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Abstract: Deep learning, with continuous development, has achieved relatively good results in the
field of left atrial segmentation, and numerous semi-supervised methods in this field have been
implemented based on consistency regularization to obtain high-performance 3D models by training.
However, most semi-supervised methods focus on inter-model consistency and ignore inter-model
discrepancy. Therefore, we designed an improved double-teacher framework with discrepancy
information. Herein, one teacher learns 2D information, another learns both 2D and 3D information,
and the two models jointly guide the student model for learning. Simultaneously, we extract the
isomorphic/heterogeneous discrepancy information between the predictions of the student and
teacher model to optimize the whole framework. Unlike other semi-supervised methods based on 3D
models, ours only uses 3D information to assist 2D models, and does not have a fully 3D model, thus
addressing the large memory consumption and limited training data of 3D models to some extent.
Our approach shows excellent performance on the left atrium (LA) dataset, similar to that of the best
performing 3D semi-supervised methods available, compared to existing techniques.

Keywords: semi-supervised learning; left atrium segmentation; isomorphic discrepancy information;
heterogeneous discrepancy information

1. Introduction

The ability to accurately segment the left atrial region from heart images plays a
key role in the field of medical images. Deep learning has performed well at many tasks
to find organs or lesions in medical images because of its efficient use of labeled data.
However, the high performance of deep learning relies on a large amount of labeled data,
which are difficult to obtain for medical images because accurate annotation can only be
done by medical experts with specialized knowledge, which is costly and burdensome.
Semi-supervised learning opens up a new way of thinking through its ability to exploit
unlabeled data.

Many semi-supervised methods based on consistency regularization have started to
appear, with relatively good results. However, the lack of labeled data during training
limits their ability to identify key features and hence their accuracy, which leads to bias
in the prediction of unlabeled images. The models tend to have large discrepancies in the
prediction of features that are difficult to identify. A model will improve the performance if
these regions are focused. Therefore, to find these challenging regions and derive some
useful features from them is the key to improving model performance. Discrepancy
information has an important role in finding challenging regions. However, many semi-
supervised methods based on consistency regularization exploit unlabeled data by reducing
the discrepancy of prediction to make their predictions consistent, which causes them to
exploit inter-model consistency, but not discrepancy. In addition, these methods do not
focus on challenging areas. Our method exploits inter-model discrepancy to find these
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challenging regions and obtain some features from them that are harder to identify but
improve model performance. However, finding these regions is not easy because they are
usually irregularly shaped, scattered, and highly similar to surrounding regions. For this
problem, some methods find these regions by uncertainty maps, and later discard them
to improve performance. For example, Monte Carlo dropout [1] was used to compute
regions of high uncertainty in teacher model predictions, and regions of high uncertainty
were removed so that the student model would learn more accurate data [2]. However,
to blindly discard these regions can cause the model to fail to obtain some of their useful
features for optimization; hence, these regions must be considered. Our approach looks
for and focuses on regions of high uncertainty through the information on discrepancy
between models. Other methods have addressed inter-model discrepancy. A recurrent
pseudo-labeling scheme was used to convert the prediction differences between the two
decoders into unsupervised losses, thus allowing the whole framework to capture some
features from challenging regions of unlabeled images, reducing prediction differences
between them [3]. Although this approach considers the discrepancy between the models,
it does not extract them for further exploitation. This does not guarantee that the model will
focus on high-uncertainty regions in the unlabeled images. Additionally, the method only
focuses on the discrepancy between isomorphic models, and not between heterogeneous
models, which may lead the model to obtain incomplete discrepancy information, and to
miss some regions of high uncertainty. Most semi-supervised frameworks use a 3D base
model in the left atrial image segmentation task, which, compared to 2D models, usually
has more parameters, and requires more memory and longer training times, with less
training data [4]. We design a mean teacher model based on a 2D model, with an additional
teacher model that can use both 2D and 3D information.

In summary, we design a double-teacher model to accomplish the task of left atrial im-
age segmentation. Our mean-teacher framework encourages both student and teacher mod-
els to maintain consistent predictions under the same input with different perturbations,
thus enabling them to learn from and optimize each other to obtain more information from
unlabeled data. Accordingly, our framework can extract the isomorphic/heterogeneous
discrepancy information between the predictions of the student and teacher models, and
their combination can represent the uncertainty information between them to some extent.
For more accurate extracted discrepancy information, our framework uses labeled images
and their corresponding labels to optimize the final predictions of the 2D teacher model. We
first supervise the extracted discrepancy information, using a loss function to ensure con-
sistent predictions between the student and teacher models. We further use the extracted
discrepancy information to improve the loss of consistency between the two teacher models,
so that the model can focus on regions with high uncertainty. Our framework (ISO-MT)
can then obtain some features from challenging regions in the images to improve the model
prediction results. Our semi-supervised method obtained good results in experiments on
the MICCAI 2018 Atrial Segmentation Challenge dataset, with similar performance to the
latest 3D model-based semi-supervised framework.

The main contributions of this paper are as follows. First, we adequately extract
isomorphic discrepancy information between isomorphic models and heterogeneous dis-
crepancy information between heterogeneous models, and optimize the final prediction
of the 2D teacher model using the labeled images and their corresponding labels, thus
indirectly optimizing the extracted two types of discrepancy information. Second, we use
the extracted discrepancy information to indicate challenging regions, and focus on these
by optimizing the inter-model consistency loss to obtain some hard-to-identify features.
Third, the proposed methodological framework performs similarly to the state-of-the-art
3D model-based methodological framework in the semi-supervised left atrial segmentation
task for the LA dataset.
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2. Related Work

We describe work related to semi-supervised learning in the left atrial segmentation
task and uncertainty.

2.1. Semi-Supervised Learning

Semi-supervised learning can be categorized into traditional and deep learning meth-
ods. Traditional methods perform the segmentation task by manually designing fea-
tures, mainly including clustering-based models. Portela et al. [5] proposed a clustering-
based semi-supervised classifier to improve the quality of MR brain tissue segmentation.
You et al. [6] proposed a priori-based model for retinal vessel extraction based on radial
projection and semi-supervised methods, solving the problem of traditional segmentation
methods in distinguishing between fine and wide vessels. These traditional methods have
some limitations because they are based on handcrafted features. Deep learning methods
can be divided into two main categories. Some methods assume that the clusters of each
class should be compact and of low entropy. Kalluri et al. [7] proposed a framework to solve
the new problem of generic semi-supervised semantic segmentation that accomplishes
low-entropy prediction and can reduce deployment costs. Zhang et al. [8] proposed a
deep adversarial network (DAN) for the semantic segmentation of biomedical images,
consisting of a segmentation network and an evaluation network that distinguishes be-
tween the segmentation results of unlabeled and labeled images. A more mainstream
approach is to transform the probability map of model predictions into pseudo-labels by
using sharpening functions or fixed thresholds, and then make the model learn to generate
low-entropy predictions from unlabeled images under the supervision of the pseudo-labels.
Bai et al. [9] developed an iterative framework in which the network predicts unlabeled
data in each iteration, generates pseudo-labels, refines them by conditional random fields
(CRF) [10], and uses them to update the network. Rizve et al. [11] proposed an uncertainty-
aware pseudo-label selection (UPS) framework that reduces the amount of noise in the
training process to improve the quality of pseudo-labels, and thus the performance of the
framework. Zhou et al. [12] proposed deep multiplanar cooperative training (DMPCT) to
accomplish abdominal multi-organ segmentation in 3D CT images, which can mine con-
sensus information from multiple planes and realize high performance by generating more
reliable pseudo-labels to help in multiplanar fusion training. The second type of method
follows the smoothing assumption based on consistency regularization, which means that
certain perturbations of the input should produce similar results and not deviate greatly.
Wang et al. [13] proposed a semantic data augmentation algorithm to extend the data
using semantic rich directions, and applied this to semi-supervised learning to improve the
performance of the model, as well as the consistency constraint. Sajjadi, JavanMarti, and
Tasdizen [14] proposed a semi-supervised method with stochastic transformation and per-
turbation regularization to improve performance by minimizing the variance of multi-pass
prediction samples. A transform-consistent self-sensing model introduced rotations and
flips to encourage consistent prediction of the same input under different regularization
conditions for a network under training [15]. Good performance was achieved in the task
of skin lesion segmentation. Xie et al. [16] proposed a semi-supervised model based on
pairwise relationships that exploits the semantic consistency between each pair of images
in the feature space to segment glands in histological images. Luo et al. [17] designed an
uncertainty-corrected pyramidal consistency (URPC) regularization framework to learn
from meaningful consensus regions at different scales to accomplish total tumor volume
(GTV) segmentation to assist in radiotherapy for nasopharyngeal carcinoma (NPC), and
realized excellent segmentation performance. Among such methods, self-aware approaches
represented by the mean-teacher model [18] have attracted much attention. The model is
optimized by making the predictions of the student and teacher models consistent under
different disturbances, for the purpose of student learning from the teacher. Yu et al. [2] in-
troduced uncertainty maps calculated by Monte Carlo [1] methods to improve the accuracy
of teacher model predictions based on the mean-teacher model. Li et al. [19] introduced a
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transformation consistency strategy in the mean-teacher model, which was used to enhance
the regularization of pixel-level predictions and improve the generalization ability of the
model. Luo et al. [20] introduced a dual task in the mean teacher model, predicting the
pixel-level segmentation map and the geometric perceptual level set of the target, to achieve
consistency in the dual task and substantially improve model performance. Low-entropy
models generated based on the clustering assumption and models based on consistency
regularization have improved the performance of semi-supervised models, while our
approach is designed based on consistency regularization.

2.2. Semi-Supervised Image Segmentation of Left Atrium

Semi-supervised methods have been applied successfully to left atrial image segmen-
tation. Many of the more successful such methods are designed based on consistency
regularization. Li et al. [21] developed a multitasking deep network capable of jointly
predicting surface semantic segmentation of objects and symbolic distance maps (SDMs)
for effective left atrial segmentation. The introduction of adversarial losses between the
predicted SDMs of unlabeled and labeled data enabled the network to more effectively
capture shape perceptual features. Luo et al. [20] did not simply construct a network
or data-level perturbations, but achieved task-level regularization by jointly predicting
pixel-level segmentation maps and geometric-aware level-set representations of the target,
and introduced dual-task consistent regularization between the level-set generated segmen-
tation maps and directly predicted segmentation maps to better segment the left atrium.
Yu et al. [2] introduced the mean teacher model [18] to left atrium segmentation, where stu-
dents were motivated to learn from the teacher by enhancing the consistency of predictions
between the student and teacher models in the training model. Constraints on the output
of the teacher model ensured the correctness of the learned information, thus improving
segmentation performance. Wang et al. [22] proposed a double uncertainty weight based
on the mean teacher model semi-supervised segmentation method and applied it to left
atrial segmentation. The method uses Bayesian deep learning to train the teacher model
to obtain segmentation and feature uncertainty, which can produce more accurate teacher
predictions, and thus improve performance. Shumeng Liet et al. [23] designed a hierar-
chical consistency regularized mean teacher framework that can increase the consistency
loss between feature maps, enabling the network to learn diverse information and achieve
superior performance in left atrial segmentation. Wu et al. [3] proposed a mutual consis-
tency network (MC-Net) consisting of an encoder and two decoders, where the prediction
differences between the decoders are converted to unsupervised loss through circular
labeling, which enables the model to capture generalized features from challenging regions
in unlabeled images, resulting in consistent and accurate predictions for both decoders.
Although the above methods achieve good results at semi-supervised left atrial image
segmentation, enough attention is not given to the challenging regions in unlabeled images.

2.3. Uncertainty

With the development of deep learning, uncertainty has gained wide attention. In addi-
tion to the prediction, reliability is needed. The uncertainty can detect the wrong prediction
of the model and calculate the confidence of prediction results. Lakshminarayanan et al. [24]
trained multiple predictors, considering that the estimation of different points in the model
should differ, and determined the output between multiple predictors by calculating the
statistical differences. Gal and Ghahramani [25] developed a theoretical framework that
uses dropout training in deep neural networks (NNs) as approximate Bayesian inference in
a deep Gaussian process, and proposed to use MC dropout to compute model uncertainty,
significantly reducing computational cost. The uncertainty of the model is computed by the
prediction differences between submodels. Multiple submodels usually must be trained,
which is computationally expensive, while the dropout operation can extract multiple
submodels without training them individually, which greatly reduces the computational
cost. Yu et al. [2] used the mean teacher model to segment the left atrium, calculating
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the uncertainty of the teacher model using a Monte Carlo method, to remove the high
uncertainty in the teacher model prediction regions, thus providing more accurate predic-
tions for the student learning model. Sedai et al. [26] applied the student teacher model
to segment retinal layers. The teacher model was trained by Bayesian deep learning, and
could provide soft segmentation labels and uncertainty maps, where the latter can estimate
the pixel-level confidence of the segmentation quality of the teacher model. The uncertainty
map and soft segmentation labels work together to optimize the student model, improving
the performance of the overall model. Wang et al. [22] used Bayesian deep learning to train
the teacher model to obtain segmentation and feature uncertainty, with which the teacher
model could produce more accurate predictions, thus improving the performance of the
overall model. Inspired by the above work, we calculate the inter-model uncertainty by
computing the inter-model variance.

3. Methods

Figure 1 illustrates our proposed mean teacher framework, whose approach follows
the basic principles of the mean-teacher framework by taking 2D medical images with
different interferences as input, and encouraging consistency in the predictions of student
and teacher model segmentation. The 2D student and teacher models have the same
network structure. To leverage the unlabeled data for consistency between the student
and teacher models and learn the features of challenging regions in images, we extract
the isomorphic discrepancy information between the final output of the 2D teacher model
and student model, extract the heterogeneous discrepancy information between the final
outputs of the teacher that can process both 2D and 3D information and student models,
and then the discrepancy information is combined and supervised simultaneously. The
isomorphic and heterogeneous discrepancy information extracted from the framework can
also optimize the consistency loss between the student and teacher models, allowing the
framework to focus more on challenging regions, thus improving performance. We also
optimize the final predictions of the 2D teacher models to some extent by having labeled
images and their corresponding labels, thus indirectly optimizing the extracted isomorphic
and heterogeneous discrepancy information, which is equivalent to indirectly optimizing
the whole framework.

Figure 1. Framework of our approach.

3.1. Supervised Segmentation

In our framework, the networks for the student model and 2D teacher model are
constructed based on 2D Unet [27]. To fully extract the difference information between
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the student and teacher models, we add a 1 × 1 convolutional layer and sigmoid layer
to the last upsampling layer of the 2D Unet network decoder, and an upsampling layer,
1 × 1 convolutional layer, and sigmoid layer to the penultimate upsampling layer, to obtain
an intermediate prediction map of the same size as the final prediction map. The teacher
model fuses 2D and 3D convolution [28]. We feed the labeled dataset Dl = {(xi, yi)}L

i=1,
where xi ∈ RH×W is the input image and yi ∈ {0, 1}H×W is the 2D ground truth, to the
student model for training, aiming to minimize the supervised loss function,

lsup =
L

∑
i=1

ldice (fs(xi; θ), yi), (1)

where lsup is the Dice loss function to evaluate the network prediction quality on the
labeled data input, fs(·) is the network weight of the student model, and L is the number of
labeled images in the input.

3.2. Mean Teacher Framework with Two Teachers

For a semi-supervised segmentation task, the data used for training usually have two
components, labeled data Dl = {(xi, yi)}L

i=1, where xi ∈ RH×W is the input image and
yi ∈ {0, 1}H×W; and unlabeled data Du = {(xi, yi)}L+U

i=L+1, where xi ∈ RH×W is the input
2D slice and yi ∈ {0, 1}H×W is the 2D ground truth. L represents the number of labeled
2D image slices, and U represents the number of unlabeled 2D image slices. In our mean
teacher framework, the input to the 2D teacher is the unlabeled 2D slices, while the input to
the teacher model can handle both 2D and 3D information, and the 3D slices are obtained
by combining the three 2D slices adjacent to the front and back of the 2D slices.

The prediction results of the teacher model in the mean teacher model need to be
of higher quality than the student model to provide better guidance to students. Recent
studies [18,29] have shown that if the model merges the network prediction results from
different training processes, it can improve the quality of the prediction of the target
and therefore be used to improve the performance and prediction results of the teacher
model. Accordingly, the student model and the 2D teacher model share the same network
architecture, and the weights of the teacher model are updated using the exponential
moving average (EMA) of the weights of the student model. The weights of the teacher
model at step t are updated as θT

t = ηθT
t−1 + (1− η)θS

t , where η is used to control the update
rate of the EMA, which is the respective ratio of the weights of the student model at step
t and the weights of the teacher model at step t − 1 to the weights of the teacher model
at step t. The teacher model in our framework can handle both 2D and 3D information
to further guide the segmentation of the student model. To ensure that the predictions of
the 2D teacher model can give more accurate guidance to the student model, we use the
labeled data processed by the student model in the same input to optimize the prediction
results of the 2D teacher model [30]. The steps are as follows: 1. We multiply the prediction
results of the student model by its corresponding labels to obtain a new batch of images
Si that contain only the prediction results of the student model for the target region,

Si = fs(xi; θ)× yi; (2)

2. The average predicted probability A of the student model for the target region of
this batch of labeled images is calculated as

A =
Sum(Si)

Sum(yi)
, (3)

where Sum is the sum of the pixel values of the image;
3. A is the average predicted probability of the target region of this batch of labeled

images by the student model. Since the data input into the framework come from the same
dataset each time, the features of the targets have some similarity. Each time a batch of
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data is input into the framework, the average predicted probability A is obtained, which
indicates the lowest probability of the pixel that is most probably the target predicted by
the student model in this batch of input labeled images. This can guide the 2D teacher
model to optimize its own prediction. In the prediction results of the 2D teacher model
for the same batch of unlabeled data, when the predicted probability is greater than or
equal to A, then the pixel is most probably the target, and when the predicted probability
is less than A, the pixel is most probably the background, and the prediction results of
the 2D teacher model are optimized in this way. For the unlabeled data, we want the
segmentation results of the student model and the two teacher models to be consistent and
valid. To achieve consistency between the student and the two teacher models, we first
extract the discrepancy information (D1, D2) between the last output of the student model,
the output of the last upsampling layer, and the output of the penultimate upsampling
layer and the last output of the two teacher models, and combine the obtained discrepancy
information to obtain discrepancy information D. Then, we use all-zero-valued images and
D to compute our discrepancy loss to constrain the consistency between the student and
teacher models and to motivate them to learn from each other. Additionally, during the
calculation of D1, the predictions of the 2D teacher model are optimized by A, as follows.

For the student and 2D teacher models, the discrepancy information D1h between
the high-confidence target regions is first calculated on the basis of the average probability
value A,

ft1h = ft1
(
xi; θ′, ξ ′

)
>= A (4)

D1h =
L+U

∑
i=L+1

a
∥∥fs(xi; θ, ξ)− ft1

(
xi; θ′, ξ ′

)
× ft1 h

∥∥
+b
∥∥fs1(xi; θ, ξ)− ft1

(
xi; θ′, ξ ′

)
× ft1 h

∥∥
+c
∥∥fs2(xi; θ, ξ)− ft1

(
xi; θ′, ξ ′

)
× ft1 h

∥∥.

(5)

Then, the discrepancy information D1l between low-confidence target regions is calculated,

ft1l = ft1
(
xi; θ′, ξ ′

)
< A (6)

D11 =
L+U

∑
i=L+1

a
∥∥fs(xi; θ, ξ)− ft1

(
xi; θ′, ξ ′

)
× ft1l

∥∥
+b
∥∥fs1(xi; θ, ξ)− ft1

(
xi; θ′, ξ ′

)
× ft1l

∥∥
+c
∥∥fs2(xi; θ, ξ)− ft1

(
xi; θ′, ξ ′

)
× ft1l

∥∥.

(7)

Combining D1h and D1l gives the discrepancy information D1 between the student
and 2D teacher models,

D1 = HighD1h + LowD1l . (8)

It is straightforward to calculate the discrepancy information D2 between the student
model and teacher model that can handle both 2D and 3D information,

D2 =
L+U

∑
i=L+1

a
∥∥fs(xi; θ, ξ)− ft2

(
xi; θ′, ξ ′

)∥∥
+b
∥∥fs1(xi; θ, ξ)− ft2

(
xi; θ′, ξ ′

)∥∥
+c
∥∥fs2(xi; θ, ξ)− ft2

(
xi; θ′, ξ ′

)∥∥.

(9)

The final discrepancy information is

D = mD1 + nD2. (10)



Diagnostics 2023, 13, 1971 8 of 18

Based on the obtained discrepancy information D, the discrepancy loss is calculated as

lD = lMSE(D, Black). (11)

The outputs of fs(·) , fs1(·), and fs2(·) are, respectively, the outputs of the segmentation
network, last upsampling layer, and penultimate upsampling layer of the student model
segmentation network. ft1(·) denotes the segmentation network of the 2D teacher model,
and ft2(·) is the network of the teacher model that can process both 2D and 3D information.
The inputs ft1h(·) and ft1l(·), respectively, denote the high- and low-confidence target
regions. lMSE is the mean square error loss; θ is the network weight of the student model; θ′

is the network weight of the teacher model; ξ is the network perturbation of the student
model; ξ ′ is the network perturbation of the teacher model; a, b, c, High, Low, m, and n are
constant coefficients; and Black is all images with zero values of the same size as D. The
extracted difference information (D) can represent the uncertainty of our overall framework,
and we wish to focus on regions with high difference information, i.e., with high uncertainty;
hence, we designed a new consistency loss function for the student model and the two
teacher models, which can make the overall framework pay more attention to regions
with high uncertainty during training; as such, as many useful features as possible can be
captured from regions with high uncertainty and thus improve segmentation performance.
Our consistency loss is calculated as follows. The loss lDcon1 of consistency between the
student model and the 2D teacher model is calculated according to D as

lDcon1 =
L+U

∑
i=L+1

αlMSE
(
II(D > TH)fs(xi; θ, ξ), II(D > TH)ft1

(
xi; θ′, ξ ′

))
+βlMSE(II(D < = Th)fs(xi; θ, ξ), II (D <= TH)ft1

(
xi; θ′, ξ ′

))
.

(12)

The loss of consistency between the student model and the teacher model that can
handle both 2D and 3D information is calculated as

lDcon2 =
L+U

∑
i=L+1

αlMSE
(
II(D > TH)fs(xi; θ, ξ), II(D > TH)ft2

(
xi; θ′, ξ ′

))
+βlMSE(II(D < = Th)fs(xi; θ, ξ), II (D <= TH)ft2

(
xi; θ′, ξ ′

))
.

(13)

We combine lDcon1 and lDcon2 to obtain

lDcon = wlDcon1 + vlDcon2, (14)

where II(·) is the indicator function, which plays the role of judgment; TH is the threshold
coefficient of the selected region; and α, β, w, and v are constant coefficients. We combine
supervised loss lsup , variance loss lD , and improved consistency loss lDcon to obtain

ltotal = Xlsup + YlD + ZlDcon, (15)

where X, Y, and Z are constant coefficients controlling the ratio between the individ-
ual losses.

4. Experimental Analysis

We describe the following aspects: Data set and data pre-processing; Experimental
details; Evaluation Metrics; Comparison with other methods; Ablation experiments; Re-
lationship between mean discrepancy rate and mean dice; Exploring the importance of
uncertainty derived from discrepant information; Exploring the importance of teacher
models that can handle both 2D and 3D information; and Clinical applications.
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4.1. Dataset and Preprocessing

We evaluated our semi-supervised segmentation method on the dataset from the
2018 Left Atrial Segmentation Challenge [31], consisting of 100 3D gadolinium-enhanced
magnetic resonance imaging scans (GE MRIs) and LA segmentation masks. These scans
have an isotropic resolution of 0.625 × 0.625 × 0.625. Based on previous work on this
dataset [2,3,20–22,32], we used 80 of these 100 scans for semi-supervised training, and 20
for testing. Because our semi-supervised method uses 2D images, we further sliced the
scanned 3D images in the Z-axis; and to further enhance the training effect, we performed
a simple brightening operation on the obtained slices, while removing invalid images
without target regions. The image used in our semi-supervised framework is composed of
slices and their neighbors, and is not a complete 3D image.

4.2. Experimental Details

Our framework was implemented in PyTorch using an NVIDIA 3060 GPU. For the
optimization update of the network parameters, we used an SGD optimizer (weight
decay = 0.0001, momentum = 0.9), and the learning rate of the SGD optimizer was set to
0.02. To obtain the best performance, we optimized the framework for about 5000 iterations.
The batch size was 8, and each batch consisted of four labeled 2D image slices and four
unlabeled 2D image slices. The processed 3D slices corresponding to the four unlabeled 2D
image slices were also fed into the frame, which accepted 2D image slices of size 128 × 128.
The decay coefficient η of the exponential moving average (EMA) in our framework was
set to 0.99 [2]. All experiments were performed in the same setting with a fixed random
seed (software: PyTorch 1.8.0+cu11.1 and Python 3.8).

4.3. Evaluation Metrics

We used Dice, Jaccard, mean surface distance (ASD), and 95% Hausdorff distance
(95hd) to evaluate performance on this left atrial dataset. These are defined as

Dice =
2× TP

FN + TP + TP + Fp

Jaccard =
TP

FN + TP + Fp

ASD =
1

|X|+ |Y|

(
∑

x∈X
d(x, Y) + ∑

y∈Y
d(y, X)

)
d(x, Y) = min

y∈Y
‖x− y‖2

95HD = max[d(X, Y), d(Y, X)]× 95%

where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative,
respectively; X and Y are predicted and labeled boundaries, respectively; d(X,Y) is the
largest distance from a point on X to the nearest point on Y; x denotes the coordinates of a
point on the boundary of the predicted result; and y denotes the coordinates of a point on
the boundary of the label.

4.4. Comparison with Other Methods

This dataset has two popular semi-supervised experimental setups: 10% labeled data
and 90% unlabeled data, and 20% labeled data and 80% unlabeled data. We performed
experimental validation under both. Table 1 shows the quantitative results of our method
(ISO-MT) and other advanced semi-supervised methods, such as the Uncertainty-Aware
Mean Teacher model (UA-MT) [2], Shape-Aware Semi-Supervised method (SASSNet) [21],
double uncertainty weighted semi-supervised method (DUWM) [22], local and global-
based structure-aware entropy regularized averaging teacher model (LG-ER-MT) [32],
semi-supervised segmentation method using dual task consistency (DTC) [20], and semi-
supervised segmentation method using mutual consistency (MC-Net) [3]. On this left
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atrial segmentation dataset, all these recent 3D semi-supervised segmentation methods
achieved good performance, with DTC relying on dual-task consistency achieving 86.57%
and 89.42% Dice similarity coefficients at 10% and 20% labeling experimental settings,
respectively; and DUWM achieving 86.57% and 89.42% in dual uncertainty based on the
teacher–student model (segmentation uncertainty, feature uncertainty) weighted semi-
supervised segmentation method achieved 85.91% and 89.65% Dice performance. UA-MT,
SASSNet, and LG-ER-MT relied on uncertain self-aware, shape-aware, local, and global
structure-aware entropy regularization to achieve 84.25% and 88.88%, 87.32% and 89.54%,
and 85.54% and 89.62% Dice similarity coefficients in 10% and 20% labeled experimental
settings, respectively. Among these 3D semi-supervised methods, MC-Net achieved the
best Dice similarity coefficients of 87.71% and 90.34% in the 10% labeled data and 20%
labeled data experimental settings, respectively, and several other evaluation metrics by
virtue of reducing the discrepancy information between different encoders for generalized
feature representation of challenging regions in unlabeled images. In contrast, our two-
dimensional semi-supervised method (ISO-MT) achieved the goal of extracting some
useful features in challenging regions of unlabeled images by extracting both isomorphic
discrepancy information and heterogeneous discrepancy information between student and
teacher models, and giving extra attention to regions with large discrepancy information,
i.e., with high uncertainty, in unlabeled images. Thus, our framework obtained slightly
better Dice similarity coefficients than MC-Net in the experimental setups with 10% and
20% labeled data, 87.93% and 90.85%, respectively. However, since our method (D-MT)
is designed based on a 2D network, 3D data play an auxiliary role, and hence it runs
faster and consumes less memory than 3D network-based semi-supervised segmentation
methods. Furthermore, because our method requires 2D images, more training images can
be obtained; notably, one 3D image can yield dozens of 2D image slices. Thus, our method
(ISO-MT) still has some advantages.

Table 1. Performance comparison of metrics between ours and other methods, where v stands
for voxel.

Method
# Scans Used Metrics

Labeled Unlabeled Dice Jaccard 95HD (v) ASD (v)

V-Net 8 (10%) 72 79.99% 68.12% 21.11 5.48

UA-MT [2] 8 (10%) 72 84.25% 73.48% 13.84 3.36

SASSNet [21] 8 (10%) 72 87.32% 77.72% 9.62 2.55

DUWM [22] 8 (10%) 72 85.91% 75.75% 12.67 3.31

LG-ER-MT [32] 8 (10%) 72 85.54% 75.12% 13.29 3.77

DTC [20] 8 (10%) 72 86.57% 76.55% 14.47 3.74

MC-Net [3] 8 (10%) 72 87.71% 78.31% 9.36 2.18

ISO-MT (ours) 8 (10%) 72 87.93% 78.85% 7.93 2.07

V-Net 16 (20%) 64 86.03% 76.06% 14.26 3.51

UA-MT-UN [2] 16 (20%) 64 88.83% 80.13% 10.04 3.12

UA-MT [2] 16 (20%) 64 88.88% 80.21% 7.32 2.26

SASSNet [21] 16 (20%) 64 89.54% 81.24% 8.24 2.20

DUWM [22] 16 (20%) 64 89.65% 81.35% 7.04 2.03

LG-ER-MT [32] 16 (20%) 64 89.62% 81.31% 7.16 2.06

DTC [20] 16 (20%) 64 89.42% 80.98% 7.32 2.10

MC-Net [3] 16 (20%) 64 90.34% 82.48% 6.00 1.77

ISO-MT (ours) 16 (20%) 64 90.85% 83.38% 5.23 1.55
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Figure 2 shows, from left to right, a visualization of the left ventricular images and
their corresponding labels, as well as the prediction results of V-Net, UA-MT-UN, UA-MT,
MC-Net, and our method (ISO-MT). All prediction images in Figure 2 are generated by the
models of the corresponding methods trained with 20% labeled images. The visualization
of the two images is shown in the figure to compare the results. It can be seen that for V-Net,
the most basic 3D framework, which is a supervised method relying on a large number
of labeled images, the performance of the model is not high when only a small number
of labeled images are involved in the training; thus, for the two images in Figure 2, the
accuracy of the prediction results obtained by V-Net has a large deviation, especially in the
boundary part of the target, and the recognition of small targets is poor. UA-MT-UN and
UA-MT are semi-supervised frameworks based on the same mean teacher design, but the
teacher model in UA-MT is also exposed to images with labels, just without the use of labels,
while the teacher model in UA-MT-UN is only exposed to images without labels. There is a
slight difference in the exposed data; the performance of the two images is very close and
both discard challenging regions during training, which leads to less favorable prediction
results for images with more difficult features (e.g., edges, small targets), as can be seen
from the prediction results of the two images in Figure 2. In the first image, UA-MT-UN
predicts the target boundary better than UA-MT, but it predicts a larger area in the non-
target region. In the second image, the target is smaller, and UA-MT-UN performs better
than UA-MT. This method of MC-Net considers these challenging areas; it can be seen from
the figure that MC-Net can handle challenging areas, such as target edges and small target
areas. Therefore, MC-Net provides better target edges than UA-MT-UN and UA-MT for the
predicted image. However, MC-Net is still not good enough. For example, in the prediction
results of the first image, the edges are still not accurately predicted, and in the second
image, the targets are smaller and the prediction results of MC-Net are not satisfactory
enough. Additionally, the prediction results of these two images are not much better than
those of UA-MT and UA-MT-UN overall because the incomplete search for challenging
regions and the lack of attention to challenging regions lead to less-than-optimal prediction
of challenging regions by MC-Net, which in turn leads to less-than-optimal prediction of
small target regions in the second image. Our method performs relatively well on these
two images because it extracts more complete challenging regions by extracting isomorphic
and heterogeneous discrepancy information and pays attention to these regions. In the first
image, the edge part of the prediction results of our method framework does not differ
much from the labels. In the second image, the prediction of our method for the small
target regions is likewise more accurate and more similar to the labels. In conclusion, our
method (ISO-MT) can deal with challenging regions in images.

Figure 2. Visualization comparison. Parts circled in red represent prediction results of different
methods for challenging regions in image.

4.5. Ablation Experiments

We performed ablation experiments to validate each part of our method, with results
as shown in Table 2, from which we see that when only teacher1 works properly in the
whole framework, teacher1 is the 2D teacher model. Here, our framework can only extract
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the isomorphic discrepancy information between the models, and uses this to optimize
the consistency loss between the student model and teacher1. Here, since only isomorphic
discrepancy information is available, the discrepancy information is not sufficiently com-
plete, causing the framework to focus on challenging regions that are also incomplete and
leading to Dice similarity coefficients that are not particularly high in either the 10% or 20%
experimental setting, with respective values of 86.81% and 90.19%. Then, our framework
can use the labeled data processed by the student model in the same input to optimize
the prediction results of teacher1, thus improving the accuracy of extracted isomorphic
discrepancy information, which increases the Dice similarity coefficients in the 10% and
20% labeled image experimental settings to 87.75% and 90.65%, respectively. This indicates
that the added prediction optimization is useful. If we add teacher2, a teacher model
that we designed to handle both 2D and 3D slices, our framework can extract both the
isomorphic discrepancy information between the teacher1 and student models and the
heterogeneous discrepancy information between the teacher2 and student models. Our
method can then combine the isomorphic and heterogeneous discrepancy information to
obtain more complete information, and use this to optimize the consistency loss between
the student model and both teacher1 and teacher2, which can focus on more challenging re-
gions and improve model performance. The Dice similarity coefficients improve to 87.70%
and 90.44% for 10% and 20% labeled images, respectively. Our framework is complete
if the prediction optimization is added to the base of teacher1 and teacher2, which can
use the labeled data processed by the student model in the same input to optimize the
prediction results of teacher1. Here, our framework can extract more complete and accurate
discrepancy information, and focus more accurately on those challenging regions, improv-
ing model performance. The Dice similarity coefficients improve to 87.93% and 90.85%,
respectively. The above analysis shows that both teacher2 and the prediction optimization
of our framework are useful, and can play roles in the training and optimization of the
entire framework.

Table 2. Ablation experiments, where v stands for voxel.

Method
# Scans Used Metrics

Labeled Unlabeled Dice Jaccard 95HD (v) ASD (v)

Teacher1 8 (10%) 72 86.87% 77.95% 7.40 1.95

Teacher1 + PO 8 (10%) 72 87.75% 78.65% 7.67 2.20

Teacher1 + teacher2 8 (10%) 72 87.70% 78.63% 7.66 1.96

Teacher1 + P + Teacher2 8 (10%) 72 87.93% 78.85% 7.93 2.07

Teacher1 16 (20%) 64 90.19% 82.27% 6.56 2.01

Teacher1 + PO 16 (20%) 64 90.65% 83.03% 5.16 1.67

Teacher1 + teacher2 16 (20%) 64 90.44% 82.84% 5.19 1.63

Teacher1 + PO + teacher2 16 (20%) 64 90.85% 83.38% 5.23 1.55

Figure 3 compares some results of the ablation experiment, from left to right: prediction
results of the model with only teacher1 in the frame; prediction results of the model with
teacher1 and prediction optimization in the frame; prediction results of the model with
teacher1 and teacher2 in the frame; prediction results of the model with teacher1, teacher2,
and prediction optimization in the frame; and the corresponding labels of the images. From
the figure, it can be seen that adding teacher2 or prediction optimization to teacher1 can
improve prediction results, reduce the probability that the model identifies non-targets as
targets, and improve the accuracy of the prediction results. For the images shown in the
figure, the model with only teacher1 in the framework predicted some non-target regions
as targets. These should be challenging regions, and the framework with only teacher1
cannot find these completely; hence, the model cannot comprehensively focus on these
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regions or obtain enough useful information, thus leading to incorrect prediction. It can
also be seen that adding either teacher2 or prediction optimization on top of teacher1 can
mitigate this situation, but sometimes does not improve the prediction results and reduce
the size of non-target regions with prediction errors, in which case adding both teacher2
and prediction optimization may improve the prediction target and reduce the extent of
non-target regions with prediction errors. It can also be seen that adding either teacher2 or
prediction optimization can optimize the model prediction results, and the simultaneous
operation of teacher1, teacher2, and prediction optimization can continue to optimize
them. In summary, both teacher2 and prediction optimization are important components
in the framework.

Figure 3. Visualization comparison of ablation experiments. Red circles represent the model’s
prediction of challenging regions.

4.6. Relationship between Mean Discrepancy Rate and Mean Dice

To describe the size of the discrepancy, we use the discrepancy rate Dr, i.e., the ratio of
the pixel sum calculated by the student and teacher model, PD , to that of an image with
the same size but with all pixel values of 1, Ptotal ,

Dr =
pD

Ptotal
.

This can accurately reflect the magnitude of the discrepancy information. During
the model training process, discrepancy information can be generated for each iteration,
and the discrepancy rate can be calculated. We used Dr to further compute the average
discrepancy rate for each iteration of the training process, and calculated the average Dice
of the corresponding model on the test set. Figure 4 shows their relationship.

It can be seen from Figure 4 that with increasing training epochs, the discrepancy
rate decreases, which indicates less information about the discrepancy and that students
and teachers are learning from each other to reduce the discrepancy. Additionally, as the
discrepancy rate and information decrease, the average Dice similarity coefficient of the
model on the test set increases, which means that the model becomes better. This indicates
that the student and teacher models reduce the discrepancy between each other by learning
from each other while reducing discrepancy information, and learn useful information and
improve their own performance. It can also be seen that the rate of discrepancy reduction
decreases with training epochs because, when the discrepancy information is large, it
represents performance that is not particularly high when more useful information can be
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obtained through the discrepancy information to optimize the model, thus making it more
accurate and leading to a larger decrease in the discrepancy rate. When the discrepancy
rate is relatively small, the performance of the model should be higher, the discrepancy
information is less, and the useful information that the model can obtain from it is relatively
limited, so the rate of reduction will decrease. It can also be seen that when the training is
late, the discrepancy rate decreases very slowly, but the average Dice similarity coefficient
still slowly increases, indicating that when the discrepancy information is small, the model
in our framework can still obtain some useful optimization information. Figure 4 shows
that with increasing epochs, the rate of reduction of the discrepancy rate decreases, and
it is already difficult to continue to decrease at the back. Because the magnitudes of the
discrepancy loss and discrepancy rate are closely related, the discrepancy loss should
not be too large in this case. However, even in this case, the average discrepancy rate
of the model continues to rise. This indicates that in the later stage of model training,
when the discrepancy information obtained by extracting isomorphic and heterogeneous
discrepancy information between models is difficult to reduce, our improved consistency
loss due to discrepancy information can improve model performance by focusing on the
challenging regions indicated by the discrepancy information. Thus, in Figure 4, when
the discrepancy rate is difficult to reduce, the useful information on which the model
performance improvement depends is likely to come from the challenging regions indicated
by the discrepancy information.

Figure 4. Relationship between mean difference rate and mean Dice.

4.7. Importance of Uncertainty Derived from Discrepancy Information

Figure 5 shows, from left to right, the final prediction results of the student model,
final prediction results of the 2D teacher model, approximate uncertainty visualization
obtained by calculating the discrepancy between the final prediction results of the student
and 2D teacher models during training, and labels of the images. As shown in the figure,
for the three images shown, there are some gaps between the prediction results of the
student model and the labels, and these are the regions where the prediction performance
of the student model is poor, which can also be regarded as the challenging regions, i.e.,
those with higher uncertainty.

For the first image, the challenging regions are a separate smaller target region at the
top and the edge region of the large target, both of which are often difficult areas for image
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segmentation. This is easy to understand because features near the target boundary and in
the smaller target region are more difficult to identify and distinguish. This is also true for
the second and third images, where the challenging regions are concentrated at the target
boundary and in small target regions. As can be seen from the third column, the uncertainty
visualization map obtained by calculating the discrepancy between the prediction results
of the student and teacher models can more accurately target the challenging regions, and
the high-uncertainty regions correspond to the challenging regions. It can also be seen
that for the three images, the prediction results of the teacher model are better than those
of the student model, which are closer to the labels. This implies that the teacher model
can indeed serve as a guide for the student model in some cases. As can be seen from the
above, the uncertainty calculated from the discrepancy between the models can roughly
reflect the uncertainty of the images, and is meaningful in roughly locating challenging
regions. Since this uncertainty is obtained by calculating the discrepancy between models,
it is called discrepancy information; this information helps improve the performance of the
overall framework.

Figure 5. Uncertainty obtained through difference in predictions between student and teacher1. Part of
red circle to left of red arrow represents visualization of discrepancy information obtained by student
and 2D teacher models; red arrow points to area in label corresponding to discrepancy information.

4.8. Importance of Teacher Models That Can Handle Both 2D and 3D Information

Figure 6 shows, from left to right, the prediction results of the student and 2D teacher
models, the final prediction results of the teacher model that can handle both 2D and
3D information, the approximate uncertainty visualization obtained by calculating the
discrepancy between the final prediction results of the student and teacher models that can
handle both 2D and 3D information during training, and the labels of images.

As shown in Figure 6, for the three images, the discrepancy between the final pre-
diction results of the student and 2D teacher model is not enormous, which indicates
that discrepancy information obtained in such a manner may be insignificant, and the
challenging regions that can be targeted are very limited. Here, the final prediction results
of the teacher model that can process both 2D and 3D information have a relatively large
discrepancy with the prediction results of the 2D teacher model. For the third image, the
final prediction results obtained by the teacher model that can process both 2D and 3D
information are even closer to the labels of the images, perhaps because the teacher model
considers some 3D information, and thus obtains better prediction results than the 2D
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teacher model. Therefore, for these three images, if the discrepancy between the final
predictions of the student and teacher models that can handle both 2D and 3D information
is obtained, then this will be richer, and more challenging areas can be targeted, thus im-
proving the performance of the framework. In summary, a teacher model that can handle
both 2D and 3D information makes sense, and is useful for improving the performance of
the overall framework.

Figure 6. Uncertainty obtained through difference in predictions between students and teacher2.
Part of red circle to left of red arrow represents visualization of discrepancy information obtained by
student model and teacher model fusing 2D and 3D information; red arrow points to area in label
corresponding to discrepancy information.

4.9. Clinical Applications

Our technique achieves the task of left atrial segmentation and can be used in clinical
situations to assist in the treatment of atrial fibrillation, a common cardiac arrhythmia,
which refers to the irregular beating of the heart. Surgical treatment of the left atrium can
reduce or eliminate AF by preventing the propagation of abnormal electrical signals within
the atria. Our technology can be used to segment the left atrium from the patient’s heart
image before its surgical treatment, to more precisely determine its location, and thus assist
the physician. The steps are as follows: The doctor sends the 3D image of the patient’s
heart into our program, whose preprocessing part slices it into some 2D slices that meet
its size requirements. The processed 2D slices are fed into our test model to obtain the
segmentation results, and the program combines all the slices to form a 3D segmentation
result, which is output to the physician for viewing, to assist in locating the left atrium.

5. Conclusions

In this paper, we proposed a semi-supervised left atrial segmentation framework (ISO-
MT) based on a 2D model. The key idea of our framework was to extract the isomorphic
discrepancy information between the prediction results of the student model and 2D teacher
model for unlabeled images as well as the heterogeneous discrepancy information between
the prediction results of the student model and the teacher model that can process both 2D
and 3D information. Isomorphic discrepancy and heterogeneous discrepancy information
could be combined as uncertainty information to optimize the consistency between the
student model and the two teacher models’ loss, which could better focus the optimized
consistency loss on the challenging regions in the unlabeled images; thus, some useful
features could be captured from these regions to optimize our method framework. Our
(ISO-MT) framework performed similarly to state-of-the-art 3D semi-supervised methods
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on the left atrial dataset. Our framework was based on a 2D model, so it ran faster,
consumed less memory, and obtained relatively more training data for the same number
of training images. Our method had some clinical value, was relevant to the diagnosis
and treatment of atrial fibrillation, and could assist in the localization of the left atrium,
reducing the burden on physicians. Because our method is computerized, there will always
be errors. Hence, it cannot achieve 100% accuracy or completely replace the physician in
the task of localizing the left atrium.
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