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Abstract: The COVID-19 virus is one of the most devastating illnesses humanity has ever faced.
COVID-19 is an infection that is hard to diagnose until it has caused lung damage or blood clots.
As a result, it is one of the most insidious diseases due to the lack of knowledge of its symptoms.
Artificial intelligence (AI) technologies are being investigated for the early detection of COVID-19
using symptoms and chest X-ray images. Therefore, this work proposes stacking ensemble models
using two types of COVID-19 datasets, symptoms and chest X-ray scans, to identify COVID-19. The
first proposed model is a stacking ensemble model that is merged from the outputs of pre-trained
models in the stacking: multi-layer perceptron (MLP), recurrent neural network (RNN), long short-
term memory (LSTM), and gated recurrent unit (GRU). Stacking trains and evaluates the meta-learner
as a support vector machine (SVM) to predict the final decision. Two datasets of COVID-19 symptoms
are used to compare the first proposed model with MLP, RNN, LSTM, and GRU models. The second
proposed model is a stacking ensemble model that is merged from the outputs of pre-trained DL
models in the stacking: VGG16, InceptionV3, Resnet50, and DenseNet121; it uses stacking to train
and evaluate the meta-learner (SVM) to identify the final prediction. Two datasets of COVID-19 chest
X-ray images are used to compare the second proposed model with other DL models. The result has
shown that the proposed models achieve the highest performance compared to other models for
each dataset.

Keywords: machine learning; deep learning; ensemble learning; COVID-19; diagnosis; symptoms;
stacking

1. Introduction

The leading cause of the global COVID-19 pandemic is the SARS-CoV-2 virus. There-
fore, it has become necessary to find means that would effectively achieve early detection
of people with COVID-19 and provide them with the care needed on time. In addition,
all medical measures and precautions must be taken to separate patients infected with
COVID-19 from other patients to reduce the spread of the disease or its fatal symptoms.
The number of deaths due to coronavirus reached 6,517,058 based on global measures [1].
Furthermore, COVID-19 poses a severe challenge due to its ease of transmission and global
lack of definitively viable therapies [2]. Many vaccines have been proven to expose users to
many complications, including blood clots.

COVID-19 infection goes through three stages: the incubation period, acute
COVID-19, and finally, COVID-19 recovery. The incubation period is the period between
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the actual infection with the disease and the onset of symptoms in the patient. Acute
COVID-19 is the time when the symptoms appear, such as fever, cough, fatigue, headache,
congestion, or runny nose, among other COVID-19 symptoms. In addition, an essential
step in the fight against this fatal illness would be a successful screening and diagnosis
procedure to treat affected patients. In addition, an effective strategy in the fight against
COVID-19 may be early detection utilizing chest X-ray pictures [3].

Therefore, effective and early COVID-19 diagnosis based on the symptoms and chest
X-ray images will help to mitigate the coronavirus outbreak. Moreover, it will assist
healthcare systems, including doctors, nurses, and medical staff, in protecting vulnerable
patients. Artificial intelligence (AI) has been instrumental in the steady transition from
laboratory to clinical and public health applications.

AI provides a wide range of approaches for analyzing complex data to advance un-
derstanding of the subject of COVID-19 [4–7]. AI employs machine learning (ML) and
deep learning (DL) to produce algorithms that can be used in the clinical and biomedical
fields for patient classification and stratification based on the pairing and processing of a
wide range of available data sources, such as heart disease detection [8], polycystic ovary
syndrome detection [9], and chronic kidney disease detection [10]. The most significant
contribution is using AI to detect patients at higher risk early to treat those patients and
control disease transmission. Furthermore, AI can help governments to manage the pan-
demic by early notification of COVID-19 outbreaks [11]. An ensemble classifier combines
the results of several classifiers in a way that enables component models to balance out
the deficiencies of each other. Ensemble learning has three types, stacking [12,13], bag-
ging [14], and boosting, which use a generic meta-approach in predictive performance
by integrating predictions from different models, improving the general prediction of DL.
Stacking involves combining weak algorithms into a meta-model that can make better
predictions [12,13].

There are two types of stacking ensembles: heterogeneous and homogeneous. The
heterogeneous ensemble uses a variety of classifiers, while the homogeneous ensemble
uses the same base model repeatedly. An ensemble of heterogeneous agents may perform
better than an ensemble of homogeneous agents because of the combination of their biased
decisions. In our work, we develop homogeneous stacking ensemble models to detect
COVID-19.

Therefore, rapid diagnosis based on symptoms with accurate prediction is the essential
AI-based solution to control the spread of the pandemic. Some related research work has
been done on COVID-19 diagnosis. However, experimental research still needs to be done
using ensemble learning for COVID-19 diagnosis. On the other hand, COVID-19 can induce
pneumonia, which is caused by lung inflammation triggered by bacterial or viral infection.
Consequently, researchers, specialists, and companies have used medical images (i.e., chest
X-ray and computed tomography (CT)) for early diagnosis of COVID-19 patients. Hundreds
of chest X-ray have been used to investigate the nature of pneumonia due to COVID-19
infection (see Figure 1). According to the context of this paper, DL models have been
proposed to study chest X-ray images to benefit the detection of COVID-19. Researchers
have used DL classifiers, in particular, to classify COVID-19 using chest X-rays images.
For example, CNN models have been used to learn the pattern of COVID-19 infection
from radiological X-ray images [15,16]. In particular, CNN models help to draw a clear
distinction between non-tangible elements in the X-ray that can expose COVID-19 infection.

In our work, we develop homogeneous stacking ensemble models to detect COVID-19
based on symptoms and chest X-ray images. Our contributions can be summarized
as follows:



Diagnostics 2023, 13, 1968 3 of 23

• We propose two stacking ensemble DL models to detect COVID-19 using symptoms
and chest X-ray images.

• The first proposed model is merged from the outputs of pre-trained DL models in
the stacking: MLP, RNN, LSTM, and GRU; it uses stacking to train and evaluate the
meta-learner (SVM) to identify the final prediction based on symptoms.

• The second proposed model is merged from the outputs of pre-trained models in
the stacking:
ResNet152V2, DenseNet201, VGG16, MobileNetV2, and inception_v3i; it uses stacking
to train and evaluate the meta-learner (SVM) to identify the final prediction based on
chest X-ray images.

• The first proposed model is evaluated against MLP, RNN, LSTM, and GRU using two
COVID-19 symptom datasets and different assessment techniques: accuracy (A), recall
(R), precision (P), and f1-score (F1).

• The second presented model is compared to ResNet152V2, DenseNet201, VGG16,
MobileNetV2, and inceptionv3i utilizing COVID-19 chest X-ray images and different
assessment techniques.

• A comparison of the proposed models with other models shows that the proposed
models have the highest performance.

Figure 1. Example of chest X-ray images.

The study’s structure is as follows: Section 2 discusses COVID-19 detection based on
symptoms and chest X-ray images. The methodology and proposed models are discussed
in Section 3. In Section 4, the experimental results are depicted. Conclusions are presented
in Section 6.

2. Related Work

This section presents recent studies on the subject of detecting COVID-19 using symp-
toms and chest X-ray images.

2.1. Detecting COVID-19 Using Symptoms

The authors used ML and DL algorithms to detect COVID-19. For example, in [6], the
authors used the gradient-boosting (GBoost) model for COVID-19 patient detection. They
evaluated the model using AUC. In [17], the authors proposed a DL model technique called
gray level co-occurrence matrix (GLCM) based on CNN. The authors in [18] contrasted
widely employed feature extraction techniques for COVID-19 automatic categorization
based on DL. The authors applied a group of deep CNNs, including InceptionV3, In-
ceptionResNetV2, MobileNet, DenseNet, Xception, ResNet, VGGNet, and NASNet. In
[19], the authors developed a predictive algorithm based on a trained DL model using
8427 COVID-19 patient records. In [20], the authors used the ML models: XBoost, Ad-
aBoost, RF, and ExtraTrees with 337 COVID-19 patients. Jamshidi et al. [21] summarized
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different models, including hybrid DL approaches and ML approaches, for calculating
and forecasting complicated occurrences focused on the spread of COVID-19. In [22], the
authors used ML techniques to detect mortality risks in COVID-19 using a dataset collected
from the UK Biobank. The authors of [23] used KNN, SVM, LR, multilayer perceptual neu-
ral networks (MLP), LSTM, and GRU for COVID-19 diagnosis. They used the COVID-19
dataset from Kaggle [24] that includes some features and symptoms for their experiment.
In [25], the authors used LR, NB, RF, DT, and gradient boosters for COVID-19 diagnosis
based on some symptoms. They used the COVID-19 dataset from Kaggle [24] that includes
some features and symptoms. The results showed that KNN achieved the highest accuracy.
In [26], the authors Used RF, SVM, MLP and XGB, and LR to predict COVID-19 for children
based on collected data that include some of the symptoms.

Previous studies used regular ML and DL models. However, they did not use ensemble
stacking based on LSTM and GRU. In our study, we proposed stacking ensemble DL models
for detecting COVID-19. The proposed model combined LSTM and GRU with SVM as a
meta-learner for detecting COVID-19.

2.2. The Detection of COVID-19 Using Chest X-rays

Several studies have used transfer learning on chest X-ray images to identify
COVID-19 patients. Here, we focus only on issues directly relevant to our suggestion.

In [27], X-ray images of the chest were analyzed using three pre-trained models for
extracting features and detecting COVID-19. A variety of data augmentation techniques,
such as random rotation and noise, were employed. VGG16 achieved the best results.

In [28], A total of 100 chest X-ray images was analyzed by the author to detect
COVID-19 using three pre-trained CNNs, Inception-ResNetV2, InceptionV3, and ResNetV2.
ResNet50 registered the highest result. In [29], the authors proposed CNN models (COVID-
Net) and proposed a new design pattern called residual projection extension-projection
extension (PEPX).

The authors of [30] proposed a concatenation-based CNN (Concat_CNN) model to
detect COVID-19 from chest X-rays images. A comparison was made between Concat_CNN
and the following transfer models: VGG16, InceptionV3, Resnet50, and DenseNet121.
Concat_CNN registered the best results.

In [31], the authors suggested a CNN employing Softmax classifier and ML (SVM
and RF).

In [32], the authors presented a hybrid CNN model using Xception and ResNet101 to
extract COVID-19 characteristics from chest X-rays.

In [33], the authors proposed new ML models to detect COVID-19 from chest X-ray
images. They used fractional multichannel exponent moments to extract features from
images. In [34], the authors presented a DL model and employed SqueezNet with a
modified output layer to categorize X-ray pictures into COVID-19, normal, and pneumonia.
In [35], the authors developed deep CNN (DCNN) to detect COVID-19 with five classes
and compared it with eight pre-trained models. Based on the results, DCNN had the
highest accuracy.

In [36], the authors used VGG16, VGG19, DenseNet201, Inception_ResNet_V2, Incep-
tion_V3, Resnet50, and MobileNet_V2 with five classes.

Table 1 provides an overview of previous studies on COVID-19 detection.

Table 1. Summary of previous studies on the detection of COVID-19.

Papers Methods Datasets

[6] GBoost 51,831 tested individuals from Israeli
Ministry of Health public dataset

[17] GLCM based on CNN Chest X-rays (273 X-rays, frontal view)

[18] Different types of pretrained CNN Kaggle’s chest X-ray
images (pneumonia)
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Table 1. Cont.

Papers Methods Datasets

[20] X_GBoost, AdaBoost,
RF, and ExtraTrees

337 COVID-19-positive patients at
Cheikh Zaid Hospital

[22] Data-driven RF 11,245 participants in UK
from Biobank dataset

[23] KNN, SVM, LR ,
MLP, LSTM, and GRU

COVID-19-Symptoms-2

[25] RF, SVM, MLP, and XGB COVID-19-Symptoms-2

3. Materials and Methods

Our work aims to develop the proposed stacking ensemble models for detecting
COVID-19 using two data types: chest X-ray images and some of the symptoms. This
section describes the methodology and the framework of stacking ensemble models based
on two data types.

3.1. Detecting COVID-19 Based on Symptoms

This subsection describes the proposed methods to detect COVID-19 based on symp-
toms, as shown in Figure 2. First, two symptoms included in the COVID-19 datasets are
described. Second, the data splitting is presented. Third, the DL model architecture, includ-
ing MLP, RNN, LSTM, and GRU, and optimization methods for DL models are presented.
Finally, we discuss how the DL pre-trained models were combined using stacking ensemble
learning techniques.

Figure 2. The proposed method for detecting COVID-19 based on symptoms (P1, P2, P3, and P4 refer
to the probability outputs of each model).

3.1.1. COVID-19 Symptoms Dataset Description

Two datasets of COVID-19 symptoms are used to conduct our experiment.

• The first dataset of symptoms of COVID-19 (COVID-19-Symptoms-1) is downloaded
from GitHub [37], and it includes 13 features and one class label. The class label has
755 recovered (0) and 108 deaths (1); 250 rows for class 0 are selected. Based on some
pre-defined standard symptoms, the data will help determine whether a person will
recover from COVID-19 symptoms. WHO guidelines are used to determine these
symptoms. An explanation of the features of COVID-19-Symptoms-1 is described in
Table 2.



Diagnostics 2023, 13, 1968 6 of 23

Table 2. Description of the features of COVID-19-Symptoms-1.

Features Descriptions

location What region of the country

country The place where the person lives

gender Male or female

age Age of patient

vis_wuhan Indication of whether the person has
visited Wuhan

from_wuhan Whether the person is from Wuhan, China,
or not

symptom1, symptom2, symptom3,
symptom4, symptom5 and symptom6

Six features of symptoms

diff_sym_hos Time before symptoms appear

result Recovered or death

Figure 3 shows the correlation matrix of the COVID-19-Symptoms dataset. We can
see that the symptoms are highly correlated with each other. Age and diff_sym have the
highest correlation with the results.

Figure 3. Correlation matrix of COVID-19-Symptoms-1.

• The second dataset of COVID-19 symptoms (COVID-19-Symptoms-2) [24] covers the
presence of several features (mask use, trip overseas, and interaction with a COVID
patient), as well as multiple symptoms (fever, dry cough, and breathing issues); in
addition, the class label refers to whether the person has COVID or not. There are
4347 rows for the training set, and 1087 for the testing set. A description of the features
of COVID-19-Symptoms-2 is shown in Table 3.
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Figure 4 shows the correlation matrix of the COVID-19-Symptoms dataset2. We can see
that the WM and SF features have one value; therefore, they are removed from the dataset.
In addition, we transformed categorical features into numerical data using LabelEncoder
in Python.

Figure 4. Correlation matrix of COVID-19-Symptoms-2.

Table 3. Description of the features of COVID-19-Symptoms-2.

Features Description

BP Difficulty in breathing due to breathing problems
Ranges from mild, to moderate, to severe

F Increase in patient temperature (commonly over 38)

DC Type of cough that usually does not produce any phlegm

ST A common symptom that is mainly characterized by pain or itchiness in the throat

RN Discharge of fluid due to viral or bacterial causes

AS Chronic respiratory diseases usually narrow
the airway path and cause breathing problems

CLD A medical condition that causes long-term problems with breathing

HD Felling pain or discomfort in the face region, ranges from mild, to moderate, to severe

Heart A medical condition that affects blood vessels and heart status

DI Chronic diseases in which the patient becomes
unable to produce sugar at a regular level due to pancreas problems

HT Chronic diseases in which the force of
the blood against the direction of the walls is higher than normal

FA The feeling of pain or illness due to extreme effort or tiredness
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Table 3. Cont.

Features Description

GA This refers to the digestive system where all processing and absorbing of food occurs

AL Check if the patient traveled in the last 14 days

CW Direct connection with positive cases of COVID-19

AL Check if the patient has attended recent gatherings (i.e., festival, party)

VP Check if the patient has visited an exposed place

FW If any one of the patient’s family works in one of the exposed places

WM Check if the patient’s mask wearing continues when outside

SF Check if the patient visits a place for sanitization

COVID-19 The final decision (yes for positive, no for negative)

3.1.2. Data Splitting

Datasets are divided 80/20 into training and testing sets. A training set was used
for training and optimizing models, and a testing set was used for evaluating models.
Additionally, 10% of training sets are used as validation sets.

Table 4 presents the number of rows for each class in COVID-19-Symptoms-1 and
COVID-19-Symptoms-2, respectively.

Table 4. The number of rows in COVID-19 datasets.

Datasets Classes Training Set Testing Set

COVID-19-Symptoms-1

Recovered 198 52

Death 88 20

Total 286 72

COVID-19-Symptoms-2

Yes 3501 882

No 846 205

Total 4347 1087

3.1.3. DL Models

The MLP, RNN, LSTM, and GRU are trained and evaluated in accordance with our
objective datasets. The final layer of each model includes three neurons and a softmax
function; the loss function is categorical cross-entropy, and the optimizer is Adam [38].

• A multilayer perceptron (MLP) is a neural network that complements forward neural
networks. It has three layers: input, output, and hidden. The input layer receives
input signals [39].

• Recurrent neural networks (RNN) keep a state vector in their hidden units that
indirectly provides information about the history of all previous items in an input
sequence [40]. A basic RNN contains three layers: input, recurrent hidden, and output.
N input units are present in the input layer. This layer’s inputs are a series of vectors
traversing time t [41]. The input units in the hidden layer are fully linked to the hidden
units in the hidden layer, with the connections determined by a weight matrix. The
hidden layer includes M hidden units, which are linked together in time via recurrent
connections [42].

• Long short-term memory (LSTM) architecture is applied to DL algorithms as an
attention-based RNN. LSTMs have feedback connections. A complete data sequence
can be analyzed, as well as single data points. In LSTM mode, one of the most crucial
components is the “cell state” of the memory cell, which maintains its state over
time [43].
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• Gated recurrent units (GRUs), a type of RNN, use gate units to control information
flow rather than separate memory cells. GRUs contain two gate operating mechanisms
to solve the challenge posed by standard RNNs: an update gate and a reset gate [44,45].
The update gate ensures that the necessary memory is retained in order to go to the
next stage. In order to advance to the next stage, the update gate ensures that enough
memory is retained. The reset gate controls how previously stored data are updated
with a new input. After the reset gate engages, a newer memory content is created for
the details of the preceding time step [46].

3.1.4. Optimization Methods

Hyperparameter tuning is the process of adapting hyperparameters to obtain the
right set of values that optimizes the performance of a DL. A hyperparameter is a variable
that determines the training process and model topology for DL models. These variables
directly impact DL performance throughout the training process. KerasTuner [47] is a
Python library explicitly developed for tuning DL hyperparameters. KerasTuner supports
different types of algorithms, namely Bayesian optimization, hyperband, Sklearn, and
random search [47]. Some hyperparameters are adapted, such as the number of units
(ranging between 20 and 800) and the width of hidden layers.

3.1.5. The Proposed Model

Stacking is combining the different models’ output with training other models to
produce the best result. Heterogeneous stacked ensemble is a strategy for blending many
heterogeneous models by learning by meta-learner to predict the final results [48]. The idea
behind stacking is that some models will fit the categories of a test observation properly
while others will not [49]. The algorithm learns from the variety of predictions and seeks to
integrate the models to improve the performance of the basic models [50].

Two levels are proposed in our model: level-1 and level-2.

• In level-1, each base-learner (MLP, RNN, LSTM, and GRU) is trained separately and
saved. Then, the pre-trained models (RNN, LSTM, and GRU) are loaded, and all layers
are frozen without the output layer. Each model takes a training set and predicts
the training output of a probability (p1, p2, and p3). Then, the training outputs are
combined in stacking, which is called training stacking.

• In level-2, the meta-learner (SVM) is trained and optimized using training stacking.
The meta-learner (SVM) is evaluated and tested using testing stacking to predict
the final results. The meta-learner is optimized using a grid search with different
parameter values.

3.2. Detecting COVID-19 Based on the Dataset of Chest X-ray Images

This subsection describes the proposed methods to detect COVID-19 based on symp-
toms. First, chest X-ray images are described. Second, the data preparation procedure
involving data augmentation and image resizing is presented. Third, the pre-trained mod-
els ResNet152V2, DenseNet201, VGG16, MobileNetV2, and inception_v3i are presented.
Finally, we discuss how the pre-trained models were combined using stacking ensem-
ble learning techniques. Figure 5 shows the proposed methodology’s overall workflow
in detail.

3.2.1. COVID-19 Chest X-ray Images Description

• COVID-19 -chest-X-ray-1

Kaggle provided 317 chest X-ray images [51] in three classes: 137 images with
COVID-19, 90 images with normal imaging, and 90 images with viral pneumonia. A
total of 251 images are available for training and 66 images are available for testing.
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Figure 5. The proposed method for detecting COVID-19 based on chest X-ray images (P1, P2, P3, P4,
and P5 refer to the probability outputs of each model).

• COVID-19-chest-X-ray-2

A total of 2060 CHX-Ray images were downloaded from Kaggle [52]. Of these, 696
images were selected for testing and 2060 for training.

3.2.2. Data Augmentation

Preprocessing the first X-ray chest images is required to enhance image features
and improve image data quality. First, RGB is modified for the image channel sequence.
Second, these images are resized to 224 × 224 × 3. Third, image augmentation is per-
formed, which is a method of producing additional dataset points from existing data
by developing changed copies of a dataset [53–55]. A variety of augmentation strate-
gies are applied: rescale:1./255, zoom_range:0.1, rotation_range:20, width_shift_range:0.1,
height_shift_range:0.1, and horizontal_flip:True.

3.2.3. Fine-Tuning the Pre-Trained

The pre-trained ResNet152V2, DenseNet201, VGG16, MobileNetV2, and inception_v3i
are picked and fine-tuned in accordance with our objective datasets. The final layer of
each model includes three neurons and a softmax function; the loss function is categorical
cross-entropy, and the optimizer is Adam.

• Visual geometry group (VGG): In a convolutional neural network architecture, Zisser-
man and Simonyan proposed VGG in 2014 [56]. The essential part of this architecture
is that rather than depending on a huge number of hyperparameters, it concentrates on
fundamental size kernels in the convolutional layers and kernels in the max-pooling
layers. In the end, there are two fully connected layers, followed by a softmax for
output [57,58]. VGG19 differs from VGG16 in that it contains an extra layer in the
three convolutional blocks [59].

• Densely connected convolutional networks (DenseNet): The dense convolutional
network recognizes the input image size, which uses dense connections across layers
with dense blocks. The network spans 201 layers of depth while connecting all layers
directly with each other with feed-forward using matching feature-map sizes [60].
Each layer receives extra inputs from all previous levels and relays its feature maps
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to all previous layers to maintain the system’s feed-forward structure. Compared to
conventional networks, DenseNet can outperform ordinary networks by increasing
processing needs, reducing parameter count, increasing feature reuse, and maintaining
feature propagation [61].

• Deep residual networks (ResNet) employ residual blocks to increase model accuracy
for image classification. The skip connections are crucial to the residual blocks and
the strength of this form of neural network [62]. One residual block consists of a
convolution layer preceded by a batch normalization layer that adjusts to retain a mean
outcome closer to 0. The output standard deviation is near one, and a ReLU activation
function is used. This is followed by a convolution layer and a batch normalizing
layer [63]. The skip connection bypasses both levels and is added immediately before
the ReLU activation function. Such residual blocks are repeated to construct a residual
network. ResNet comes in a variety of forms that all follow the same basic idea but
employ different numbers of layers [64]. It has five stages, each with a convolution
and identity block, and each convolution and identity block has three convolution
layers [65].

• The inception network, a significant landmark in the creation of CNN classifiers,
incorporates a block of parallel convolutional layers with three distinct filter sizes [66].
In addition, max pooling is conducted. Because of the varying filter sizes, the network
has the ability to learn multiple variabilities at different scales using convolutions [67].
Concatenated results are forwarded to the following conception module [68]. The
max-pooling layer in an inception module may benefit from padding to keep its height
and breadth consistent with the other outputs (feature maps) of the convolutional
layers in the same inception module [69].

• Xception is a 71-layer deep convolutional neural network that has an input image size
of 299 upon swapping the normal inception modules with depthwise separable con-
volutions [66,70]. Depthwise separable convolution layers are based on the principle
that convolutional neural network feature maps resulting from such cross-channel
and spatial correlation translation could be entirely independent [71].

• MobileNet is a simplified design that employs depthwise separable convolutions
created by mixing two 1D convolutions with two kernels to generate lightweight
deep convolutional neural networks [72]. This means that less memory and fewer
parameters are required for training, resulting in a more efficient model for mobile
and embedded vision applications [73].

3.2.4. The Proposed Model

Two levels are proposed in our model: level-1 and level-2.

• In level-1, each base-learner (ResNet152V2, DenseNet201, VGG16, MobileNetV2,
and inception_v3i) is trained separately and saved. Then, the pre-trained models
(ResNet152V2, DenseNet201, VGG16, MobileNetV2, and inception_v3i) are loaded,
and all layers are frozen without the output layer. Each model takes a training set
and predicts a training probability output (p1, p2, p3,p4, and p5). Then, the training
outputs are combined in stacking, which is called training stacking.

• In level-2, the meta-learner (SVM) is trained and optimized using training stacking.
The meta-learner (SVM) is evaluated and tested using testing stacking to predict
the final results. The meta-learner is optimized using a grid search with different
parameter values.
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4. Experiments Results

This section describes the results of testing DL models and the proposed models using
two COVID-19 symptom datasets and two chest X-ray image datasets to detect COVID-19.

4.1. Experiment Setup

The experiments were conducted with Python using Google Colab. The Scikit-learn
package was used for ML, while the Keras library was used for DL.

4.2. Evaluation

The evaluation metrics were applied to assess the learning algorithms. The following
four metrics were used to assess classification performance: accuracy (A), precision (P),
recall (R), and F1-score (F1).

• Accuracy is a popular evaluation parameter for classification problems. It is the
proportion of correct forecasts relative to total predictions [74].

Accuracy =
TP + TN

TP + FP + TN + FN
. (1)

• Precision is a measure for determining categorization accuracy. The equation rep-
resents the proportion of correct positive classifications relative to total anticipated
positive classifications [74].

Precision =
TP

TP + FP
(2)

• Recall is the number of accurately detected positive cases out of the total number of
positive cases. Returning to the fraud issue, the recall value will be quite valuable in
fraud scenarios. A high recall value indicates that a significant number of fraud cases
are recognized in comparison to the total number of frauds [74].

Recall =
TP

TP + FN
(3)

• The F1-score measures the mean of the model’s precision and recall [74].

F1-score =
2 · precision · recall
precision + recall

(4)

True positive (TP), true negative (TN), false positive (FP), and false negative (FN)
values were recorded. A TP indicates the set of correctly formed positive values, a FP
indicates the number of negative values generated incorrectly, a TN indicates the number of
negative values generated correctly, and a FN indicates the number of positively predicted
values that were correctly created.

4.3. Results COVID-19 Symptoms Datasets

This section explores the ability of our proposed model to detect COVID-19 based on
symptom datasets.

4.3.1. Parameters Configuration

A training set is used to optimize and train DL models. Some parameters were adopted
in RNN, LSTM, and GRU to conduct experiments, such as batch_size = 200 and epoch = 50
with a learning rate of 0.0001, and Adam optimizer. In addition, we used KerasTuner to
optimize some parameters in RNN, LSTM, and GRU. The final values of parameters for
each model are shown in Table 5.
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Table 5. In order to detect COVID-19 based on symptoms, the best parameter values were selected
for RNN, LSTM, and GRU.

Datasets Models Number of Units

COVID-19-Symptoms-1

RNN-Layer1 [490]
RNN-Layer2 [690,450]
LSTM-Layer1 650

LSTM-Layer2 [350,370]

GRU-Layer1 530

GRU-Layer1 [530,310]

COVID-19-Symptoms-2

RNN-Layer1 [570]

RNN-Layer2 [430,330]

LSTM-Layer1 [230]

LSTM-Layer2 [570,350]

GRU-Layer1 [250]

GRU-Layer1 [610,570]

4.3.2. COVID-19-Symptoms-1

Table 6 shows the results of DL models, as well as the proposed model, using
COVID-19-Symptoms-1. We can observe that Proposed-Layer2 achieved the highest perfor-
mance compared to other models.

Regarding DL models with one layer, Among the four metrics, RNN-Layer1 scored
the lowest: 84.72, 84.31, 84.72, and 83.98, respectively. According to the evaluation metrics,
the second best results were obtained by MPL-Layer1: 93.06, 93.66, 93.06, and 92.72.

Regarding DL models with two layers, RNN-Layer2 recorded the lowest results in
several metrics: 87.5, 87.43, 87.5, and 86.89 in terms of A, P, R, and f1, respectively. The
second-best results were obtained from MLP-Layer2 according to different evaluation
metrics: 94.44, 94.77, 94.44, and 94.52 in terms of A, P, R, and f1, respectively. Proposed-
Layer2 improved performance in different metrics: A by 2.45, P by 2.38, R by 2.45, and f1
by 2.54 compared to MLP-Layer2.

Table 6. The A, P, R, and F1 of applying models to COVID-19-Symptoms-1.

Models Models Accuracy Precision Recall F1-Score

DL models

MPL-Layer1 93.06 93.66 93.06 92.72

MPL-Layer2 95.83 96.06 95.83 95.72

RNN-Layer1 84.72 84.31 84.72 83.98

RNN-Layer2 87.5 87.43 87.5 86.89

LSTM-Layer1 91.67 91.56 91.67 91.53

LSTM-Layer2 94.44 94.77 94.44 94.52

GRU-Layer1 90.28 90.55 90.28 89.81

GRU-Layer2 90.28 90.17 90.28 90.02

The proposed model
Proposed-Layer1 96.83 96.81 96.83 96.80

Proposed-Layer2 98.28 98.44 98.28 98.26
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4.3.3. COVID-19-Symptoms-2

Table 7 shows the results of DL models, as well as the proposed model, using
COVID-19-Symptoms-2. We can observe that Proposed-Layer2 achieves the highest perfor-
mance compared to other models.

Regarding DL models with one layer, LSTM-Layer1 recorded the lowest results in
several metrics: 94.44, 94.77, 94.44, and 94.52. The second-best results were obtained
from MPL-Layer1 according to different evaluation metrics: 97.52, 97.56, 97.52, and 97.53.
Proposed-Layer1 improved performance by several metrics: A by 0.78, P by 0.76, R by 0.78,
and f1 by 0.77 compared to MPL-Layer1.

Regarding DL models with two layers, LSTM-Layer2 records the lowest results in
the different metrics: 96.87, 96.84, 96.87, and 96.85. The second-best results were obtained
from MPL-Layer2 according to different evaluation metrics: 98.10, 98.10, 98.10, and 98.10.
Proposed-Layer2 improved performance in several metrics: A by 1.20, P by 1.20, R by 1.20,
and f1 by 1.21 compared to MPL-Layer2.

Table 7. The A, P, R, and F1 of applying models to COVID-19-Symptoms-2.

Approaches Models A P R F1

DL models

MPL-Layer1 97.52 97.56 97.52 97.53

MPL-Layer2 98.10 98.10 98.10 98.10

RNN-Layer1 97.33 97.31 97.33 97.31

RNN-Layer2 97.61 97.62 97.61 97.61

LSTM-Layer1 94.44 94.77 94.44 94.52

LSTM-Layer2 96.87 96.84 96.87 96.85

GRU-Layer1 96.6 96.55 96.6 96.55

GRU-Layer2 97.24 97.25 97.24 97.25

The proposed model
Proposed-Layer1 98.30 98.32 98.30 98.30

Proposed-Layer2 99.30 99.30 99.30 99.31

4.4. Results of Chest X-ray Images Datasets

This section explores the ability of our proposed model to detect COVID-19 based on
chest X-ray datasets.

4.4.1. Parameters Configuration

For training ResNet152V2, DenseNet201, VGG16, MobileNetV2, and inception_v3i,
some parameters were adopted to conduct experiments, such as batch_size = 64 and
epoch = 100 with a learning rate of 0.001 and Adam optimizer. The activation function is
softmax, and the loss function is categorical cross-entropy.

4.4.2. COVID-19-Chest-X-ray-1

Table 8 shows the results of models, including the proposed model, using COVID-19-
chest-X-ray-1. Comparing the proposed model to other models, it was the most efficient.
The proposed model improved performance in several metrics: A by 1.38, P by 1.4, R by
1.38, and F1 by 1.38 compared to ResNet152V2 and VGG16.

ResNet152V2 and VGG16 recorded similar performance in terms of different metrics:
98.24, 98.24, 98.26, and 98.24. The third-highest results were obtained from MobileNetV2
according to evaluation metrics: 96.97, 96.97, 96.97, and 96.97. Finally, inception_v3i
recorded the lowest scores: 93.94, 94.08, 93.94, and 93.98.
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Table 8. The A, P, R, and F1 of applying models to COVID-19-chest-X-ray-1.

Models A P R F1

ResNet152V2 98.24 98.26 98.24 98.24

DenseNet201 96 96 96 96

VGG16 98.24 98.26 98.24 98.24

MobileNetV2 96.97 96.97 96.97 96.97

inception_v3i 93.94 94.08 93.94 93.98

The proposed model 99.62 99.66 99.62 99.62

4.4.3. COVID-19-Chest-X-ray-2

Table 9 shows the results of models, including the proposed model, using COVID-19-
chest-X-ray-2. Comparing the proposed model to other models, it was the most efficient.
The proposed model improves performance in different metrics: A by 2.22, P by 2.29, R by
2.22, and F1 by 2.21 compared to MobileNetV2.

MobileNetV2 recorded the second-highest performance in different metrics: 96.26,
96.27, 96.26, and 96.27 in terms of A, P, R, and F1, respectively. The third-highest model was
obtained from VGG16 according to the evaluation metrics: 95.55, 95.56, 95.55, and 95.55.
Finally, inception_v3i recorded the lowest scores: 93.25, 93.25, 93.25, and 93.24.

Table 9. The A, P, R, and F1 of applying models to COVID-19-chest-X-ray-2.

Models A P R F1

ResNet152V2 95.11 95.13 95.11 95.11

DenseNet201 94.97 94.98 94.97 94.97

VGG16 95.55 95.56 95.55 95.55

MobileNetV2 96.26 96.27 96.26 96.27

inception_v3i 93.25 93.25 93.25 93.24

The proposed model 98.48 98.56 98.48 98.48

5. Discussion

This section presents the best models of the COVID-19 symptoms dataset and
COVID-19 chest X-ray images. It also shows a comparison between the proposed model
and recent studies.

5.1. COVID-19 Symptoms Datasets
5.1.1. The Best Models for COVID-19 Symptoms Datasets

A stacking ensemble model was proposed to detect COVID-19 sickness by combining
the pre-trained models MLP, RNN, LSTM and GRU with the meta-learner model SVM.
The proposed model achieved the highest performance in the two datasets compared to
other models.

Figure 6 presents the best models for COVID-19-Symptoms-1. We can see that
Proposed-Layer2 recorded the highest scores using different matrices: A = 98.28,
P = 98.44, R = 98.28, and F1 = 98.26. MLP-Layer2 recorded the second-highest scores
using different matrices: A = 95.83, P = 96.06, R = 95.83, and F1 = 95.72. RNN-Layer2
recorded the lowest A, P, R, and F1 at 87.5, 87.43, 87.5, and 86.89, respectively.

Figure 7 presents the best models for COVID-19-Symptoms-2. We can see that
Proposed-Layer2 recorded the highest scores using different matrices: A = 99.30,
P = 99.30, R = 99.30, and F1 = 99.31. MLP-Layer2 recorded the second-highest scores
using different matrices: A = 98.10, P = 98.10, R = 98.10, and F1 = 98.10. LSTM-Layer2
recorded the lowest A, P, R, and F1 at 96.87, 96.84, 96.87, and 96.85, respectively.
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Figure 6. The best models for COVID-19-Symptoms-1.

Figure 7. The best models for COVID-19-Symptoms-2.
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5.1.2. Comparison with Literature Studies for COVID-19 Symptoms Dataset

Table 10 shows a comparison of previous studies that used COVID-19-Symptoms-2 [24]
with the proposed models. In [23], the authors used GRU, which recorded A = 98.65,
R = 98.6, P = 99.2, and F1 = 99.2. In addition, in [25], the authors used KNN, which
registered A = 97.97, R = 97.97, P = 97.97, and F1 = 97.97. The proposed model achieved the
highest performance compared to [23,25].

Table 10. Comparing previous studies with the proposed model using COVID-19-Symptoms-2.

Papers The Best Models Performance

[23] GRU A = 98.65, R = 98.6, P = 99.2, and F1 = 99.2

[25] KNN A = 97.97, R = 97.97, P = 97.97, and F1 = 97.97

The proposed model Stacking SVM A = 99.30, R = 99.30, P = 99.30, and F1 = 99.31

5.2. COVID-19 Chest X-ray Images Datasets

A stacking ensemble model was proposed to detect COVID-19 sickness by combining
the pre-trained models ResNet152V2, DenseNet201, VGG16, MobileNetV2, and incep-
tion_v3i with the meta-learner model SVM. The proposed model achieved the highest
performance in the two datasets compared to other models.

5.2.1. The Best Models for Chest X-ray Image Datasets

This section presents the best models used with chest X-ray image datasets.
Figure 8 presents the best models for COVID-19-chest-X-ray-1. We can see that the

proposed model recorded the highest scores using different matrices: A = 99.62, P = 99.66,
R = 99.62, and F1 = 99.62. VGG16 and ResNet152V2 recorded the second-highest scores
using different matrices: A = 98.24, P = 98.26, R = 98.24, and F1 = 98.24.

Figure 9 represents the best models for COVID-19-chest-X-ray-2. We can see that the
proposed model recorded the highest scores using different matrices: A = 98.48, P = 98.56,
R = 98.48, and F1 = 98.48. MobileNetV2 record the second-highest scores using different
matrices: A = 96.26, P = 96.27, R = 96.26, and F1 = 96.27.

Figure 8. The best models for COVID-19-chest-X-ray-1.
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Figure 9. The best models for COVID-19-chest-X-ray-2.

5.2.2. Comparison with Literature Studies

Table 11 shows a comparison between the proposed model and recent studies using
COVID-19-chest-X-ray-2 with two or three classes. We can see that the proposed model
achieved the highest performance. The authors detected COVID-19 results in three classes:
COVID-19, normal, and pneumonia. In [28], ResNet50 recorded A = 98 and R = 96.46.
In [29], the authors indicated that COVID-Net has a recorded accuracy at 92.4 A. In [30], the
authors proposed Concat_CNN, which recorded A = 96.31, P = 95.8, and R = 92.99. In [32],
a concatenated CNN model was proposed and recorded A = 98.02, F1 = 98.24, P = 97.04,
and R = y. The authors of [34] used SqueezNet, with recorded accuracy of A = 95, P = 94.66,
R = 94.66, and F1. In [3], XGBoost recorded A = 97.87, P = 97.87, and R.

Table 11. The proposed model is compared to recent studies using COVID-19-chest-X-ray-2.

Papers Models Image Classes Performance

[28] ResNet50
Normal

COVID-19
pneumonia

A = 98 and R = 96.46

[29] COVID-Net
Normal

COVID-19
pneumonia

A = 92.4

[30] Concat_CNN
Normal

COVID-19
pneumonia

A = 96.31, P = 95.8,
and R = 92.99

[32] Concatenated
CNN model

Normal
COVID-19
pneumonia

A = 98.02, F1 = 98.24,
P = 97.04, R = 98.49
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Table 11. Cont.

Papers Models Image Classes Performance

[34] SqueezNet
Normal

COVID-19
pneumonia

A = 95, P = 94.66, R = 94.66,
and F1 = 94.66

[3] XGBoost
Normal

COVID-19
pneumonia

A = 97.87, P = 97.87,
and R = 98.93

The
proposed

model

Stacking ensemble
DL

Normal
COVID-19
pneumonia

A = 99.62, P = 99.66,
R = 99.62, and F1 = 99.62

The
proposed

model

Stacking ensemble
DL

Normal
COVID-19
pneumonia

A = 98.48, P = 98.56,
R = 98.48, and F1 = 98.48

6. Conclusions

This paper proposes a stacking ensemble DL model using COVID-19 symptoms and
chest X-ray images to detect the disease. Two models have been proposed for use with
the different datasets, including one based on COVID-19 symptoms and one based on
chest X-ray images. The first proposed model combines four pre-trained deep learning
models, MLP, RNN, LSTM, and GRU, together into a stacking so that a meta-learner is
trained and evaluated to identify a final prediction. In comparison to DL models based on
two COVID-19 symptom datasets, our proposed model achieved the highest performance
(A = 99.30, P = 99.30, R = 99.30, and F1 = 99.31). The second proposed model has merged
the outputs of the pre-trained models ResNet152V2, DenseNet201, VGG16, MobileNetV2,
and inception_v3i in a stacking and uses stacking to train and evaluate the meta-learner
(SVM) to identify the final prediction using chest X-ray datasets. Comparing the proposed
model to DL models based on the two COVID-19 chest X-ray datasets, it achieved the best
performance (A = 99.62, P = 99.66, R = 99.62, and F1 = 99.62). Our proposed models were
applied to two different types of datasets, COVID-19 symptoms and chest X-ray images,
and it achieved the highest performance in measuring the generalizability of the proposed
model. However, our model needs some enhancements, which will be considered in
future work, including (1) testing the model on other datasets and (2) applying explainable
AI (XAI).
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Abbreviations
The following abbreviations are used in this manuscript:

Artificial intelligence AI
Machine learning ML
Deep learning DL
Convolutional neural network CNN
Gated recurrent unit GRU
Long short-term memory LSTM
Recurrent neural network RNN
Support vector machine SVM
k-nearest neighbors KNN
Random forest RF
Multilayer perceptron MLP
XGBoost XGB
Naive Bayes NB
Decision tree DT
LSTM-Layer1 One-layer LSTM
LSTM-Layer2 Two-layer LSTM
GRU-Layer1 One-layer GRU
GRU-Layer2 Two-layer GRU
RNN-Layer1 One-layer RNN
RNN-Layer2 Two-layer RNN
MLP-Layer1 One hidden layer
MLP-Layer2 Two hidden layers
Visual geometry group VGG
Deep residual networks ResNet
Accuracy A
Recall R
Precision P
F1-score F1
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