evaluate the performance of VGGNet pre-trained models after the BO enhancement
in a multi-class image classification problem for VF defects images.

This paper is organized as follows: Section 1 presents the introduction of this work
and some review of previous works. Section 2 explains the collection of datasets used in
this work and the process of BO enhancement using the metaheuristic method. Section 3
discusses the experimental framework for conducting the effectiveness of the metaheuristic
method in BO in classifying the visual field defect pattern using transfer learning. Lastly,
Section 4 presents the conclusion and potential for future research.

2. Methodology
2.1. Data Collection

The work obtained 1200 visual field (VF) images from a public dataset. The first
dataset is the Humphrey 10-2 Swedish Interactive Threshold Algorithm (SITA) [26,27]. The
second dataset is Humphrey 24-2 from Rotterdam Eye Hospital [28,29] and the RT_dataset
from Kucur et al. [30,31]. In addition, it included 68 VF images from the Department
of Ophthalmology at Universiti Sains Malaysia (USM). All datasets will go through pre-
processing to improve the quality and standardization of images, which can result in more
accurate and efficient analysis. The dataset will then be divided 80:10:10 between the
training, validation, and testing datasets. Table 1 presents the distribution of VF Defects
from collected datasets.

Table 1. Distribution of visual field defects from collected datasets.

Type of Visual Field Defect No. of Record

Central scotoma 204

Right/Left hemianopia 223

Right/left/upper/lower quadrantanopia 160

Tunnel vision 226

Superior/inferior defect field 181

Normal 274

2.2. Multi-Class Classification of VF Defect Using Transfer Learning

In this work, the multi-class classification task of VF defect is performed by using trans-
fer learning (TL) techniques involving four pre-trained models: VGGNet [32], ResNet [33],
MobileNet [34,35], and DenseNet [36]. The ImageNet database is the source dataset utilized
in these pre-trained models, which includes various eye datasets in the ImageNet collection,
including black and white and face images. The knowledge acquired by the pre-trained
models was then transferred to the VF classification task, enabling the model to learn more
quickly and perform better with less data. Only the VGGNet model is used because of its
simple architecture. The framework of transfer learning in this study is shown in Figure 1.



Diagnostics 2023, 13, 1946 4 of 18

Diagnostics 2023, 13, x FOR PEER REVIEW 4 of 18 
 

 

utilized in these pre-trained models, which includes various eye datasets in the ImageNet 
collection, including black and white and face images. The knowledge acquired by the 
pre-trained models was then transferred to the VF classification task, enabling the model 
to learn more quickly and perform better with less data. Only the VGGNet model is used 
because of its simple architecture. The framework of transfer learning in this study is 
shown in Figure 1. 

 
Figure 1. Transfer learning process on visual field defect. 

2.3. Combination of Bayesian Optimization with Metaheuristics Methods 
After the transfer learning model has been built, the layers and hyperparameters of 

the pre-trained model will be optimized using the BO technique to identify the optimal 
hyperparameter for the VF defect classification task. This study investigates and analyses 
the effect of a different set of hyperparameters and fine-tuned layers with two different 
pre-trained models using a total of 11 hyperparameters to be optimized, including fine-
tuning layers. Fine-tuning will be performed by training the final few layers on the VF 
dataset while freezing or fixing the remaining layers. The goal of fine-tuning is to leverage 
the learned features from the pre-trained models to improve the model’s performance on 
the VF classification task. 

In BO, the utility functions are referred to as acquisition functions. The acquisition 
function helps achieve the optimum underlying function by exploring and exploiting 
regions where the uncertainty of the function is significant. The acquisition function is 
optimized to retrieve the next point for assessment [7,37,38]. Several acquisition functions 
have been developed to improve parameters in Bayesian to achieve the best estimation. 
The following are detailed descriptions of the acquisition functions used in this study: 
• Expected Improvement (EI). 

The EI [7,39] acquisition function is widely employed in BO because EI encourages 
the exploration of the search space by providing high values to points with high 
uncertainty. It also exploits promising regions by focusing on issues that have the 
potential to improve the current best solution. In addition, EI can capture the objective 
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2.3. Combination of Bayesian Optimization with Metaheuristics Methods

After the transfer learning model has been built, the layers and hyperparameters of
the pre-trained model will be optimized using the BO technique to identify the optimal
hyperparameter for the VF defect classification task. This study investigates and analyses
the effect of a different set of hyperparameters and fine-tuned layers with two different pre-
trained models using a total of 11 hyperparameters to be optimized, including fine-tuning
layers. Fine-tuning will be performed by training the final few layers on the VF dataset
while freezing or fixing the remaining layers. The goal of fine-tuning is to leverage the
learned features from the pre-trained models to improve the model’s performance on the
VF classification task.

In BO, the utility functions are referred to as acquisition functions. The acquisition
function helps achieve the optimum underlying function by exploring and exploiting
regions where the uncertainty of the function is significant. The acquisition function is
optimized to retrieve the next point for assessment [7,37,38]. Several acquisition functions
have been developed to improve parameters in Bayesian to achieve the best estimation.
The following are detailed descriptions of the acquisition functions used in this study:

• Expected Improvement (EI).

The EI [7,39] acquisition function is widely employed in BO because EI encourages the
exploration of the search space by providing high values to points with high uncertainty. It
also exploits promising regions by focusing on issues that have the potential to improve
the current best solution. In addition, EI can capture the objective function’s local structure,
which can be important when the function is non-convex or has multiple local optima.
An example of a non-convex hyperparameter is the number of hidden layers in a neural
network. Equation (1) [7] represents the EI process:

EI(x) ≡ E
[

f (x)− f
(

x+t
)]

(1)

where
x+t = the best point to observe before the next point.
x = default point to observe.
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• Probability Improvement (PI).

The Probability Improvement (PI) acquisition function can identify the minimum
value of the objective function [7]. The point where the objective function is most likely
to outperform the default value is where it will be evaluated. It is equivalent to the utility
function below that is connected to evaluating the objective function at a specific point with
the default hyperparameters set as shown in Equation (2) [7]:

PI(x) = P( f (x) ≥ f (x+)) = ∅(µ(x)− f (x+)/σ(x)) (2)

where
f (x+) = the max value already found.
µ(x) = the mean value of accuracy.
σ(x) = the standard deviation of accuracy.
∅() = the accumulative density function of normal distribution.

• Upper Confidence Bound (UCB).

UCB [7] is an acquisition function that maximizes or minimizes the trade-off parameter
and the marginal standard deviation of the objective function rather than the objective
function itself [7]. Therefore, Equation (3) [7] is employed to express the UCB process:

UCB(x; β) = +
−µ(x)− βσ(x) (3)

where
β = β > 0 is a trade-off parameter.
µ(x) = mean of the model.
σ(x) = standard deviation of the model.

• Lower Confidence Bound (LCB).

LCB [40,41] aims to address the random bandit dilemma by balancing exploitation
and exploration. It controls the trade-off between exploitation and exploration in a manner
similar to the UCB process. The LCB process is described in Equation (4) [40,41]:

LCB(x) = −{ f (x)− βS(x)} (4)

where
β = the parameter managing the trade-off between exploitation and exploration.
f (x) = objective function.
s(x) = covariance of the objective function.

The enhancement of the acquisition function will only be tested using BO’s default
acquisition function, EI. The remaining acquisition functions will be used as a comparative
assessment. In order to maximize the objective function, EI will be combined with four
metaheuristic methods in a separate experiment setting, and the performance will be
measured by the mean accuracy of BO iterations. The details of the metaheuristic method
are explained below:

• Particle Swarm Optimization (PSO) [5,21] is an algorithm inspired by the behavior
of a flock of birds or a school of fish. It is developed in the form of population-based
stochastic optimization. In PSO, the optimal solution is obtained if the algorithm has
reached convergence. If the algorithm has reached convergence, it is influenced by the
particle’s position and velocity.

• Artificial Bee Colony (ABC) Optimization [13,22] contains four phases: initialization
phase, employed bee phase, onlooker bee phase, and scout bee phase. Different kinds
of bees can change their roles iteratively until the termination condition is met. Note
that there is an associated counter for each food source. If one food source is not
improved, the increment of its corresponding counter is 1; otherwise, the counter
resets to 0. If the quality of a solution has not been enhanced more than the limit
(present parameter), the employed bee would be transformed into a scout bee.
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• Harris Hawks Optimization (HHO) [23] is the cooperative behavior in which the
chasing style of Harris’ hawks in nature is called surprise pounce. HHO can reveal
various chasing patterns based on the dynamic nature of scenarios and escaping
patterns of the prey. The effectiveness of the HHO optimizer underwent 29 benchmark
problems and several real-world engineering problems through a comparison with
other nature-inspired techniques to check the optimizer’s performance.

• Sailfish Optimization (SFO) [24] is inspired by a group of hunting sailfish. This method
consists of two tips of populations, the sailfish population for intensification of the
search around the best so far and the sardine population for diversification of the search
space. This technique indicates competitive results for improving exploration and
exploitation phases, avoiding local optima, and high-speed convergence, especially on
large-scale global optimization.

In Bayesian Optimization, exploration µ(x) and exploitation σ(x) are two opposing
strategies used by the acquisition function to determine which set of hyperparameters
to evaluate next. Exploration refers to the process of selecting hyperparameters that
have a high potential for discovering new regions of the search space [42]. On the other
hand, exploitation refers to the process of selecting hyperparameters that have the highest
probability of improving the model’s performance based on the information gathered [42].
The main issue is that computing a natural anticipated utility function with this acquisition
function is impossible. The stopping criterion is met in BO when the maximum number of
evaluations or a convergence threshold is met. By incorporating a metaheuristic approach
to influence the point that BO chooses, the number of points with lesser accuracy can
be decreased, and the performance of BO can be increased. In addition, the number of
iterations is set during BO to obtain accuracy from different sets of hyperparameters. Hence,
VF defect classification will serve as the basis for measuring the BO’s performance to find
the best hyperparameter.

This work observed the optimization of the EI acquisition function in BO using
four swarm-based metaheuristic methods: PSO, ABC, HHO, and SFO. The metaheuristic
methods optimize the mean and variance in the acquisition function to obtain many higher
peak accuracies while evaluating the objective function. Here, the mean value determines
the most promising point in the search space. In the meantime, the variance value is used to
balance exploration and exploitation, which is extracted by the acquisition function based
on the objective function, grouped as a population subject by the metaheuristic method,
and used to maximize output. The mean and variance values estimated based on the
observed values of the objective function at previous evaluation points are maximized
using the swarm-based metaheuristic method. Finally, the mean and variance will be set as
the candidate solutions that evolve to search for the optimal solution.

The pseudocode of the enhanced BO is shown in Algorithm 1. The section highlighted
in bold outlines the proposed algorithm that incorporates the metaheuristics method
into BO.

2.4. Evaluation

The performance of the four acquisition functions above was validated with VGGNet
pre-trained models. Because the iteration number is set to 11, the mean accuracy ( µ) value
will be used to compare the 11 accuracies obtained from the experiments. The mean of the
transfer learning accuracy over multiple runs of the algorithm is calculated to evaluate the
accuracy of the optimization algorithm based on the following Equation (5).

µ =
∑N

i=1 Xi

N
, (5)

where

N = the size of the iteration.
xi = each accuracy value from the BO iteration.
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µ = the iteration mean.

Algorithm 1: Psuedocode of the BO Enhancement: Enhance Bayesian Optimization with
Metaheuristic Method

Required: An acquisition function
1: Inputs:
Bayesian Optimization process
2: While the stop criteria are not fulfilled, do the following:
3: Select the next point to evaluate based on an acquisition function (Expected
Improvement), which balances the exploration of new points and the
the exploitation of promising areas of the search space until maximize accuracy
is obtained:

x* = argmax
x∈X

f (x).

4: Calculation of EI for each set of hyperparameters and fine-tuning layers using the
probabilistic model provides:

EI(x) = E[max(0, f (x)− f (x∗))].

5: Evaluate the mean µ(x) and varianceσ(x)of the probabilistic model at x.
These values are estimated based on the observed values of the objective
function at previous evaluation points.
6: Initialize the population of mean µ(x) and varianceσ(x)of the probabilistic
model at x.
7: From the set of a population of mean µ(x) and varianceσ(x),maximize by me taheuristic
method (PSO, ABC, HHO and SFO). The goal is to explore the search space and generate a
diverse set of hyperparameters and fine-tuned layers solution.
8: Evaluate the objective function for each new set of hyperparameters and fine-tuned
layers solution in the population.
9: Select the best hyperparameter and fine-tuned layers from the entire population
based on the objective function values.
10: End while

3. Experimental Results and Discussion

Four different acquisition functions (EI, PI, LCB, and UCB) were initially used to
optimize the pre-trained VGGNet models in BO. Then, the mean and variance of the EI
acquisition function are enhanced using four metaheuristic techniques: PSO, ABC, HHO,
and SFO. EI is selected for further enhancement as it is a default acquisition function for
BO. The experiment was performed using KERAS and Scikit Optimize, a Python library
for performing BO. The experiment was conducted on an Intel Core i7-10 processor with 8
GB of RAM and an RTX2080 graphics processing unit (GPU).

3.1. Validation Analyses of Pre-Trained Models Enhanced by Bayesian Optimization Based on
Different Acquisition Functions

The validation accuracy of the VGG-16 and VGG-19 models using different acquisition
functions in BO based on selected hyperparameters and fine-tuned layers is presented in
Tables 2 and 3. Both tables compare the validation accuracy performance of the enhanced
EI acquisition function based on the metaheuristic method compared to other acquisition
functions. During the experiment, 11 hyperparameters selected by BO with fine-tuned
layers were considered. The initial hyperparameters and fine-tune layer were set for the
first iteration. Table 2 and 3 also include the comparison results of another metaheuristic
optimization algorithm, the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [12]. Loshchilov and Hutter [12] mentioned that CMA-ES has the capacity to efficiently
explore a high-dimensional search space and identify an optimal objective function solution.
Additionally, therefore, the validation accuracy of CMA-ES is also included as a comparison.
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Table 2. Validation accuracy of VGG-16 using different acquisition functions in Bayesian Optimization.

Acquisition
Function Iteration

Hyperparameter Fine-Tuned Layer Validation
Accuracy

(%)
Feature

Map
Filter
Size

Activation
Function

Pool
Size Optimizer Learning

Rate
Batch
Size Epoch Dropout

Rate
Upper
Layer

Lower
Layer

CMA-ES
[12]

1 45 1 ReLU 1 SGD 0.0001 25 49 0.3 FALSE TRUE 20.55

2 56 1 ReLU 2 ADAM 0.0053 20 189 0.8 FALSE FALSE 20.55

3 34 1 Sigmoid 1 SGD 0.0023 4 89 0.2 FALSE TRUE 20.55

4 53 3 Sigmoid 2 ADAM 0.0225 6 122 0.4 FALSE FALSE 20.55

5 51 1 ReLU 2 ADAM 0.0049 4 131 0.3 TRUE TRUE 20.55

6 42 3 Sigmoid 1 Adadelta 0.0711 4 127 0.3 TRUE FALSE 20.55

7 45 3 Sigmoid 2 Adadelta 0.0033 1 142 0.8 TRUE TRUE 20.55

8 61 2 ReLU 2 ADAM 0.0289 11 29 0.2 TRUE TRUE 20.55

9 48 2 ReLU 1 RMSprop 0.0028 16 105 0.6 FALSE TRUE 20.55

10 48 2 Sigmoid 2 ADAM 0.0031 17 105 0.6 FALSE FALSE 15.67

11 48 2 ReLU 2 RMSprop 0.0030 16 105 0.5 TRUE TRUE 20.55

EI [39]

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 20.55

2 58 2 ReLU 1 RMSprop 0.0009 24 29 0.5 TRUE FALSE 95.97

3 38 2 Sigmoid 1 ADAM 0.0022 10 51 0.2 TRUE TRUE 20.55

4 33 1 Sigmoid 1 Adadelta 0.0031 26 40 0.8 FALSE FALSE 20.55

5 38 2 Sigmoid 1 SGD 0.0117 13 23 0.7 TRUEs FALSE 19.96

6 46 2 Sigmoid 2 RMSprop 0.0019 18 34 0.6 TRUE FALSE 20.55

7 41 2 Sigmoid 2 ADAM 0.0003 11 76 0.9 FALSE FALSE 20.55

8 35 2 ReLU 1 ADAM 0.0007 29 94 0.1 FALSE FALSE 96.74

9 47 1 ReLU 2 RMSprop 0.0068 2 167 0.9 TRUE TRUE 20.55

10 56 2 ReLU 1 RMSprop 0.0264 6 97 0.4 TRUE FALSE 18.81

11 64 2 ReLU 2 SGD 0.0226 27 200 0.9 TRUE TRUE 97.92

EI-PSO

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 20.55

2 32 1 ReLU 2 ADAM 0.0006 9 42 0.1 FALSE TRUE 94.75

3 29 2 ReLU 2 Adadelta 0.0008 12 118 0.8 FALSE FALSE 71.57

4 17 2 Sigmoid 2 RMSprop 0.0774 10 156 0.4 TRUE FALSE 17.16

5 21 2 Sigmoid 1 RMSprop 0.0032 10 122 0.4 TRUE FALSE 20.55

6 24 2 ReLU 2 RMSprop 0.0002 7 180 0.7 FALSE TRUE 97.80

7 30 2 ReLU 1 RMSprop 0.0849 10 53 0.6 FALSE FALSE 19.03

8 32 3 Sigmoid 2 RMSprop 0.001 11 69 0.2 TRUE FALSE 20.55

9 25 1 Sigmoid 1 ADAM 0.0354 14 76 0.5 FALSE TRUE 19.41

10 18 1 Sigmoid 2 RMSprop 0.0297 9 164 0.8 TRUE FALSE 19.96

11 18 2 Sigmoid 2 ADAM 0.0001 14 128 0.9 FALSE FALSE 20.55

EI-ABC

1 64 2 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 20.55

2 19 2 ReLU 2 ADAM 0.0193 5 168 0.5 TRUE TRUE 19.45

3 29 1 Sigmoid 1 Adadelta 0.0231 5 141 0.8 FALSE TRUE 20.55

4 28 2 Sigmoid 2 ADAM 0.0213 15 30 0.6 FALSE TRUE 15.93

5 17 2 ReLU 2 Adadelta 0.0006 1 126 0.6 FALSE TRUE 83.31

6 26 2 Sigmoid 2 SGD 0.0014 6 75 0.7 FALSE FALSE 20.00

7 32 2 ReLU 2 SGD 0.0118 6 89 0.5 TRUE FALSE 97.84

8 18 1 ReLU 1 ADAM 0.0524 14 103 0.2 FALSE TRUE 20.55

9 26 1 ReLU 1 Adadelta 0.0009 11 184 0.5 TRUE TRUE 71.19

10 29 2 Sigmoid 2 RMSprop 0.0152 2 190 0.5 TRUE TRUE 14.41

11 22 2 ReLU 2 ADAM 0.0229 14 64 0.4 FALSE TRUE 20.55

EI-HHO

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 20.55

2 20 1 Sigmoid 1 SGD 0.0004 5 184 0.3 FALSE FALSE 19.41

3 30 3 Sigmoid 1 SGD 0.0005 1 193 0.4 FALSE FALSE 20.55

4 27 2 ReLU 2 RMSprop 0.0139 8 141 0.3 FALSE FALSE 20.55

5 22 2 ReLU 1 ADAM 0.0077 9 42 0.3 TRUE FALSE 20.55

6 23 2 ReLU 1 ADAM 0.0165 11 56 0.2 TRUE FALSE 19.36

7 18 2 ReLU 1 ADAM 0.0001 8 148 0.8 FALSE TRUE 97.03
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Table 2. Cont.

Acquisition
Function Iteration

Hyperparameter Fine-Tuned Layer Validation
Accuracy

(%)
Feature

Map
Filter
Size

Activation
Function

Pool
Size Optimizer Learning

Rate
Batch
Size Epoch Dropout

Rate
Upper
Layer

Lower
Layer

8 26 2 Sigmoid 2 ADAM 0.0002 10 159 0.7 FALSE FALSE 20.55

9 18 1 Sigmoid 2 ADAM 0.0103 13 89 0.3 TRUE TRUE 20.55

10 24 2 ReLU 2 SGD 0.0035 2 172 0.8 FALSE TRUE 98.26

11 18 3 ReLU 2 RMSprop 0.0006 15 53 0.5 FALSE TRUE 96.53

EI-SFO

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 20.55

2 30 2 ReLU 1 RMSprop 0.0018 11 93 0.6 TRUE FALSE 94.87

3 21 2 ReLU 1 Adadelta 0.0013 8 48 0.8 FALSE FALSE 52.92

4 25 2 Sigmoid 1 Adadelta 0.0791 3 164 0.4 FALSE TRUE 20.55

5 19 1 ReLU 2 SGD 0.034 9 58 0.8 TRUE FALSE 92.84

6 27 3 ReLU 2 RMSprop 0.0002 15 86 0.5 TRUE TRUE 98.60

7 25 1 ReLU 1 ADAM 0.0466 4 150 0.5 TRUE FALSE 19.45

8 19 3 Sigmoid 2 ADAM 0.0055 14 169 0.1 TRUE FALSE 16.65

9 29 1 Sigmoid 2 RMSprop 0.0279 14 23 0.3 TRUE FALSE 20.55

10 18 2 Sigmoid 2 RMSprop 0.0001 3 118 0.6 TRUE TRUE 20.55

11 30 1 Sigmoid 1 RMSprop 0.0001 9 77 0.1 TRUE FALSE 20.55

PI

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 20.55

2 50 3 Sigmoid 1 SGD 0.0906 1 46 0.8 FALSE FALSE 15.68

3 63 2 ReLU 2 RMSprop 0.0158 8 127 0.8 FALSE FALSE 20.55

4 62 2 ReLU 1 RMSprop 0.0278 8 74 0.8 TRUE TRUE 20.55

5 36 3 ReLU 1 RMSprop 0.0013 14 57 0.4 TRUE FALSE 95.85

6 33 2 Sigmoid 1 RMSprop 0.0007 2 44 0.8 TRUE FALSE 20.55

7 46 2 ReLU 1 Adadelta 0.0444 19 71 0.7 FALSE FALSE 96.23

8 46 3 Sigmoid 2 Adadelta 0.0071 17 95 0.5 TRUE TRUE 20.55

9 49 2 ReLU 1 RMSprop 0.0954 3 40 0.7 TRUE FALSE 18.52

10 47 3 Sigmoid 1 ADAM 0.0017 19 47 0.8 FALSE FALSE 19.36

11 44 3 Sigmoid 1 Adadelta 0.00717 27 116 0.4 TRUE TRUE 20.55

UCB

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 97.88

2 61 2 ReLU 1 RMSprop 0.0029 22 143 0.6 FALSE FALSE 20.55

3 58 3 ReLU 2 SGD 0.0077 7 53 0.1 TRUE FALSE 96.31

4 44 3 ReLU 1 SGD 0.0075 14 162 0.2 FALSE FALSE 96.86

5 52 2 ReLU 1 ADAM 0.0023 1 115 0.9 FALSE TRUE 20.55

6 53 2 Sigmoid 2 ADAM 0.0033 5 188 0.4 TRUE TRUE 19.07

7 51 2 Sigmoid 2 RMSprop 0.0164 7 99 0.5 FALSE FALSE 16.19

8 37 1 Sigmoid 1 ADAM 0.0001 21 172 0.6 TRUE TRUE 20.55

9 41 3 ReLU 2 RMSprop 0.0046 8 142 0.2 TRUE FALSE 20.55

10 60 2 Sigmoid 2 RMSprop 0.0017 25 173 0.5 TRUE FALSE 20.55

11 35 3 Sigmoid 2 ADAM 0.0383 29 52 0.9 FALSE TRUE 17.46

LCB

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 98.26

2 40 3 ReLU 1 SGD 0.0313 9 14 0.3 FALSE TRUE 94.28

3 50 2 Sigmoid 2 ADAM 0.0498 21 167 0.1 FALSE FALSE 18.31

4 44 1 Sigmoid 1 ADAM 0.0010 10 34 0.9 FALSE TRUE 20.55

5 54 1 Sigmoid 2 RMSprop 0.0016 21 120 0.4 FALSE TRUE 20.55

6 52 2 Sigmoid 1 RMSprop 0.0003 17 113 0.8 TRUE TRUE 20.55

7 54 1 Sigmoid 2 ADAM 0.0925 5 76 0.2 TRUE FALSE 17.33

8 39 2 ReLU 2 ADAM 0.0002 21 100 0.9 TRUE FALSE 98.22

9 64 2 Sigmoid 2 RMSprop 0.0087 29 59 0.4 FALSE FALSE 16.91

10 59 1 Sigmoid 2 RMSprop 0.0003 26 183 0.5 FALSE TRUE 20.55

11 55 1 ReLU 2 Adadelta 0.0791 32 105 0.8 FALSE TRUE 93.43
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Table 3. Optimization of VGG-19 using different acquisition functions in Bayesian Optimization.

Acquisition
Function Iteration

Hyperparameter Fine-Tuned Validation
Accuracy

(%)
Feature

Map
Filter
Size

Activation
Function

Pool
Size Optimizer Learning

Rate
Batch
Size Epoch Dropout

Rate
Upper
Layer

Lower
Layer

CMA-ES
[12]

1 37 2 ReLU 2 Adadelta 0.0001 3 192 0.4 TRUE FALSE 20.55

2 48 1 ReLU 2 RMSprop 0.0528 7 92 0.3 FALSE TRUE 17.80

3 42 3 ReLU 2 RMSprop 0.0193 3 79 0.8 FALSE FALSE 20.55

4 63 3 ReLU 2 RMSprop 0.0002 2 77 0.4 FALSE TRUE 97.03

5 58 2 Sigmoid 2 RMSprop 0.0436 14 173 0.3 TRUE TRUE 17.58

6 44 3 Sigmoid 1 RMSprop 0.0026 1 25 0.3 FALSE TRUE 17.58

7 32 1 Sigmoid 2 Adadelta 0.0016 7 13 0.5 TRUE TRUE 20.55

8 63 2 ReLu 2 RMSprop 0.0006 13 37 0.4 TRUE TRUE 93.64

9 48 2 Sigmoid 2 RMSprop 0.0041 16 105 0.7 FALSE TRUE 20.55

10 48 2 ReLU 1 ADAM 0.0023 16 105 0.4 FALSE TRUE 20.55

11 48 2 ReLU 1 Adadelta 0.0037 16 105 0.6 TRUE FALSE 92.16

EI [39]

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 20.55

2 39 2 Sigmoid 1 SGD 0.0041 32 60 0.4 TRUE TRUE 19.11

3 62 2 ReLU 1 ADAM 0.0019 3 110 0.8 TRUE FALSE 20.55

4 39 2 Sigmoid 1 RMSprop 0.0015 31 99 0.6 TRUE TRUE 20.55

5 44 3 ReLU 1 RMSprop 0.0724 27 90 0.3 FALSE FALSE 19.96

6 32 2 Sigmoid 1 ADAM 0.0003 1 154 0.4 TRUE TRUE 20.55

7 36 1 ReLU 2 RMSprop 0.0874 18 58 0.7 FALSE TRUE 18.22

8 52 3 Sigmoid 2 RMSprop 0.0846 3 97 0.8 TRUE FALSE 17.37

9 55 2 ReLU 1 RMSprop 0.0029 10 172 0.8 TRUE TRUE 20.55

10 53 2 Sigmoid 1 ADAM 0.0001 27 142 0.6 FALSE TRUE 20.55

11 51 1 Sigmoid 1 ADAM 0.0019 4 135 0.7 TRUE TRUE 18.52

EI-PSO

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 20.55

2 24 2 Sigmoid 2 ADAM 0.0068 4 53 0.2 FALSE TRUE 18.26

3 31 3 Sigmoid 2 Adadelta 0.0532 5 72 0.6 FALSE TRUE 20.55

4 21 1 Sigmoid 1 ADAM 0.0453 11 53 0.3 FALSE TRUE 19.96

5 24 1 ReLU 2 ADAM 0.0001 7 65 0.9 FALSE FALSE 92.67

6 26 3 ReLU 1 Adadelta 0.0019 9 192 0.2 FALSE TRUE 95.64

7 31 1 ReLU 2 Adadelta 0.0003 14 67 0.6 FALSE TRUE 20.55

8 21 1 Sigmoid 1 SGD 0.0004 4 147 0.3 TRUE FALSE 20.55

9 30 1 Sigmoid 1 RMSprop 0.0002 5 45 0.8 FALSE FALSE 20.55

10 18 3 ReLU 1 ADAM 0.0006 4 82 0.7 FALSE FALSE 20.55

11 28 3 ReLU 2 RMSprop 0.06234 12 174 0.2 FALSE TRUE 19.96

EI-ABC

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 97.63

2 21 2 Sigmoid 2 ADAM 0.0005 1 114 0.8 TRUE TRUE 20.55

3 25 2 ReLU 2 RMSprop 0.0001 7 14 0.7 TRUE TRUE 94.19

4 19 2 Sigmoid 2 RMSprop 0.0016 14 112 0.4 FALSE TRUE 20.55

5 17 3 Sigmoid 1 ADAM 0.0005 13 116 0.4 TRUE FALSE 20.55

6 26 1 Sigmoid 2 ADAM 0.0017 10 114 0.6 TRUE FALSE 20.55

7 32 2 Sigmoid 2 RMSprop 0.0003 8 144 0.9 FALSE TRUE 20.55

8 21 2 Sigmoid 2 Adadelta 0.0001 2 78 0.8 FALSE FALSE 20.55

9 23 1 ReLU 2 ADAM 0.0015 15 131 0.8 TRUE FALSE 94.53

10 16 3 Sigmoid 2 RMSprop 0.0018 14 169 0.2 FALSE TRUE 20.55

11 17 2 ReLU 1 RMSprop 0.0001 11 16 0.9 FALSE TRUE 92.12

EI-HHO

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 20.55

2 28 1 ReLU 1 ADAM 0.0056 4 174 0.6 FALSE TRUE 20.55

3 25 3 ReLU 1 SGD 0.0047 2 27 0.8 FALSE TRUE 92.88

4 19 2 ReLU 2 RMSprop 0.0053 4 76 0.23 TRUE TRUE 20.55

5 18 2 ReLU 1 ADAM 0.0312 12 94 0.7 TRUE TRUE 20.00

6 20 1 ReLU 2 ADAM 0.0042 6 115 0.5 FALSE FALSE 20.55

7 23 2 Sigmoid 2 Adadelta 0.0167 8 191 0.5 FALSE FALSE 20.55
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Table 3. Cont.

Acquisition
Function Iteration

Hyperparameter Fine-Tuned Validation
Accuracy

(%)
Feature

Map
Filter
Size

Activation
Function

Pool
Size Optimizer Learning

Rate
Batch
Size Epoch Dropout

Rate
Upper
Layer

Lower
Layer

8 18 2 Sigmoid 2 Adadelta 0.0007 14 52 0.7 TRUE TRUE 20.55

9 29 3 Sigmoid 2 RMSprop 0.0015 8 132 0.1 TRUE TRUE 20.55

10 22 1 Sigmoid 1 ADAM 0.0361 12 186 0.4 TRUE FALSE 19.41

11 26 2 Sigmoid 2 Adadelta 0.0333 10 140 0.1 TRUE TRUE 20.55

EI-SFO

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 20.55

2 20 1 ReLU 1 RMSprop 0.0343 10 124 0.7 TRUE FALSE 20.00

3 22 1 ReLU 1 RMSprop 0.0009 16 137 0.8 FALSE FALSE 94.87

4 20 2 Sigmoid 2 RMSprop 0.0768 13 134 0.8 TRUE FALSE 18.77

5 21 2 Sigmoid 2 SGD 0.0196 14 35 0.7 FALSE FALSE 20.55

6 27 3 Sigmoid 2 RMSprop 0.0080 7 191 0.7 FALSE FALSE 17.58

7 29 1 ReLU 2 RMSprop 0.0169 11 107 0.4 FALSE TRUE 20.00

8 19 2 ReLU 2 RMSprop 0.0677 12 173 0.2 FALSE FALSE 19.37

9 31 1 ReLU 2 ADAM 0.0005 5 111 0.5 FALSE TRUE 95.55

10 29 1 ReLU 1 ADAM 0.0004 5 55 0.5 TRUE TRUE 95.89

11 20 2 ReLU 2 ADAM 0.0003 7 107 0.6 TRUE TRUE 98.35

PI

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 20.55

2 51 3 Sigmoid 1 RMSprop 0.0007 14 83 0.7 TRUE TRUE 20.55

3 48 3 Sigmoid 1 RMSprop 0.0678 16 108 0.3 TRUE TRUE 18.98

4 35 1 ReLU 2 Adadelta 0.0001 8 147 0.5 TRUE TRUE 20.55

5 44 2 ReLU 1 RMSprop 0.0002 21 199 0.8 FALSE FALSE 97.67

6 50 2 ReLU 2 SGD 0.001 13 70 0.1 TRUE TRUE 76.99

7 54 3 ReLU 1 ADAM 0.001 4 41 0.2 TRUE TRUE 97.12

8 47 1 ReLU 2 SGD 0.0013 13 65 0.7 FALSE TRUE 71.31

9 58 1 ReLU 2 ADAM 0.0027 5 145 0.3 FALSE FALSE 20.55

10 40 2 Sigmoid 1 ADAM 0.0017 20 25 0.8 TRUE TRUE 19.96

11 40 1 ReLU 1 RMSprop 0.0372 29 23 0.9 FALSE TRUE 19.41

UCB

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 20.55

2 46 1 Sigmoid 1 RMSprop 0.0255 14 195 0.7 TRUE TRUE 16.95

3 54 2 ReLU 1 ADAM 0.0028 5 112 0.5 TRUE FALSE 20.55

4 40 1 ReLU 2 RMSprop 0.0004 5 37 0.3 FALSE TRUE 93.64

5 57 1 Sigmoid 1 ADAM 0.0036 26 171 0.7 TRUE TRUE 20.55

6 55 1 Sigmoid 2 ADAM 0.0006 16 160 0.1 TRUE TRUE 20.55

7 63 3 ReLU 2 ADAM 0.0022 5 129 0.8 TRUE TRUE 20.55

8 55 1 Sigmoid 2 ADAM 0.0002 18 180 0.4 FALSE TRUE 20.55

9 42 3 Sigmoid 2 ADAM 0.0249 3 92 0.4 TRUE FALSE 15.47

10 50 3 ReLU 1 ADAM 0.0022 14 112 0.8 TRUE FALSE 20.55

11 40 1 ReLU 2 RMSprop 0.0004 5 37 0.3 FALSE TRUE 93.60

LCB

1 64 3 ReLU 2 ADAM 0.001 32 200 0.2 FALSE FALSE 20.55

2 48 2 ReLU 2 SGD 0.0116 4 63 0.6 FALSE TRUE 98.00

3 39 2 Sigmoid 2 ADAM 0.0016 19 151 0.6 TRUE TRUE 19.36

4 53 2 Sigmoid 1 ADAM 0.0312 19 172 0.9 FALSE TRUE 18.18

5 64 2 ReLU 2 SGD 0.0002 10 16 0.2 TRUE TRUE 20.55

6 59 1 Sigmoid 2 RMSprop 0.0002 11 130 0.8 TRUE TRUE 20.55

7 34 2 Sigmoid 2 Adadelta 0.0247 13 120 0.7 TRUE FALSE 20.55

8 33 2 Sigmoid 2 RMSprop 0.0003 6 56 0.6 TRUE FALSE 20.55

9 38 2 Sigmoid 2 ADAM 0.0042 16 95 0.2 FALSE FALSE 19.96

10 34 3 ReLU 2 RMSprop 0.0056 16 161 0.2 TRUE FALSE 20.55

11 52 1 ReLU 1 SGD 0.0004 27 110 0.6 TRUE TRUE 32.46

The majority of the hyperparameters and fine-tuned layers in Table 2 indicate a
validation accuracy of 20.55%, suggesting overfitting. This issue may occur because the
pre-trained model is too complex for the VF defect image as a result of their small size or
lack of diversity. Another possibility is that the set of hyperparameters is too extensive
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and involves all network layers, resulting in a complex network architecture. In some
cases, tuning all layers of a pre-trained neural network achieved high accuracy in this
classification task. It was observed that BO would adjust to a slower learning rate as more
layers are tuned to prevent overwriting existing knowledge in earlier layers in order to
preserve features that are likely to be useful for the new task.

The proposed method, EI-SFO, from both Tables 2 and 3 indicates the performance
of EI when enhanced using SFO metaheuristic methods. SFO is used to maximize the
mean and variance processes within the EI acquisition function, but its performance cannot
surpass the performance of the LCB acquisition function in BO. This is because the LCB can
efficiently search the hyperparameter in the search space by selecting the hyperparameter
that is likely to perform well and have low uncertainty [43]. LCB selects the lowest expected
value of the transfer learning and then calculates the sum of the mean and a scaled variance
value. The scaling factor will control the exploration and exploration of BO, and the larger
the scaling factor values will encourage more exploration. In contrast, smaller values of the
scaling factor will encourage more exploitation.

On the other hand, it was observed that the SFO method maximized the mean and
variance inside the EI acquisition function. The maximization of the mean and variance of
EI induced the mean to select candidate solutions that are both promising and diverse. This
helps the BO to explore a broader range of the search space, potentially leading to better
solutions. When the mean is maximized, the surrogate model predicts that the current
hyperparameter set will likely perform well. This is a sign that the optimization process
exploits the most promising areas of the search space, and it can lead to faster convergence
toward the optimal set of hyperparameters [43].

In contrast, when the variance is maximized, the surrogate model is uncertain about
the performance of the current set of hyperparameters. This indicates that the optimization
process is exploring new areas of the search space. However, it can also result in slower
convergence since the optimizer may need to evaluate more hyperparameter configurations
to gain enough information about the objective function. However, the maximized mean
and variance can lead to exploring suboptimal regions of the search space. Consequently,
the objective function must have a well-balanced mean and variance. When comparing the
standard EI to EI-PSO, EI-ABC, EI-HHO, and EI-SFO on VGG-16, the incorporation of the
metaheuristic method results in a significant improvement in mean accuracy evaluations.

3.2. Performance Analyses of Pre-Trained Models Enhanced by Bayesian Optimization Based on
Different Acquisition Functions

In BO, four acquisition functions (EI, PI, UCB, and LCB) are commonly used to
optimize the objective function. Therefore, these acquisition functions were tested to
analyze the difference in terms of performance in the VF defect classification task. Since the
VGGNet model presents the lowest performance in the default acquisition function, i.e., EI,
this work focuses on optimizing this acquisition function with four metaheuristic methods
(PSO, ABC, HHO, and SFO) to enhance the performance of BO.

Figure 2a demonstrates the performance accuracy distribution across 11 iterations of
the VGG-16 pre-trained model based on different acquisition functions. In this work, the
number of iterations is set to 11, which is the maximum number of iterations supported by
the hardware computational capability in order to achieve optimal EI performance. In the
box plot green triangle represent the mean of accuracy obtain from the 11 iteration and the
circle is the accuracy outlier where’s the 90% accuracy is not the majority in the 11 iteration.
When optimizing hyperparameters in BO using the LCB acquisition function, LCB has
shown the highest mean accuracy when compared to other acquisition functions. Without
an outlier, the mean accuracy is 47.17%, with a maximum and minimum accuracy of 98.26%
and 16.91%, respectively. The lower quartile value is 18.31, indicating that 25% of the
obtained accuracy falls below 18.31% and 75% of the data for the upper quartile fall below
98.22. In contrast, UCB performed the worst in terms of accuracy distribution, regardless of
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the fact that the maximum accuracy achieved was 97.88%. The average accuracy achieved
is 30.59%, with a median of 20.55% and a minimum of 16.81%.

Diagnostics 2023, 13, x FOR PEER REVIEW 13 of 18 
 

 

mean accuracy of 47.40%, a maximum accuracy of 98.34%, and a minimum accuracy of 
15.50%. The lower quartile value for the EI-SFO is 19.37%. The median is 20.55%, and the 
upper quartile value is 95.55%. In contrast, EI has the worst performance, with a mean 
accuracy of 19.86%, median accuracy of 20.55%, first quartile value of 18.96%, and third 
quartile value of 20.55%. The maximum accuracy is 20.55%, while the minimum 
achievable accuracy is 17.37%. 

  
(a) (b) 

Figure 2. Comparison of performance accuracy distribution of VGGNet using difference acquisition 
function in Bayesian Optimization; (a) VGG-16; (b) VGG-19. 

The following Table 4 compares the performance accuracy of enhanced BO and 
conventional methods. For the classification of VF defects, the performance of a pre-
trained model enhanced by BO using the EI-SFO method is comparable to the 
performance of the LCB acquisition function for VGG-16. As for VGG-19, the mean 
accuracy is better compared to others, while the highest accuracy is almost identical to the 
LCB method. The mean evaluation of VGGNet is determined by the number of iterations 
set during BO in order to detect VF defects with optimal accuracy. The average precision 
rises as the metaheuristic method optimizes the EI acquisition function. Among the 
enhancements to EI, the EI-SFO method achieves the highest accuracy of 98.60% for VGG-
16 and 98.34% for VGG-19. The experiment also included CMA-ES, one of the acquisition 
functions proposed by Loshchilov and Hutter [12], that exhibits superior performance in 
more complex optimization problems. However, the performance of both VGGNet 
models for the VF classification task suggests that overfitting occurred. This could be the 
result of an incompatible combination of hyperparameters and fine-tuning explored by 
the acquisition function. 

Table 4. Comparison of performance accuracy of enhanced BO and existing methods. 

Acquisition Function 
Transfer Learning 

Model Mean Accuracy (%) Max Accuracy (%) Min Accuracy (%) 

CMA-ES [12] 
VGG-16 20.10 20.55 15.67 
VGG-19 39.87 97.03 17.58 

EI 
VGG-16 34.03 97.92 18.81 
VGG-19 19.86 20.55 17.37 

EI-PSO 
VGG-16 38.35 97.80 17.16 
VGG-19 33.62 95.64 17.54 

EI-ABC 
VGG-16 36.76 97.84 14.41 
VGG-19 47.48 97.63 20.55 

Figure 2. Comparison of performance accuracy distribution of VGGNet using difference acquisition
function in Bayesian Optimization; (a) VGG-16; (b) VGG-19.

On the other hand, Figure 2b shows the range of performance accuracy across 11 itera-
tions of the VGG-19 pre-trained model based on different acquisition functions. Based on
the box plot, the EI-SFO method outperformed other metaheuristic methods with a mean
accuracy of 47.40%, a maximum accuracy of 98.34%, and a minimum accuracy of 15.50%.
The lower quartile value for the EI-SFO is 19.37%. The median is 20.55%, and the upper
quartile value is 95.55%. In contrast, EI has the worst performance, with a mean accuracy of
19.86%, median accuracy of 20.55%, first quartile value of 18.96%, and third quartile value
of 20.55%. The maximum accuracy is 20.55%, while the minimum achievable accuracy
is 17.37%.

The following Table 4 compares the performance accuracy of enhanced BO and con-
ventional methods. For the classification of VF defects, the performance of a pre-trained
model enhanced by BO using the EI-SFO method is comparable to the performance of the
LCB acquisition function for VGG-16. As for VGG-19, the mean accuracy is better compared
to others, while the highest accuracy is almost identical to the LCB method. The mean
evaluation of VGGNet is determined by the number of iterations set during BO in order to
detect VF defects with optimal accuracy. The average precision rises as the metaheuristic
method optimizes the EI acquisition function. Among the enhancements to EI, the EI-SFO
method achieves the highest accuracy of 98.60% for VGG-16 and 98.34% for VGG-19. The
experiment also included CMA-ES, one of the acquisition functions proposed by Loshchilov
and Hutter [12], that exhibits superior performance in more complex optimization prob-
lems. However, the performance of both VGGNet models for the VF classification task
suggests that overfitting occurred. This could be the result of an incompatible combination
of hyperparameters and fine-tuning explored by the acquisition function.

In addition to a comparative analysis of performance accuracy, a confusion matrix
analysis was also conducted. The confusion matrix consists of a square matrix with
dimensions equal to the number of classes in the problem. Each cell in the matrix represents
the precision that belongs to a particular actual class and is predicted to belong to a
particular predicted class. The diagonal elements of the matrix represent the precision of
correctly classified instances for each class. The off-diagonal component represents the
precision of instances that are misclassified. The darker the blue color in confusion matrix
the higher the accuracy. The confusion matrix was constructed using the classification
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result of six types of VF defects observed in 10% of the entire dataset. The six types of VF
defects include central, hemianopia, normal, quadrantanopia, superior, and tunnel defect.

Figure 3a,b demonstrate the performance of VGGNet after enhanced BO has been ap-
plied. Figure 3a shows that the VGG-16 model classified superior, central, and hemianopia
defects with 100% accuracy. As for quadrantanopia, the obtained precision is 93%, with 5%
tunnel vision and 1% hemianopia misclassification. Normal vision achieved 98% precision
with 2% quadrantanopia misclassification, while tunnel vision achieved 96% precision
with 3% central scotoma and 1% quadrantanopia misclassification. The overall precision
obtained from six classes of visual field defects in VGG-16 is 97.83% precision.

In Figure 3b, VGG-19 achieved a precision of 100% for central scotoma, superior,
and hemianopia, 96% for quadrantanopia with 4% misclassified as tunnel vision, 99% for
normal with 1% misclassified as superior, and 95% for tunnel vision with 5% misclassified
as a central scotoma. The overall testing precision obtained from the six classes of visual
field defects in VGG-16 is 98.33%.
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Table 4. Comparison of performance accuracy of enhanced BO and existing methods.

Acquisition Function Transfer Learning
Model Mean Accuracy (%) Max Accuracy (%) Min Accuracy (%)

CMA-ES [12]
VGG-16 20.10 20.55 15.67

VGG-19 39.87 97.03 17.58

EI
VGG-16 34.03 97.92 18.81

VGG-19 19.86 20.55 17.37

EI-PSO
VGG-16 38.35 97.80 17.16

VGG-19 33.62 95.64 17.54

EI-ABC
VGG-16 36.76 97.84 14.41

VGG-19 47.48 97.63 20.55
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Table 4. Cont.

Acquisition Function Transfer Learning
Model Mean Accuracy (%) Max Accuracy (%) Min Accuracy (%)

EI-HHO
VGG-16 41.46 98.26 19.36

VGG-19 26.97 92.88 19.41

EI-SFO
VGG-16 43.63 98.60 16.65

VGG-19 47.40 98.34 15.51

PI
VGG-16 33.54 96.23 15.68

VGG-19 43.97 97.66 18.98

UCB
VGG-16 30.59 97.88 16.18

VGG-19 26.40 93.64 15.47

LCB
VGG-16 47.17 98.26 16.91

VGG-19 28.37 98.81 18.18

4. Conclusions

In conclusion, the acquisition function plays a crucial role in the BO process as it
determines the next set of hyperparameters to be evaluated based on the trade-off between
exploration and exploitation. EI is the default acquisition function for BO, which searches
for the global optimum of the objective function within the given search space. Global
search algorithms can be used as an initialization strategy to sample a diverse set of points
in the search space. Then, the acquisition function is used to guide the search towards
more promising regions around the initial points. This helps to balance the exploration-
exploitation trade-off in the search for optimal hyperparameters. In other words, the
performance of the acquisition function can have a significant impact on the efficiency and
effectiveness of the optimization process.

Therefore, this work proposes combining swarm-based metaheuristic methods (PSO,
ABC, HHO, and SFO) with the EI acquisition function. The aim of the proposed method is
to examine how the metaheuristics approach can be utilized to optimize the exploration and
exploitation of EI in BO to obtain a more optimum set of hyperparameters and fine-tuned
layers. The effectiveness of the proposed method was observed in a multi-class classification
task which involved six different types of VF defect images. Then, a comprehensive
investigation and analysis of the classification performance were conducted to determine
how effectively BO optimizes the objective function in VGGNet models following the
improvement of the acquisition function. These include the analyses of the validation and
testing performance of the model in the VF defect classification task.

Based on the experimental result, the metaheuristic methods boost the algorithm
to explore new regions of the hyperparameter and fine-tuning layers search space while
searching for the optimum set of hyperparameter and fine-tuned layers to obtain a set of
hyperparameter that have improved the classification accuracy. The hyperparameter tuning
and fine-tuning applied shows that the feature or knowledge learned by the pre-trained
model can be effectively learned by the source model by choosing the specific task features
for the visual field defect pattern. The enhanced optimization processes have improved the
model’s ability to identify accurate low-level features such as edges, corners and textures,
as well as higher-level features such as shapes, objects, and scenes of visual field defects.

One of the proposed methods, EI-SFO, demonstrates a promising result by obtaining
high accuracy in the classification task. In comparison to other metaheuristic methods, the
EI-SFO-based OB produces the highest mean accuracy for VGG-19 at 47.40%. When EI
is combined with the SFO method in BO, the most significant improvement is observed
when the mean accuracy for the VGG-16 model increases from 34.03% to 43.63% percent
and when it increases from 19.86% to 47.40% percent for the VGG-19 model. EI-SFO-
based BO is capable of producing the highest accuracy for VGG-16 and VGG-19, which is
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98.60% and 98.34%, respectively. The enhanced BO of transfer learning can significantly
impact medical image classification in medical diagnosis by improving model performance,
enabling data-efficient model training, boosting model robustness, and saving time and
resources during the hyperparameter tuning process. This can lead to more accurate and
reliable classification models for medical images, which can aid in the early and accurate
diagnosis of medical conditions.

Due to the constraints of our computing resources, the number of BO iterations is
limited to only 11. Hence, in future, more experiments will be conducted to further analyze
the performance of the acquisition function in a more significant number of BO iterations
in exploring better solutions. Besides that, the combination of metaheuristics and BO to a
deep learning algorithm incurs high computational complexity. Therefore, improving the
algorithm’s efficiency is desirable for future investigation. In addition to the four algorithms
(PSO, ABC, HHO, and SFO), more available metaheuristics algorithms such as Simulated
Annealing, Ant Colony Optimization (ACO), and Flower Pollination Algorithm (FPA) can
be combined with the EI acquisition function to observe their performance.
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