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Abstract: Artificial intelligence (AI) plays a more and more important role in our everyday life due to
the advantages that it brings when used, such as 24/7 availability, a very low percentage of errors,
ability to provide real time insights, or performing a fast analysis. AI is increasingly being used in
clinical medical and dental healthcare analyses, with valuable applications, which include disease
diagnosis, risk assessment, treatment planning, and drug discovery. This paper presents a narrative
literature review of AI use in healthcare from a multi-disciplinary perspective, specifically in the
cardiology, allergology, endocrinology, and dental fields. The paper highlights data from recent
research and development efforts in AI for healthcare, as well as challenges and limitations associated
with AI implementation, such as data privacy and security considerations, along with ethical and
legal concerns. The regulation of responsible design, development, and use of AI in healthcare is still
in early stages due to the rapid evolution of the field. However, it is our duty to carefully consider the
ethical implications of implementing AI and to respond appropriately. With the potential to reshape
healthcare delivery and enhance patient outcomes, AI systems continue to reveal their capabilities.

Keywords: allergology; artificial intelligence; cardiology; dentistry; diagnosis; immunology; machine
learning; prediction; treatment

1. Introduction
1.1. What Is AI?

Artificial intelligence (AI) is the simulation of human intelligence processes by ma-
chines or computer systems. Natural language processing, speech recognition, expert
systems, or machine vision are common applications of AI. In simple words, the AI field
combines computer science and good-quality, vetted, datasets for the purpose of solving
a given problem. It also encompasses sub-fields of machine learning and deep learning,
which are frequently mentioned in conjunction with artificial intelligence [1]. These dis-
ciplines are comprised of AI algorithms that seek to create expert systems, which make
predictions or classifications based on input data. Over the years, artificial intelligence has
gone through many cycles of hype, but even to skeptics, the ChatGPT release of OpenAI
seems to mark a turning point [2]. The last time generative AI loomed this large, the
breakthroughs were in computer vision [3], but now the leap forward is in natural language
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processing. Moreover, it extends beyond language; generative models possess the ability
to acquire the grammar of software code, molecules, natural images, and diverse types of
data [4].

1.2. How Does It Work?

In general, AI systems operate by consuming substantial amounts of labeled data for
training purposes [5]. They analyze this data to identify correlation patterns, which are then
utilized to make predictions about future events or states. For instance, a chatbot trained
on text examples can learn to generate realistic conversations with individuals, while an
image recognition tool can learn to identify and describe objects in images by studying
millions of examples [2]. The advancement of generative AI techniques has enabled the
creation of lifelike text, images, music, and other media.

Currently, AI plays prominent roles in medical settings, primarily in clinical decision
support and imaging analyses. Clinical decision support tools assist in making informed
decisions related to treatments, medications, mental health, and other patient needs by
swiftly providing relevant information or research [6]. In the field of medical imaging, AI
tools are utilized to analyze various types of scans such as computer tomography (CT),
X-rays, magnetic resonance imaging (MRI), and others [7]. They help identify lesions or
other findings that may be overlooked by human observers.

1.3. Methodology

This narrative review provides an insight into main branches of artificial intelligence and
different applications in cardiology, allergology, immunology, endocrinology, and dentistry,
as well as an approach on advantages and limitations of AI in medicine. The search was
conducted on MEDLINE/PubMed, Web of Science, and Scopus, and the last search was per-
formed on 25 March 2023. Typical keywords involved “artificial intelligence” ∧ (“healthcare”
∨ “medicine” ∨ “deep learning” ∨ “machine learning”), as well as various combinations. A
total of 151 studies published in the English language were gathered as the base for the initial
literature corpus, with 88% of them being published in the past 5 years.

2. Artificial Intelligence Branches Explained

It is important to understand the different concepts in artificial intelligence that help
solve real-world problems—the reason why we will go over the main branches of AI, such as:

2.1. Machine Learning

Machine learning (ML) is the ability of machines to automatically learn from data and
algorithms. It improves the performance using past experiences [8].

The process starts with historical data collection, such as instructions and direct
experience, so that logical models can be built for future inference. Output accuracy
depends on data size—a larger amount of data will build a better model, which in turn
increases its accuracy [9].

2.2. Computer Vision

This branch of AI aims to develop techniques that assist computers in seeing and under-
standing digital images and videos [3]. Applying machine learning models to images allows
computers to identify objects, faces, people, animals, and more. Algorithmic models help
computers teach themselves about visual data contexts, and with enough data fed through a
model, computers can teach themselves to distinguish one image from another [10].

2.3. Fuzzy Logic

Fuzzy logic is a technique that helps to solve issues or statements that can either be
true or false. This method copies human decisions by considering all existing possibilities
between digital values of ‘yes’ and ‘no’. Put simply, it measures the degree to which a
hypothesis is correct [11].
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This branch of artificial intelligence is used to reason about uncertain topics. It is a
convenient and flexible way of implementing machine learning techniques and copying
human thought logically [12].

The architecture of fuzzy logic is composed of four parts:

� Rule base: Has all the rules and if–then conditions.
� Fuzzification: Helps to convert inputs.
� Inference engine: Determines the degree of match between rules and fuzzy inputs.
� Defuzzification: Converts fuzzy sets into crips values.

2.4. Expert Systems

An expert system is a program specializing in a singular task, similar to a human
expert. These systems are mainly designed to solve intricate problems with human-like
decision-making capabilities [13]. They use a set of rules, called inference rules, that a
knowledge base fed by data defines for them. By using if–then logical notions, they can
solve complex issues.

2.5. Robotics

Robots are programmed machines that can automatically carry out complex series
of actions. People control them with external devices, or their control systems can be
embedded within themselves. Surgical-assistance robots are designed to enhance existing
surgical treatments, including minimally invasive surgeries and orthopedic surgeries [14].
These types of robots can be used to perform bariatric surgery and knee and hip replacement
procedures, among other surgeries.

2.6. Neural Networks/Deep Learning

Neural networks are also known as artificial neural networks (ANNs) or simulated
neural networks (SNNs). At the heart of deep learning algorithms, neural networks
are inspired by the human brain, and they copy how biological neurons signal to each
other. Neural networks need training data to both learn and improve accuracy [15]. Deep
learning models can recognize complex patterns in pictures, text, sounds, and other data to
produce accurate insights and predictions [16]. It can be visualized as a complex network
of interconnected nodes that process data in layers, where each layer extracts increasingly
complex features from the input data.

2.7. Natural Language Processing

Natural language processing (NLP) allows computers to understand both text and
spoken words in a similar manner to humans. Combining machine learning, linguistics,
and deep learning models, computers can process human language in voice or text data to
understand the full meaning, intent, and sentiment [17]. In speech recognition or speech-
to-text, for example, voice data are reliably converted to text data. This can be challenging
as people speak with varied intonations, emphasis, and accents [18]. Programmers have
to teach computers natural language-driven applications so they can understand and
recognize data from the beginning.

3. Artificial Intelligence in Medicine
3.1. A Brief History of AI

AI has known a dramatic evolution in the past seven decades. Initially, the emphasis
of AI was directed towards creating machines able to make interferences or decisions that
were typically limited to human capabilities. This pursuit led to the introduction of the first
industrial robot arm, Unimate, which was capable of following step-by-step commands.
Unimate became part of General Motors’ assembly line in 1961 and effectively carried
out automated die casting [19]. In 1964, Eliza was developed, using natural language
processing, to mimic human conversation; Eliza is considered the framework for the
chatbots of today [20]. A significant advancement took place in 1966, with the creation of
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Shakey at the Stanford Research Institute. Shakey, “the first electronic person”, was able
to process complex instructions and execute the appropriate action [21]. The emergence
of clinical informatic databases and medical record systems during this era played a
foundational role in shaping the future advancements of AI in medicine [22].

A pioneering example showcasing the potential of applying AI to the field of medicine
is the creation of a consultation program for glaucoma, known as the CASNET model, at
Rutgers University. This model was presented at the Academy of Ophthalmology meeting
in Las Vegas, Nevada, in 1976 [20]. CASNET incorporated a causal-association network
and comprised three distinct programs: model building, consultation, and a collaboratively
built and maintained database.

MYCIN was developed in the early 1970s, an AI system with a knowledge base of 600
rules, which could provide a list of pathogens and antibiotic recommendations, adjusted for
the body weight of the patient [20]. The University of Massachusetts introduced DXplain
in 1986. DXplain utilizes inputted symptoms to generate a comprehensive list of potential
diagnoses, based then on 500 diseases. Its database has since expanded to encompass over
2400 diseases by the year 2015.

Deep Learning (DL) represents a significant leap forward in the field of AI in medicine.
In contrast to machine learning, which relies on a predetermined set of features and
requires human input, DL possesses the capability to autonomously classify data. While
DL was initially explored in the 1950s, its application in medicine faced challenges related
to “overfitting”. Overfitting arises when ML becomes excessively focused on a specific
dataset, rendering it less effective in processing new datasets. This limitation was primarily
attributed to an inadequate computing capacity and scarcity of training data [23]. However,
in the 2000s, these obstacles were overcome due to the availability of larger datasets and
significant advancements in computing power.

IBM built a system similar to DXplain, Watson, in 2007; Watson is able to analyze
unstructured content and find probable answers, based on various searches and natural
language processing (NLP) [24]. This particular system helped in identifying the binding of
RNA proteins [25]. Based on NLP, chatbots such as Pharmabot [26] and Mandy [27] were
developed to assist patients in gaining a clearer understanding of their medications.

3.2. Artificial Intelligence Algorithms in Medicine

AI algorithms appear to be magical, but they are simply mathematical functions that
describe input data and map them to outputs. The input data in healthcare includes
structured elements such as diagnostic codes, vital sign fields, and demographic fields, as
well as unstructured data such as text and radiologic images. Input data should be selected
based on features relevant to the desired prediction task. A variety of models must be
applied to test for the best performance since inputs can be highly variable with no clear
interrelationships between them [28].

The four fundamental tasks listed under the term of competence, i.e., diagnosing,
estimating a prognosis, identifying causes of diseases, and selecting treatments, must be
gained from patients prior to a diagnosis. It was not until the twentieth century that
data were collected beyond medical histories and physical examinations conducted in
the privacy of medical offices. Following this, data collection underwent an industrial
revolution, characterized by machine use and division of labor [29]. As medical decisions
become more complex due to the proliferation of data sources and the need to involve
multiple specialists, physicians have shifted from making individual decisions in the
privacy of their offices to making collective decisions in multidisciplinary meetings.

After the first step of collecting data from their patients, the second step for physicians is
to use their clinical reasoning to make medical decisions. From an informatics point of view,
clinical reasoning is data processing; data can be processed by algorithms, and algorithms are
currently able to deliver a diagnostic probability, a prognostic estimation, or the selection of a
treatment. As data collection and data processing/AI have progressed, the number of actors
involved in patient care has multiplied, and these actors are no longer limited to humans
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but also software that makes medical decisions. In order to maintain their “competence”
dimension, physicians must retain control over these new technologies [30].

AI tools fit along a continuum between fully human and fully computer-driven on
the concept of a human–computer collaboration spectrum. This view emphasizes levels of
analytic complexity that provide a framework for clarifying forms of machine learning. In
contrast, a deep learning model can automatically classify inputs without much human
intervention, unlike a classic statistical model.

Figure 1 synthesizes the main methods and algorithms of machine learning used
in medicine:

(1) Supervised learning: These models are trained on labeled data to learn patterns
and make predictions. They are widely used in medical image analyses, such as
identifying cancer cells in pathology images or detecting lung nodules in CT scans [7].
Some examples of supervised learning models used in medicine include convolutional
neural networks (CNNs), deep neural networks (DNNs), and random forests.

(2) Unsupervised learning models: These models are used to identify patterns and
relationships in unlabeled data. They are used in medical data clustering, anomaly
detection, and feature extraction. Some examples of unsupervised learning models
used in medicine include k-means clustering, a principal component analysis (PCA),
and autoencoders [31].

(3) Reinforcement learning models: These models are used to learn from trial-and-error
interactions with an environment. They can be used in medical decision making, such
as personalized treatment planning and drug dosage optimization [32]. Examples of
such models include Q-learning, policy gradient methods, and actor–critic models.

(4) Hybrid models: These models combine multiple types of AI models to leverage their
strengths and overcome their weaknesses. For example, a hybrid model could use a
CNN to identify features in medical images followed by an unsupervised learning
algorithm to cluster the features and identify subtypes of cancer [33].
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Table 1. Main AI systems used in medicine.

System Abbreviation Function

Artificial Neural
Network ANN

It is trained by processing examples, each of which contains a known “input” and
“result,” forming probability-weighted associations between the two, which are
stored within the data structure of the net itself [34].

Backpropagation
Neural Network -

Backpropagation is a process involved in training a neural network. It involves
taking the error rate of a forward propagation and feeding this loss backward
through the neural network layers to fine-tune the weights. Backpropagation is the
essence of neural net training [35].

Bayesian Inference -
It allows for an algorithm to make predictions based on prior beliefs. In Bayesian
inference, the posterior distribution of predictors (derived from observed data) is
updated based on new evidence [36].

Causal Associational
Network CASNET

This model consists of three main components: observations of a patient,
pathophysiological states, and disease classifications. As observations are recorded,
they are associated with the appropriate states [37].

Convolutional Neural
Network CNN

A network architecture for deep learning that learns directly from data. CNNs are
particularly useful for finding patterns in images to recognize objects, classes, and
categories. They can also be quite effective for classifying audio, time-series, and
signal data [38].

Deep Neural Network DNN
An ANN with multiple layers between the input and output layers. There are
different types of neural networks but they always consist of the same components:
neurons, synapses, weights, biases, and functions [39].

Light Gradient
Boosting Machine LightGBM

LightGBM is a gradient-boosting ensemble method that is based on decision trees.
As with other decision tree-based methods, LightGBM can be used for both
classification and regression. LightGBM is optimized for a high performance with
distributed systems [40].

Multilayer Perceptron MLP

A feedforward artificial neural network that generates a set of outputs from a set of
inputs. An MLP is characterized by several layers of input nodes connected as a
directed graph between the input and output layers. MLP uses backpropagation for
training the network [41].

Natural Language
Processing NLP

It enables machines to understand the human language. Its goal is to build systems
that can make sense of text and automatically perform tasks such as translation, a
spell check, or topic classification [18].

Optimal Channel
Networks OCNet

Oriented spanning trees that reproduce all scaling features characteristic of real,
natural river networks. As such, they can be used in a variety of numerical and
laboratory experiments in the fields of hydrology, ecology, and epidemiology [42].

Probabilistic Neural
Network PNN A feedforward neural network used to handle classification and pattern

recognition problems [43].

Random Forest Models An ensemble learning method for classification, regression, and other tasks that
operates by constructing a multitude of decision trees at the training time [44].

Recurrent Neural
Network RNN

An ANN where connections between nodes can create a cycle, allowing output from
some nodes to affect subsequent input to the same nodes. This allows it to exhibit
temporal dynamic behavior [45].

Region-based
Convolutional Neural
Network

R-CNN The key concept behind the R-CNN series is region proposals. Region proposals are
used to localize objects within an image [46,47].

Support Vector
Machine SVM

A type of deep learning algorithm that performs supervised learning for
classification or regression of data groups. In AI and machine learning, supervised
learning systems provide both input and desired output data, which are labeled
for classification [48].

Extreme Gradient
Boosting XGBoost

XGBoost, which stands for extreme gradient boosting, is a scalable, distributed
gradient-boosted decision tree (GBDT) machine learning library. It provides parallel
tree boosting and is the leading machine learning library for regression,
classification, and ranking problems [49].
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4. AI in Cardiology

AI found its applications in cardiology in several domains, such as imaging, electro-
physiology, and heart failure prediction, as well as preventive and interventional cardiology.
AI models can be used for an electrocardiogram (ECG) analysis. Deep learning models
have been shown to accurately identify cardiac arrhythmias, including atrial fibrillation
(AF), and ventricular tachycardia, from ECG recordings [50]. A growing number of people
are likely to develop AF within the next three decades [51], making early diagnoses and
management critical in primary care. By screening for undetected AF in primary care pop-
ulations, ML models may enable early anticoagulation and reduce the subsequent disease
burden. For the diagnosis of AF, ML models are trained on clinical data from electronic
patient records (EPRs) or ECGs [52]. By using the former approach, clinicians can assist
patients with screening based on age, previous cardiovascular disease, and body mass
index. A ML model based on an ECG waveform analysis has demonstrated high accuracy.
On the basis of 18,000 ECG signals, a deep learning system can diagnose atrial fibrillation
with an accuracy of 98.27% [53]. Studies have demonstrated that many general practitioners
are incapable of accurately detecting and diagnosing AF based on ECGs [9]. ECGs may be
useful in identifying high-risk patients, subsequently resulting in a combined approach
pathway. Any non-trivial traces can then be identified or flagged for specialist intervention.

ML models have also been used to automatically identify and quantify cardiac function
parameters, such as the ejection fraction, without the need for manual measurements [16].
AI can also assist in the prediction of the cardiovascular disease (CVD) risk. A study by
Weiss et al. [54] demonstrated that a deep learning model can predict the 10-year risk of
cardiovascular disease more accurately than traditional risk calculators, based on a single
chest X-ray. Additionally, AI can help identify patients who may benefit from preventive
interventions or close monitoring, potentially reducing the risk of adverse cardiovascular
events. The main outcomes of AI use in cardiology are presented in Table 2.

AI has also been applied in the prediction of patient outcomes. AI algorithms can
analyze specific parameters to predict the likelihood of a patient developing certain com-
plications, such as heart failure or a stroke. Hamatani et al. [55] used a ML model based
on a random forest algorithm to assess the heart failure hospitalization in patients with
atrial fibrillation. The proposed model exerted a higher prediction performance than the
Framingham risk model [55]. In a systematic review, Kee et al. [56] observed that a neural
network was able to predict the risk of CVD in type 2 diabetes patients, with 76.6% precision
and 88.06% sensitivity [56].

Table 2. Overview of AI use in Cardiology.

Target Type of Algorithm Data Sample Results Study

Signal processing

Detection of VF and VT
(shockable rhythms) to
improve shock advice
algorithms in automated
external defibrillators

Convolutional neural
network as a feature
extractor and
boosting classifier

1135 shockable segments
and 5185 non-shockable
segments from 57 records
in public databases

Accuracy 99.3%,
sensitivity 97.1%,
specificity 99.4%

Nguyen et al.,
(2018) [57]

Automated detection of AF
based on PPG and
accelerometer recordings
of smartwatches

Deep neural
network with
heuristic pre-training

Heart rate and step count
data obtained using the
Cardiogram mobile
application on Apple
Watches from
9759 Health eHeart
Study participants

Sensitivity 98.0%,
specificity 90.2%,
C-statistic 0.97

Tison et al.,
(2018) [58]
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Table 2. Cont.

Target Type of Algorithm Data Sample Results Study

Binary classification
ofcardiovascular abnormality
using time–frequency
features of cardio-mechanical
signals, namely, SCG and
GCG signals

Decision tree and SVM
methods with features
generated by
a continuous
wavelet transform

Experimental
measurements from
12 patients with
cardiovascular diseases
and 12 healthy subjects

Accuracy > 94%, with
the best performance
of SVM applied to
GCG features (99.5%)

Yang et al.,
(2018) [59]

Automated detection of AF
based on Apple Watch Series
2 or 3 with
KardioBand (AliveCor)

SmartRhythm 2.0,
a convolutional
neural network

Data of the heart rate,
activity level, and ECGs
from 7500 AliveCor users
(training), and data from
24 patients with an
insertable cardiac
monitor and history
of paroxysmal
AF (validation)

Episode sensitivity
97.5%, duration
sensitivity 97.7%,
patient sensitivity
83.3% overall and
100% during
time worn

Wasserlauf et al.,
(2019) [60]

Identify LV territory of
regional wall motion
abnormality on parasternal
short-axis views

Convolutional neural
networks (supervised)

In total, 400 patients
(1200 short-axis echo
videos) who had
undergone a coronary
angiography and echo

Area under the
receiver operating
characteristic curve
for detection of
regional wall motion
abnormalities:
0.90–0.97

Kusunose et al.,
(2019) [61]

Identification of
asymptomatic LV
dysfunction based on
an ECG

Convolutional neural
network using the
Keras framework with
a Tensorflow (Google)
backend and Python

ECG–TTE pairs:
35,970 (training),
8989 (internal validation),
52,870 (testing)

Accuracy 85.7%,
sensitivity 86.3%,
specificity 85.7%,
C-statistic 0.93

Attia et al.,
(2019) [50]

Image processing

Rapid and reproducible
measurement of LV volumes,
EF, and average biplane LS
on ECG

Convolutional
neural networks

Four- and two-chamber
ECG views from
255 patients in
sinus rhythm

Feasibility 98%, good
agreements with the
reference for
automated EF and LS,
with no variability

Knackstedt et al.,
(2015) [62]

Decreasing the
computational demand of
the FFR calculation by
developing a ML-based
model as an alternative to
computational fluid
dynamics approaches

Deep neural network

In total, 125 lesions in
87 patient-specific
anatomic models
generated from CT data
using image
segmentation

Excellent correlation
(0.9994; p < 0.001) and
no systematic bias in
the Bland–Altman
analysis: FFR 0.80
was predicted with
sensitivity 81.6%,
specificity 83.9%,
accuracy 83.2%

Itu et al.,
(2016) [63]
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Table 2. Cont.

Target Type of Algorithm Data Sample Results Study

Automated ECG
interpretation, including
view identification,
segmentation of cardiac
chambers across
five commonviews,
quantification of structures
and function, and
disease detection

Convolutional neural
networks

In total,
14,035 echocardiograms
spanning a
10-year period

Identification of
views in >95%,
median absolute
deviation of 15–17%
for structure and
<10% for function,
detection of
hypertrophic
cardiomyopathy,
cardiac amyloidosis,
and pulmonary
disease with
C-statistics of
0.93, 0.87, and
0.85, respectively

Zhang et al.,
(2018) [64]

Measurement of RV and LV
volume and function in MRI
images for a range of clinical
indications and pathologies

Deep neural network

In total,
200 non-congenital
clinical cardiac
MRI examinations

Strong correlations
for LV (>0.94) and
RV (>0.92) volumes

Retson et al.,
(2020) [65]

Detection of subclinical AF Convolutional neural
networks

Training set of
454,789 images and
testing on 130,801 images

AUC 0.90,
sensitivity 82.3%,
specificity 83.4%,
accuracy 83.3%

Alzubaidi et al.,
(2021) [66]

Clinical risk stratification

Identification of HF cases
from both structured and
unstructured EMRs

Random forest models

In total, 2,139,299 notes in
the Maine Health
Information Exchange
EMR database from 1
July 2012 to 30 June 2014

Positive predictive
value of 91.4%

Wang et al.,
(2015) [67]

Development of CHIEF to
automatically extract LV
function mentions and
values, congestive HF
medications, and
documented reasons for a
patient not receiving
these medications

Combination of rules,
dictionaries, and
ML methods

Various clinical
notes from
1083 Veterans Health
Administration patients

High recall and
precision for HF
medications and EF
(>0.960), while only
reaching fair recall
and precision for
reasons for not
prescribing HF
medications (<0.400)

Meystre et al.,
(2017) [68]

Risk prediction model of
incident essential
hypertension within the
following year

Feature selection and
generation of an
ensemble of
classification trees with
the use of XGBoost

Data from individual
patient electronic health
records as part of the
Health Information
Exchange data set
of Maine

C-statistics of 0.917 in
the retrospective
cohort and
0.870 in the
prospective cohort

Ye et al.,
(2018) [69]

Predict survival following a
routine echo using clinical
and structured echo
report data

Nonlinear random
forest classifier
(supervised)

In total, 171,519 patients
(331,317 echo studies)
using 90 clinical
variables, LVEF, and
57 echo measurements.
Labels were from clinical
data and reported
echo measurements

Area under the
receiver operating
characteristic curve:
1-year mortality, 0.85
5-year mortality, 0.89

Samad et al.,
(2019) [70]
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Table 2. Cont.

Target Type of Algorithm Data Sample Results Study

Predict in-hospital mortality
following an echo in patients
admitted with heart disease
using echo report data

Deep neural
network (supervised)

In total, 25,776 in-patients
admitted with heart
disease based on ICD-10
codes. Labels were from
clinical data and reported
echo measurements

Area under the
receiver operating
characteristic curve:
Overall, 0.90
Coronary heart
disease
subgroup, 0.96
Heart failure
subgroup, 0.91
Area under the
precision–recall
curve, 0.28

Kwon et al.,
(2019) [71]

Prediction of CAD on CTA Boosted ensemble
algorithm

Clinical, CTA (CACS) in
13,054 subjects AUC 0.881 Lu et al.,

(2022) [72]
AF, atrial fibrillation; CHIEF, Congestive Heart Failure Treatment Performance Measure Information Extraction
Framework; CT, computed tomography; ECG, electrocardiography; EF, ejection fraction; EMR, electronic medical
record; FFR, fractional flow reserve; GCG, gyrocardiography; HF, heart failure; LS, longitudinal strain; LV, left
ventricular; ML, machine learning; MRI, magnetic resonance imaging; PPG, photoplethysmography; RV, right
ventricular; SCG, seismocardiography; SVM, support vector machine; TTE, transthoracic echocardiography;
VF, ventricular fibrillation; VT, ventricular tachycardia.

A self-taught ML model was found to be better at predicting the risk of death in CVD
patients than other models designed by cardiovascular experts [73]. Samad et al. [70] used
echocardiographic and clinical parameters on a supervised learning model in order to
obtain the survival prediction, compared to other risk scores and logistic regression models.

Personalized treatment is another area where AI can be useful in cardiology. AI
algorithms can analyze patient data to identify the most effective treatment options for indi-
vidual patients based on their unique characteristics. Chi et al. [74] used a machine learning
personalized statin treatment plan to assess the available statin plans and to identify the
optimal treatment plan in order to prevent or minimize statin patient discontinuation.

5. AI Implications in Immunology, Allergology, and COVID-19

The potential clinical applications of AI in allergies and immunology have a wide
range, from a common disease diagnosis (food allergy, asthma, and drug allergy) to diseases
with a delayed diagnosis, which fail to be very obvious from the beginning to the general
practitioners and pediatricians, thereby endangering newborns’ lives, including the inborn
errors of immunity. Other potential clinical applications include the assessment and
prediction of adverse reactions to drugs and vaccines—to the pandemic pathology and
the post-vaccination immune response to coronavirus disease 2019 (COVID-19) and non-
COVID-19, and to the multidimensional data reduction in the electronic field, the health
records, and the immunological datasets.

One area where AI has been applied in allergology is in the diagnosis of allergic
diseases. AI algorithms can analyze patient data, such as medical history, allergy testing
results, and environmental exposure data, to identify patterns and associations that may
be indicative of allergic diseases. Yang et al. developed an ensemble neural network
chain model with pre-training on rhinitis multi-label classification. Malizia et al. [75,76]
established a machine learning model that, based on nasal cytology and skin prick test
results, could identify allergic rhinitis phenotypes in children. Nevertheless, the authors ac-
knowledge that cytologic endotypes over time may limit the efficiency of such a model [75].
Bhardwaj et al. [77] successfully trained and tested six ML models to classify allergic and
non-allergic asthma.

AI methods have also been used in the prediction of allergic diseases and complica-
tions. Research conducted by van Breugel focused on a multi-omics model, which could
accurately perform a methylation-based allergy diagnosis [78]. Therefore, ML models are
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able to go beyond a simple analysis of one domain and to integrate multi-omics layers [79].
AI algorithms can analyze patient data to predict the likelihood of a patient developing
severe allergic reactions, such as anaphylaxis [80].

Another important aspect that could gain a major benefit from AI and ML is the discovery
of drug allergies by establishing a risk profile for patients at risk of developing a drug allergy.
The most common example is the beta-lactam amoxicillin and clavulanic acid combination,
responsible in the last decade for late and immediate hypersensitivity reactions [81].

AI has been applied in the development of personalized treatment plans. AI algorithms
can identify, based on patient data, the most effective individual treatment options [82].

ML endeavors to accomplish precision medicine in allergology by characterizing al-
lergic endotypes, exploring relationships in allergic multimorbidity, contextualizing the
impact of an exposome, and intervening in biological processes to enhance health and
treat individual diseases. Exposure represents a critical factor in the allergic disease phys-
iopathology, a high complexity factor mainly due to the possibility of multiple exposures
that can occur simultaneously. The concept of an “exposome” has been introduced, a term
that encloses “all exposures from conception onwards” [83]—a complex puzzle that can be
put together by ML algorithms (Figure 2). Nevertheless, the beneficial role of ML in the
exposome investigation is closely related to the quality of analyzed data.
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Contemporary ML techniques employ embeddings to transform high-dimensional fea-
ture spaces into efficient representations. These approaches often leverage modern DL meth-
ods such as convolutional neural networks [84]. While these approaches demonstrate high
prediction accuracy, it is essential to acknowledge that the patterns identified by these meth-
ods may be merely correlative, lacking direct associations with the underlying molecular
mechanism. Nevertheless, they remain valuable as biomarkers in clinical assessments.

A convolutional neural network was used to accurately identify and count airborne
pollen, to distinguish between the low-allergenic Urtica species and severely allergenic
Parietaria species [15]. The authors observed that Urticaceae pollen grains could be dis-
tinguished with >98% accuracy. Moreover, the model could distinguish genera on before
unseen Urticaceae pollen collected from aerobiological samples [15]. Olsson et al. [85]
trained CNN models on 122,000 pollen grains, obtaining an accuracy of 98% for 83 species.
Nevertheless, the accuracy dropped to 41% when individual reference samples from differ-
ent flowers were kept separate [85]. Samonte et al. [86] developed a web-based application
for food recommendation specialized in allergy information. In this application, restaurants
would upload their menu and the individuals could make their choices based on potential
known allergies. A selection of ML models’ outcomes in allergology is presented in Table 3.
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Table 3. Outcomes of ML models in allergology.

Target Algorithm Sample Results Study

Discriminating asthma
from chronic
obstructive
pulmonary disease

Multinomial regression,
gradient boosting,
and recurrent
neural networks

In total,
178,962 patients treated
by two “R03”
treatment prescriptions

The best models were
obtained with the boosting
approach and RNN, with an
overall accuracy of 68%

Joumaa et al.,
(2022) [87]

Predicting pediatric
asthma exacerbations

XGBoost
(gradient-boosting
decision trees)

Electronic health
records for
5982 pediatric subjects

Sensitivity 70%, predictive
values of 13.8% for 180-day
outcomes and 2.9% for
30-day outcomes

Hurst et al.,
(2022) [88]

Diagnosis of AD
on multiphoton
tomography

CNN

In total,
3663 multiphoton
tomography images
from AD and
healthy subjects

A correct diagnosis
in 97.0% of all images
Sensitivity of 0.966
Specificity of 0.977

Guimarães et al.,
(2020) [89]

Prediction of AD
severity over time Bayesian inference

Recordings of AD
severity scores and
treatments used by
59 and 334 pediatric
subjects

Improvement of the
chance-level forecast by 60%

Hurault et al.,
(2020) [90]

Phenotyping and
identification of
severity-associated
factors in adolescent
and adult patients with
atopic dermatitis

ML-gradient boosting
approach with
cross-validation-based
tuning multinomial
logistic regression.

367 patients

The predictive performance
of machine
learning–gradient boosting
vs. multinomial logistic
regression differed only
slightly (mean multiclass
area under the curve value:
0.71 [95% CI, 0.69–0.72] vs.
0.68 [0.66–0.70], respectively

Maintz et al.,
(2021) [91]

Distinguishing
different endotypes of
CRSwNP based on
clinical biomarkers

ANN logistic
regression

In total, 15 clinical
features from
60 healthy controls,
60 eCRSwNP, and
49 non-eCRSwNP

ANN models showed a
better performance,
significantly higher than
those from the LR models
(0.976 vs. 0.902, p = 0.048;
0.970 vs. 0.845, p = 0.011)

Zhou et al.,
(2023) [92]

Prediction of
hypersensitivity
to β-lactam

ANN logistic
regression

Data records for 1271
allergic and
non-allergic subjects

ANN: sensitivity
of 89.5% and 81.1%,
specificity of 86.1% and
97.9%, positive predictive
values of 82.1% and 91.1%
LR: sensitivity of 31.9% and
specificity of 98.8%

Moreno et al.,
(2020) [93]

ANN, artificial neural network; AT, atopic dermatitis; CNN, convolutional neural network; CRSwNP, chronic
rhinosinusitis with nasal polyps; eCRSwNP, eosinophilic CRSwNP; non-eCRSwNP, non-eosinophilic CRSwNP;
ML, machine learning.

ML learning frameworks have been developed specifically for allergy diagnoses,
aiming to support junior clinicians and specialists in their decision-making tasks [94]. The
main objective was to assist the management of complex cases, with multiple allergies,
rather than focusing on easily diagnosable primary allergies. The framework includes a
data cleaning module and utilizes modified sampling techniques in the data sampling
module to improve the quality of intradermal test data. These processing steps significantly
enhance the performance of the learning algorithms. Moreover, the adoption of a cross-
validation approach ensures that the learning algorithms avoid overfitting the training
data. Notably, ensemble classification approaches demonstrate a superior performance
compared to traditional methods. The random forest classifier, employing constant strategy
sampling, demonstrated superior sensitivity compared to all other cases [94].
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To further improve the efficiency of the allergy diagnosis support system, meta-
heuristic data-processing techniques can be employed. In addition to data cleaning and
sampling, incorporating data transformation methods, such as feature selection, can be
beneficial. Including prognosis details, treatment outcomes, and patient feedback will
enhance the relevance of the system.

ML algorithms presented high accuracy and efficiency in identification of systemic
lupus erythematosus (SLE) and neuropsychiatric systemic lupus erythematosus [95,96], as
well as distinguishing patients with SLE and other major chronic autoimmune diseases,
such as rheumatoid arthritis and multiple sclerosis, in the early stages [97]. Ali et al. [8]
used a transcriptomic fragmentation model for biomarker detection in multiple sclerosis
and rheumatoid arthritis, with a 96.45% accuracy. Li et al. [98] proposed combined pro-
teomics and single-cell RNA sequencing to determine biomarker combinations for the
diagnosis and activity monitoring in SLE patients; their model could efficiently assess
disease exacerbation [98].

Martin-Gutierrez et al. [99] employed ML models to identify distinct immunologic
signatures in subjects with primary Sjögren’s syndrome and SLE. The proposed model
identified two distinct immune cell profiles, which could provide further directions in
targeted therapy [99]. Therefore, AI can also be used to discover new treatments and
predict drug efficiency for immune diseases by analyzing large amounts of genomic and
proteomic data. ML algorithms predicted the efficiency of the etanercept in juvenile
idiopathic arthritis using electronical medical records data, with a 75% sensitivity and
66.67% specificity [100].

Based on deep learning algorithms, Zeng et al. [101] developed deepDTnet, a model
for target identification and drug repurposing, enclosing 15 types of cellular, phenotypic,
genomic, and chemical profiles. Their proposed model showed a 96.3% accuracy in iden-
tifying novel molecular targets for known drugs [101]. Madhukar et al. [102] promoted
BANDIT, a ML model that integrates multiple data types to identify connections between
different drug types and classes and to predict drug binding targets.

AI has shown great potential in the field of vaccine development, as it can help to
accelerate the identification of potential vaccine targets and the development of new vaccine
candidates. Bukhari et al. [103] proposed a decision tree model for the prediction of novel
and immunodominant Zika virus T-cell epitopes. The model showed a mean accuracy of
97.86%, with high possibilities in the development of Zika vaccines that target the predicted
T-cell epitopes [103]. Arterolane and lucanthone were identified, based on a Bayesian ML
model, as potential Ebola virus inhibitory agents [104].

AI-based models were also used for the COVID-19 vaccine development. Neural
network-driven systems were used to discover T-cell epitopes for severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [105]. The Long Short-Term Memory network was
used to predict epitopes for Spike [106]. Pre-trained models were also used to predict
molecular reactions in carbohydrate chemistry [107] and protein interaction [108].

Medical advances and high-tech developments, including AI, have led to significant
advances in treating COVID-19. As a consequence of the inability to accurately and
efficiently evaluate pulmonary lung CT data during the fight against COVID-19, Zhang
et al. [109] developed a new system to analyze CT data of patients using deep learning
and concluded that the right lower lobe of the lungs is the most common location for
COVID-19 pneumonia. Additionally, Mohanty et al. [110] performed a quick intelligent
screening for potential drugs to treat COVID-19 with a drug-repositioning method; this
group was able to identify potential drugs using a combination of artificial intelligence
and pharmacology, demonstrating the usefulness of this method to COVID-19 drug design
and research. Moreover, other scholars have developed a platform based on AI learning
and prediction models to identify the drugs on the market that may be useful for treating
COVID-19; as a result, they found more than 80 drugs with considerable potential [111].
Stebbing et al. [112] analyzed existing anti-cytokine therapies, such as baricitinib, to explore
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new treatment options for COVID-19. Table 4 summarizes the developments of AI models
in COVID-19 diagnoses, treatment, and prevention.

Table 4. AI outcomes in SARS-CoV-2.

AI Model Results Study

Diagnosis

TopNetmAb model: Comprehensive
topology-based AI.

Predict the binding free energy changes of S and
ACE2/antibody complexes induced by mutations
on the S RBD, of the Omicron variant.

Chen et al.,
(2022) [113]

DL method (3D-DL framework) for DNA sequence
classification using CNN.

SARS-CoV-2 viral genomic sequencing.
Viral evaluation accuracy > 99%.

Lopez-Rincon et al.,
(2021) [114]

Drug discovery

DeepH-DTA: A squeezed-excited dense
convolutional network for learning hidden
representations within amino acid sequences.

Predict the affinity scores of drugs against
SARS-CoV-2 amino acid sequences.

Abdel-Basset et al.,
(2020) [115]

Estimated drug–target interactions. A list of
antiviral drugs was identified.

Molecule transformer–drug target
interaction (MT-DTI).

Beck et al.,
(2020) [116]

AI-based generative network complex Generate 15 potential drugs. Gao et al.,
(2020) [117]

ChemAI; a deep neural network protocol on three
drug discovery databases.

Generate 30,000 small compounds that are
SARS-CoV-2 inhibitors.

Hofmarcher et al.,
(2020) [118]

ADQN-FBDD: An advanced deep Q-learning
network with the fragment-based drug design
(a model-free reinforcement learning algorithm).

Generate 47 lead compounds, targeting the
SARS-CoV2 3C-like main protease.

Tang et al.,
(2020) [119]

Dense fully convolutional
neural network (DFCNN).
A list of chemical ligands and
peptide drugs was provided.

Used four chemical compound and
tripeptide databases to identify
potential drugs for COVID-19.

Zhang et al.,
(2020) [109]

Generative DL. An AI-based
drug discovery pipeline. Generate inhibitors for the SARS-CoV-2 3CLpro. Zhavoronkov et al.,

(2020) [120]

Vaccine development

Bioinformatic tools and databases Epitope vaccines were designed by
using protein E as an antigenic site.

Abdelmageed et al.,
(2020) [121]

Computational methodology

Identify several epitopes in SARS-CoV-2 for the
development of potential vaccines.
S protein was identified as an immunogenic and
effective vaccine candidate.

Fast et al.,
(2020) [122]

ML and reverse vaccinology
A cocktail vaccine with structural and
non-structural proteins in which would accelerate
efficient complementary immune responses.

Ong et al.,
(2020) [123]

Integrated bioinformatics pipeline that merges the
prediction power of different software
(in silico pipeline).

Predict the cross-reactivity of pre-existing
vaccination interventions against SARS-CoV-2.

Russo et al.,
(2021) [124]

Immune informatics, reverse vaccinology, and
molecular docking analysis.

Three epitope-based subunit vaccines were
designated. Only one was reported as the best
vaccine.

Sarkar et al.,
(2020) [125]

In silico approach. A molecular docking analysis.
A multi-epitopic vaccine candidate targeting the
non-mutational immunogenic regions in envelope
protein and surface glycoprotein of SARS-CoV-2.

Susithra
Priyadarshni et al.,
(2021) [126]

3CLpro, 3C-like protease; AI, artificial intelligence; CNN, convolutional neural network; COVID-19, coronavirus
disease 2019; DL, deep learning; HGAT, heterogeneous graph attention; ML, machine learning; RBD, receptor-
binding domain; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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6. AI in Endocrinology

AI models have been analyzed in the diagnosis and treatment of multiple endocrino-
logical conditions and pathologies, such as diabetes, thyroid disorders, reproductive im-
pairments, or hormonal cancers.

One example of the use of AI in diabetes management is the development of closed-
loop systems, also known as artificial pancreas systems. These systems use a combination of
continuous glucose monitoring and insulin pumps to automatically regulate blood glucose
levels. Neural network models had the most stable performance in such systems, being
able to recover dynamics in short time intervals [127].

AI can also assist in the prediction of hypoglycemia, a common complication of
diabetes. Continuous glucose monitoring data and clinical parameters are used in ML
models to improve hypoglycemia prediction [128]. Ma et al. [129] introduced the MMTOP
(multiple models for missing values at time of prediction) algorithm to predict the patient
risk for severe hypoglycemia in the presence of incomplete data, with a cross-validated
concordance index of 0.77 ± 0.03. Faruqui et al. [130] used deep learning algorithms to
predict glucose levels in type 2 diabetes patients based on their diet, weight, glucose level
from the day before, and physical activity.

Deep neural networks were able to predict gestational diabetes in early pregnancy,
based on 73 variables, such as body mass index, 3,3,5′-triiodothyronine, or total thy-
roxin [131]. An unsupervised ML model was used to accurately classify four stable
metabolic different obesity clusters: metabolic healthy obesity, hypermetabolic hype-
ruricemic obesity, hypermetabolic hyperinsulinemic obesity, and hypometabolic obe-
sity [132]. Rein et al. [133] assessed the effect of a personalized postprandial-targeting
diet (PPT) on glycemic control and metabolic health. The 6-month PPT intervention exerted
significant improvement on glycated hemoglobin, fasting glucose, and triglycerides [133].

CNNs were used in thyroid pathology diagnoses. Yang et al. [134] proposed a deep
learning framework trained on 508 ultrasound images to diagnose thyroid nodules. Their
model showed an average accuracy of 98.4%. Islam et al. [135] compared 11 ML algorithms
for thyroid risk prediction; the neural network classifier generated the highest accuracy
over other ML techniques.

Reproductive health is a critical aspect of overall health and well-being, affecting
individuals of all ages and genders. Hormonal imbalances and reproductive disorders can
lead to infertility, pregnancy complications, and other health issues. In recent years, AI
has emerged as a powerful tool for providing insights that may not be visible to human
analyses. Polycystic ovary syndrome (PCOS) is a common hormonal disorder that affects
up to 10% of women of a reproductive age [136]. It is characterized by irregular menstrual
cycles, high levels of male hormones, and ovarian cysts [137]. The diagnosis of PCOS is
currently based on clinical symptoms and a laboratory test, which can be subjective and
lead to a misdiagnosis [138]. ML algorithms can assist in the diagnosis and management of
PCOS. Suha and Islam [139] trained a CNN model on 594 ovary ultrasound images for cyst
detection and PCOS diagnoses, with an accuracy of 99.89%. Zigarelli et al. [140] developed
a self-diagnostic prediction model for PCOS, based on different variables, such as hirsutism,
acne, an irregular menstrual cycle, the length of the menstrual cycle, and weight gain. Their
model predicted a correct diagnosis with an accuracy ranging from 81% to 82.5%. Even if
such self-diagnosis models can be useful in particular cases, which may include a lack of
access to medical care or pandemic confinement, we consider that they should be taken
“with a grain of salt”, as they cannot replace a professional diagnosis.

AI can also assist in the diagnosis and management of infertility by providing person-
alized recommendations. Ding et al. [141] compared seven ML methods in order to assess
the ovarian reserve. The most accurate evaluation was provided by a light gradient boost-
ing machine (LightGBM), which exerted the highest accuracy in the quantification of the
ovarian reserve, especially in the 20–35 years age group [141]. The basal body temperature
and heart rate were used to train ML algorithms, in order to predict the fertile window (a
72.51% accuracy) and menses (75.90% accuracy) [142].
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A deep CNN was trained using single timepoint images of embryos, with an accu-
racy of 90% in choosing the highest quality embryo for in vitro fertilization (IVF); the
trained CNN was also capable of predicting the potential of embryo implantation [143].
Louis et al. [144] analyzed different ML models (decision tree, random forest, and gradient
booster) for IVF embryo selection. Their result revealed a lower peak accuracy of 65% [144].

7. AI in Dentistry

In recent years, AI has gained significant attention in the field of dentistry, with many
researchers exploring its potential applications in diagnoses, treatment planning, and dental
imaging analyses.

One of the most promising applications of AI in dentistry is in the area of dental
imaging analyses; the use of AI algorithms has the potential to improve the accuracy
and speed of an image analysis, with the identification of early signs of carious lesions,
periapical lesions, or periodontal destruction. Furthermore, AI models can be trained
to detect subtle changes in images over time, which may be indicative of the disease
progression. Ameli et al. [145] used ordinal logistic regression and artificial neural networks
to determine predictive relationships between the extracted patient chart data topics and
oral health-related contributors; the authors observed that the risk for carious lesions,
occlusal risk, biomechanical risk, gingival recession, periodontitis, and gingivitis were
highly predictable using the extracted radiographic and treatment planning topics and
chart information [145].

Carious lesions are usually detected by a clinical examination and X-ray visual analysis,
highly depending on the experience of the specialists. Numerous studies focused on
the AI models’ role in the early detection of carious lesions on dental X-rays (Table 5).
Kühnisch et al. [146] proposed a CNN algorithm for carious lesion diagnoses on intraoral
X-rays. Another study [147] compared the cost-effectiveness of AI for the detection of
proximal caries with the diagnosis of dentists; the authors observed that the AI system
was more effective and less expensive. Furthermore, AI algorithms can detect and analyze
subtle changes in the periapical area, root canal anatomy, and bone structure [148].

A systematic review conducted by Mohammad-Rahimi et al. in 2022 assessed the DL
capacity in various studies to detect carious lesions [149]. The authors observed different accu-
racies, mainly depending on the type of dataset, but with relatively high values: 71% to 96% on
intra-oral photographs, 82% to 99.2% on periapical radiographs, 87.6% to 95.4% on bitewing
radiographs, 68.0% to 78.0% on near-infrared transillumination images, 88.7% to 95.2% on
optical coherence tomography images, and 86.1% to 96.1% on panoramic radiographs.

Table 5. AI outcomes in restorative dentistry.

Target AI Model Sample Results Study

Detection of
simulated
dental caries

Learning vector
quantization Teeth AI is beneficial in diagnosing

dental cavities.
Kositbowornchai et al.,
(2006) [150]

Dental caries
detection

Adaptive dragonfly
algorithm and
neural network

120 dental images

Using the image processing
method, a unique and
upgraded model exhibits a
much higher performance in
detecting dental caries.

Patil et al., (2019) [151]

Dental caries
detection CNN 185 transillumination

images

ROC of 83.6% for occlusal
caries and ROC of 84.6% for
proximal caries.

Casalegno et al.,
(2019) [152]

Root caries
identification ANN 357 variables in

5135 cases

97.1%, 95.1% precision,
99.6% sensitivity,
94.3% specificity.

Hung et al., (2019) [153]
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Table 5. Cont.

Target AI Model Sample Results Study

To predict
post-Streptococcus
mutants

ANN 45 primary molars Efficiency of 0.99033 Javed et al., (2020) [154]

Dental caries
diagnosis

Backpropagation
neural network 105 periapical X-rays

This model yielded an
accuracy of 97.1%, a false
positive (FP) rate of 2.8%, a
receiver operating
characteristic (ROC) area of
0.987, and a precision–recall
curve (PRC) area of 0.987.

Geetha et al.,
(2020) [155]

Diagnosis of
interproximal
caries lesions

CNN 1000 digital
bitewing radiographs

Total accuracy of 94.59%
AUC of 7.19%

Bayraktar and Ayan
(2022) [156]

Caries detection CNN 2417 photographs Accuracy of 92.5% (SE, 89.6;
SP, 94.3; AUC, 0.964).

Kühnisch et al.,
(2022) [146]

Caries detection CNN
226 extracted teeth
1319 teeth from
56 patients in vivo

Models trained and tested on
in vivo data outperformed
those trained and tested on
in vitro data by a large
margin. When evaluated
in vitro, the models trained
in vivo performed
considerably lower
(0.70 ± 0.01; p < 0.01).
Similarly, when assessed
in vivo, in vitro-taught
models had considerably
reduced accuracy
(0.61 ± 0.04; p < 0.05).

Holtkamp et al.,
(2021) [157]

Detection and
classification of
dental restorations in
panoramic
radiography

Cubic support vector
machine algorithm
with error-correcting
output codes

83 panoramic X-rays Accuracy of 93.6% Abdalla-Aslan et al.,
(2020) [158]

AI, artificial intelligence; ANN, artificial neural network; AUC, area under the curve; CBCT, cone-beam computed
tomography; CI, confidence interval; CNN, convolutional neural network; ROC, receiver operating characteristic curve.

AI also found its way in periodontal diagnoses and prognoses [159–161]. AI models
were used in order to detect the periodontal bone loss [159], periodontally compromised
teeth [162], and even periodontal condition examination [163]. Troiano et al. [164] analyzed
different AI models’ efficiency in assessing overall molar loss in patients after active peri-
odontal treatment, with favorable results. A synthesis of the main outcomes in periodontics
is presented in Table 6.
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Table 6. AI outcomes in periodontics.

Target AI Model Sample Results Study

To classify periodontitis by
immune response profile to
aggressive periodontitis or
chronic periodontitis class.

MLP ANN Data from
29 subjects 90–98% accuracy Papantonopoulos et al.,

(2014) [165]

Diagnosis of
periodontal diseases.

ANNs, decision trees,
and support
vector machine

Data from
150 patients

Performance was 98%. The
poorest correlation
between input and output
variables was found in
ANN, and its performance
was assessed to be 46%.

Ozden et al.,
(2015) [166]

To identify and predict
periodontally
compromised teeth.

CNN encoder + three
dense layers

1740 periapical
X-rays

AUC of 73.4–82.6
[95% CI, 60.9–91.1] in
predicting hopeless teeth.

J. H. Lee et al.,
(2018) [162]

To detect periodontal bone
loss (PBL) on panoramic
dental radiographs.

CNN + three
dense layers

85 panoramic
X-rays

Predictive accuracy was
determined to be 81%,
which is similar to
the examiners.

Krois et al., (2019) [159]

Pre-emptive detection and
diagnosis of periodontal
disease and gingivitis by
using intraoral images.

Faster R-CNN 134 photographs

Tooth detection accuracy of
100% to determine region
of interest and
77.12% accuracy to
detect inflammation.

Alalharith et al.,
(2020) [167]

Predicting
periodontitis stage. CNN 340 periapical

X-rays Accuracy of 68.3% Danks et al.,
(2021) [168]

Predicting
immunosuppression genes
in periodontitis.

DisGeNet, HisgAtlas Saliva Accuracy of 92.78% Ning et al., (2021) [169]

Clinical, immune, and
microbial profiling of
peri-implantitis patients
against health.

CNN FARDEEP Metabolites
Successfully used in
logistic regression of
plaque samples.

Wang et al., (2021) [170]

Research trialing different
methods of segmentation
to assess plaque on
photographs of
tooth surfaces
(including ‘dye labelling’).

CNN OCNet, Anet 2884 photographs
AUC prediction of 87.11%
for gingivitis and 80.11%
for calculus.

Li et al., (2021) [171]

AI, artificial intelligence; ANN, artificial neural network; AUC, area under the curve; CBCT, cone-beam computed
tomography; CI, confidence interval; CNN, convolutional neural network.

There is also great potential in AI for type recognition, success recognition, predic-
tion, design, and optimization in dental implantology, as demonstrated by Revilla-Leon
et al. [172]. AI systems can assist dentists and oral surgeons in planning the placement
of dental implants by analyzing CBCT (cone-beam computed tomography) scans and
identifying the optimal location, angulation, and size of implants, with a reduced risk of
errors and complications [173]. AI can assist in the precise placement of dental implants
during surgery by providing real-time guidance and feedback to clinicians (Table 7). AI
can analyze CBCT scans and intraoperative data to help clinicians navigate the surgical site
and ensure that the implants are placed in the optimal location and angulation [174].
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Table 7. AI outcomes in implantology.

Target AI Model Sample Results Study

Decision making in
edentulous maxillary
implant prostheses

ANN Implant cases

Within a learning rate of 0.005, the
network functioned admirably. The
network’s accuracy for the new instances
was 83.3%.

Sadighpour et al.,
(2014) [175]

To fabricate
implant-supported
monolithic
zirconia crowns

ANN

Quality of the
fabrication of the
individual (zirconia
abutment) and clinical
parameters in subjects

AI appears to be a dependable solution
for the restoration of single implants with
zirconia crowns cemented on customized
hybrid abutments using a fully
digital process.

Lerner et al.,
(2020) [176]

Implant planning CNN 75 CBCT images

There were statistically significant
differences in bone thickness
measurements between AI and manual
measurements in all locations of the
maxilla and mandible (p < 0.001). In
addition, the proportion of correct
recognition for canals was 72.2%, 66.4%
for sinuses/fossae, and 95.3% for missing
tooth areas.

Bayrakdar et al.,
(2021) [177]

Fractured dental
implant detection and
classification

CNN

Radiographic images of
251 intact and
194 fractured dental
implants

When compared to fine-tuned and
pre-trained VGGNet-19 and Google Net
Inception-v3 architectures, automated
DCNN architecture using periapical
images demonstrated the highest and
most reliable detection with an AUC of
0.984 [CI, 0.9–1.0] and classification
performance AUC of 0.869
[CI, 0.778–0.929].

D. W. Lee et al.,
(2021) [178]

AI, artificial intelligence; ANN, artificial neural network; AUC, area under the curve; CBCT, cone-beam computed
tomography; CI, confidence interval; CNN, convolutional neural network.

AI can help dental professionals to design and create more accurate and personalized
dental prosthetics for patients, by analyzing CBCT scans and digital impressions to create
virtual 3D models. AI algorithms can also help to optimize the shape, size, and color of the
restoration, ensuring a precise fit and a natural-looking appearance [179].

In orthodontics, AI systems have been applied in treatment planning and predic-
tion of treatment outcomes, such as simulating changes in the appearance of pre- and
post-treatment facial photographs [180] (Table 8). AI algorithms have been used in as-
sessing the impact of orthodontic treatment, skeletal patterns, and anatomical landmarks
in lateral cephalograms [181]. Other applications involved the diagnosis of the need for
orthodontic treatment, tooth extraction determination in orthodontic treatments, or skeletal
classification [182–189].
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Table 8. AI outcomes in orthodontics.

Target AI Model Sample Results Study

To decide if extractions are
necessary prior to
orthodontic treatment

Backpropagation ANN Data from 180 patients

Accuracy of 80% in
predicting whether
extraction or non-extraction
treatments seemed
appropriate for malocclusion
patients aged 11 to 15 years.

Xie et al.,
(2010) [183]

To decide if extractions are
necessary prior to
orthodontic treatment

ANN

In total,
12 cephalometric
variables and 6 indexes
from 156 patients

Accuracy of 92% Jung and Kim
(2016) [184]

Determination of growth
and development by
cervical vertebrae stages

ANN
Cephalometric
radiographs from
300 subjects

Mean accuracy of 77.2% Kök et al.,
(2019) [187]

Osteoarthritis of the
temporomandibular
joint diagnosis

Logistic regression,
random forest,
LightGBM, XGBoost

CBCT blood
serum saliva
clinical investigation

Accuracy of 82.3% Bianchi et al.,
(2020) [188]

Determination of growth
and development periods ANN

Cephalometric and
hand–wrist
radiographs in
419 subjects

Accuracy of 4.27% Kök et al.,
(2021) [189]

AI, artificial intelligence; ANN, artificial neural network; CBCT, cone-beam computed tomography.

In oral and maxillofacial pathology, AI has been mainly researched for tumor and cancer
detection based on radiographic, microscopic, and ultrasonographic images (Table 9). CNN
models proved their accuracy end efficiency in detecting oral cancers [190]. Hung et al. [191]
reviewed machine learning algorithms to predict oral cancer survival and factors affecting
it; the authors concluded that cancer survival prediction and medical decision making were
possible with the help of AI systems.

Table 9. AI outcomes in oral and maxillofacial surgery.

Target AI Model Sample Results Study

Lower-third-molar
treatment-planning
decisions

Neural
networks Data from 119 patients

Sensitivity of 0.78, which was
slightly lower than the oral
surgeon’s (0.88), but the
difference was not significant,
and a specificity of 0.98, which
was lower than the oral
surgeon’s (0.99) (p = NS).

Brickley and Shepherd
(1996) [192]

To predict
postoperative facial
swelling following
impacted mandibular
third molar extraction

ANN Data from 400 patients

This AI-based algorithm was
98% reliable in forecasting
facial swelling after extraction
of impacted third molar teeth.

Zhang et al.,
(2018) [193]

Ameloblastoma and
keratocystic
odontogenic tumor
diagnosis

CNN 400/100 panoramic
X-rays

The CNN had 81.8%
sensitivity, 83.3% specificity,
83.0% accuracy, and a
diagnostic time of 38 s,
respectively.

Poedjiastoeti and
Suebnukarn
(2018) [194]
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Table 9. Cont.

Target AI Model Sample Results Study

Evaluation of maxillary
sinusitis on
panoramic radiography

CNN

Panoramic X-rays from
400 maxillary
sinusitis patients/
400 healthy subjects

Accuracy of 87.5%, sensitivity
of 86.7%, specificity of 88.3%,
and area under the curve of
0.875 were obtained by
the model.

Murata et al.,
(2019) [195]

Periapical disease
detection ANN 2902 panoramic X-rays

The deep learning method
outperformed 14 of the
24 surgeons in the sample,
with an average accuracy
of 0.60 (0.04).

Endres et al.,
(2020) [196]

Automated detection of
cyst and tumors of
the jaw

CNN 1602 lesions on
panoramic X-rays

Comparable with
expert dentists. Yang et al., (2020) [197]

AI, artificial intelligence; ANN, artificial neural network; CNN, convolutional neural network; NS, non-significant.

Neural network models have been investigated for their use in endodontic diagnoses
and treatment planning (Table 10). Johari et al. (2017) used a probabilistic neural network
(PNN) to diagnose vertical root fractures [198]. The model was trained on 240 radiographs
(120 with intact dental roots and 120 with vertically fractured roots), as well as on cone-
beam computed tomographies (CBCTs). The maximum accuracy, sensitivity, and specificity
values in the three groups were 70.00, 97.78, and 67.7%, respectively, for radiographic
images. When using CBCT images, the values were 96.6, 93.3, and 100%, respectively.

Table 10. AI outcomes in endodontics.

Target AI Model Sample Results Study

Locating the minor
apical foramen ANN 50 teeth

To enhance the accuracy of
working length measurement
using radiography, artificial
neural networks can serve as a
second opinion to find the
apical foramen on radiographs.

Saghiri et al.,
(2012) [199]

Vertical root
fracture detection ANN

Digital X-rays:
50 sound and
150 vertical
root fractures

Adequate sensitivity,
specificity, and accuracy to be
used as a model for vertical
root fracture detection.

Kositbowornchai et al.,
(2013) [200]

Detecting vertical root
fracture on X-ray images of
endodontically treated and
intact teeth

PNN 240 radiographs
(120/120)

96.6% accuracy,
93.3% sensitivity,
100% specificity.

Johari et al., (2017) [198]

Detecting vertical
root fracture on
panoramic radiography

CNN 300 panoramic images Precision of 0.93 Fukuda et al.,
(2020) [201]

To detect
periapical pathosis CNN 153 CBCT images Accuracy of 92.8% Orhan et al.,

(2020) [202]
AI, artificial intelligence; ANN, artificial neural network; CBCT, cone-beam computed tomography; CI, confidence
interval; CNN, convolutional neural network; PNN, probabilistic neural network.

Therefore, various types of AI models are currently employed in the field of dentistry.
Neural networks, including CNNs and ANNs, were among the earliest AI algorithms
used. CNNs are primarily utilized for analyzing dental images. However, it is essential to
implement more robust, reproducible, and standardized processes in the future, to ensure
the usefulness, security, and widespread applicability of these models.
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8. AI Advantages in Medicine

Healthcare programs and procedures can benefit from the AI systems; the main
advantages of using AI in medicine are presented in Figure 3. AI algorithms can process
vast amounts of patient data and help physicians make more accurate and timely diagnoses.
Therefore, they can reduce the risk of a misdiagnosis and improve patient outcomes [203],
as well as reduce the initial process time up to 70% [204].
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The 21st century belongs to personalized medicine, in which AI can play an important
part. AI can help doctors tailor treatment plans to individual patients by analyzing patient
data, medical records, and other relevant information.

AI algorithms can help healthcare providers identify patients who are at risk of de-
veloping complications or adverse reactions to treatment, allowing for early intervention
and improved outcomes. Different AI models can automate many routine tasks, freeing up
physicians and other healthcare professionals to focus on more complex cases and improving
overall efficiency [205]. Continuous monitoring plays a crucial role in preventing potentially
dangerous situations, allowing for the fine-tuning of ongoing treatments. This proactive
approach enables a reduction of up to 40% in the total duration from the onset of illness to
complete recovery. Moreover, AI facilitates the planning of more effective treatments while
also accelerating the research and development of new medicines [206,207].

The ability to make early predictions holds tremendous potential in enhancing medical
care, enabling healthcare providers to deliver more effective treatments and interventions.
By leveraging intelligent phone-based prediction systems, patients gain the convenience
of assessing their health condition without the need for in-person visits to the hospital.
These systems use advanced algorithms and data analysis techniques to analyze symptoms,
medical history, and other relevant factors, providing individuals with valuable insights
into their current data [208].

Furthermore, AI can aid in identifying the root cause of various diseases. By analyzing
a wide range of data, including genetic information, lifestyle factors, and environmen-
tal influences, these systems can uncover factors contributing to the development and
progression of diseases [209].

Even though AI programs can be expensive, a global and perspective image of using
AI mechanisms can generate cost savings in the end. This can be explained by the improved
efficiency, a reduced risk of medical error, and a minimization of the need for expensive
procedures and tests [210].

Moreover, AI systems can improve resource allocation. They can help healthcare
providers identify areas where resources are needed most, such as high-risk patient popu-
lations or under-resourced communities [211].
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Another potential advantage involves the accelerated drug discovery in which AI can
be beneficial. AI algorithms are able to analyze large amounts of data to identify potential
drug candidates and speed up the drug discovery process [32].

9. AI Disadvantages and Limitations in Medicine

Although AI has the potential to revolutionize healthcare and improve patient out-
comes, there are also several disadvantages and limitations to its use in medicine (as
synthesized in Figure 4). One of the major concerns with AI in healthcare is the lack of
trust and transparency in the decision-making process [212]. Both healthcare providers
and patients may be hesitant to rely on AI algorithms for a critical decision without a
clear understanding of how the algorithm reached its conclusion. The level of trust that
individuals have in AI is influenced by a diverse array of human characteristics. Factors
such as education, user preferences, life experiences, and attitudes toward automation can
all play a role in shaping trust [213]. People with a higher level of education or those who
had positive experiences with AI technologies may be more inclined to trust AI systems.
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Additionally, trust in AI is also influenced by the characteristics and attributes of the
AI systems themselves. The degree of control that users have over the AI systems can
impact trust levels. Users are more likely to trust AI systems that allow them to understand
and influence the decision-making process. Transparent AI systems that provide clear
explanations of their actions and reasoning can also enhance trust. On the other hand,
highly complex AI systems that are difficult to comprehend may lower trust levels [214].

If users perceive AI systems to be prone to errors or potential harm, their trust may
also be diminished. Ensuring the security and privacy of personal data handled by AI
systems is essential for building trust.

Educating users about the capabilities and limitations of AI systems can favor trust
levels. Developing systems with user-centric designs that prioritize transparency, ex-
plainability, and control can also foster trust. Additionally, addressing the ethical and
regulatory concerns surrounding AI and implementing robust measures for data protection
can enhance trust in AI technologies.

Another important limitation of AI in medicine is the need for large amounts of high-
quality data to train AI algorithms [215]. The data must be carefully collected and curated
to ensure that it is representative and unbiased. However, there may be challenges in
collecting and sharing data across different healthcare systems due to issues of privacy,
data ownership, and regulatory compliance. In addition, AI systems can be biased towards
certain groups such as those with more available data [216]. This can lead to inaccuracies
in diagnoses and treatment plans for underrepresented populations. Moreover, AI models
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can misinterpret data, leading to incorrect diagnoses or treatment plans. This is especially
true when the data is noisy or incomplete, which is often the case in healthcare [5].

The development and implementation of AI systems can generate significant costs.
This aspect can limit the access to these technologies, in particular in low-resource settings.
The use of AI programs in healthcare has also raised several legal and ethical concerns, such
as liability, privacy, and the potential for AI to replace human healthcare providers [217].
Another concern involves the overreliance on AI programs and models, which can lead
to a reduction in critical thinking and clinical judgment among healthcare providers. This
negative aspect affects both the professionals and the patient outcomes.

Ensuring robust data protection laws is of paramount importance in the era of big
data, particularly in safeguarding the privacy of the patient. This situation raises concerns
regarding the adequacy of existing regulations. It is imperative to address the shortcomings
by encompassing health-related data that falls beyond the purview of current acts. Proactive
measures are necessary to ensure comprehensive protection for health data, regardless of
the entities involved in its collection, storage, and processing.

The sharing and regulation of disease-related data across multiple databases pose
significant challenges due to the presence of personal information in patient records. This
presents a complex landscape for software developers, who must navigate confidentiality
regulations that can impede the development of AI. Privacy, in particular, is an important
concern when dealing with health service data, as it represents the most private and
personal information about individuals. Respecting confidentiality becomes an essential
ethical principle in healthcare, intertwined with the autonomy, personal identity, and
overall well-being of the patient [218].

On a different note, AI systems lack the empathy and personal touch that human
healthcare providers can offer, which represent important aspects in patient care and
satisfaction [13]. The role of human care providers extends beyond technical expertise.
They engage in effective communication, and build trust with their patients. Instead of
viewing the potential of intelligent artificial systems as replacements for human healthcare
specialists, it is more appropriate to recognize the value of humans collaborating with these
systems. The potential lies in integrating AI systems into healthcare workflows as tools to
augment and enhance the capabilities of healthcare professionals.

Another three challenges of AI in healthcare include the black box problem, overfitting,
and regulatory approval. A black box problem occurs when deep learning algorithms
are unable to explain how their conclusions are reached. In the past, it was impossible to
determine what imaging features were used in a process, how these were analyzed, and
why the algorithm reached a particular conclusion [219]. Although the model could be
simplified into a straightforward mathematical relationship linking symptoms to diagnoses,
it is important to acknowledge that the underlying process may involve complex transfor-
mations that clinicians, and particularly patients, may struggle to comprehend. However,
it is worth considering that the need for a complete understanding of the “black box” may
not be necessary. In certain cases, positive results from randomized trials or other forms of
testing could be sufficient evidence to demonstrate the safety and effectiveness of AI. While
the internal workings of AI algorithms may remain complex and difficult to interpret, the
focus can shift towards evaluating the overall performance and outcomes achieved through
empirical validation.

Overfitting occurs when AI algorithms trained on one dataset have limited applicability
to other datasets [220]. In this case, the algorithm has learned the statistical variations in the
training data, rather than broad concepts required to solve a problem. The key determinant of
overfitting is the overtraining of an algorithm on a specific dataset and several factors influence
the likelihood of overfitting, including the size of the dataset, the extent of heterogeneity within
the dataset, and the distribution of the data within the dataset.

Regulatory approval will pose a challenge for new AI algorithms. Medical AI, such
as drugs and medical devices, require the FDA and regulation of other decisional orga-
nizations [221]. Due to the black box problem and overfitting, evaluators have difficulty
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understanding how algorithms work and whether their performance can be generalized to
other datasets. AI tools are classified by the FDA based on three criteria: the risk to patient
safety, predicate algorithms, and human input. In cases where algorithmic risks are high,
such as diagnostic tools where a misdiagnosis would have severe consequences and where
human input is minimal, premarket approval is conducted, which requires solid evidence
that the tool is safe and effective from both non-clinical and clinical studies [6].

In addition, AI in medicine is still in the early stages of development, and there are
limitations in terms of capabilities and accuracy of AI algorithms. While AI can analyze vast
amounts of data quickly and efficiently, it may not be able to match the clinical expertise
and intuition of human healthcare professionals. There may also be limitations in terms of
the ability of AI to adapt to new situations and unexpected events, which can be critical in
medical emergencies.

10. Discussion
10.1. Implications for Practice

The progress of science and technology has sparked a notable increase in the utilization
of AI and other ML techniques in modern medical practice [222]. AI integration into
healthcare has become an essential catalyst for advancements in medical diagnoses and
healthcare innovation in the era of 4.0. With the aid of medical AI technologies, medical
specialists now have access to algorithms and programs that enable them to analyze
patients’ signs and symptoms, facilitating a deeper understanding of symbolic illness
models and their interconnections.

Researchers in the field of AI have dedicated significant attention to diseases that
are the leading causes of global mortality. It is projected that by 2030, chronic diseases
will account for 80 percent of human lives lost worldwide, imposing substantial disease
burdens on a global scale [223]. Consequently, researchers are leveraging cutting-edge
technologies in the pursuit of early diagnoses and effective treatment approaches [224].

AI can assist a medical specialist by reducing the time spent on a diagnosis, allowing
them to allocate more time to the patient’s treatment. Additionally, AI enables medical
personnel to proactively identify potential medical errors by extracting precise data [205]
(Lee & Yoon, 2021).

The active involvement of patients in the medical care process plays a vital role in
ensuring a disease diagnosis and promoting an effective treatment. For instance, in the case
of anticoagulant therapy for stroke patients, an AI platform increased treatment adherence
by 50% [225].

10.2. Future Directions

There is a clear transformation taking place in the field of medicine as AI continues
to make its mark, modernizing various traditional medical components. The constant
advancement of AI in this domain ensures the ongoing development of algorithms that
can provide accurate and reliable diagnoses without liability concerns. To enhance the
quality standard of AI algorithms, input data need to be combined with pattern recognition
that offers valuable insights into the future. Predictive diagnostics will play a role in
authorizing insurance claims, shifting the focus towards illness prevention rather than
solely treatment. Patients can expect a same-day diagnosis, authorization, and treatment
facilitated by interconnected AI systems across clinics and insurers.

Furthermore, AI will contribute to the integration of treatment options across differ-
ent healthcare areas. As data-driven therapy continues to rise, the boundaries between
medical disciplines are gradually merging, leading to the integration of comprehensive
healthcare services.

As AI continues to advance, there is potential to enhance the efficiency of processes
throughout an extended public health continuum. This advancement could enable the
implementation of personalized prediction and prevention approaches that can be tailored
to individual needs and applied across different populations. Such an approach has the
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power to significantly expand the scope of public health, with the involvement of various
organizations beyond traditional public health institutions.

The widespread implementation of AI in healthcare necessitates increased data sharing.
However, certain stakeholders exhibit reluctance to share their data with other parties
due to concerns regarding the security of sensitive personal or commercial information.
Consequently, healthcare competition and antitrust laws must adapt to comprehend the
nuances of big data and AI.

The ideal level of trust required between clinicians and AI systems for making accurate
and reliable clinical decisions remains uncertain. Additionally, the connection between
optimal trust in AI systems and their design attributes is yet to be determined. Addressing
person-specific factors, such as significant variability associated with aleatory processes
and the evolving capabilities of AI, is crucial in analyzing the problem.

10.3. Contribution to Literature and Limitations

The purpose of this research is to disseminate information and enhance overall aware-
ness regarding the utilization of AI in the healthcare sector. The aim is to facilitate the
implementation of prospective decision systems and enable an early prognosis for patients.
Specifically, we sought to determine if there are broader issues associated with emerging
technologies beyond healthcare service transformation. The following are key contributions
of this review:

An overview and background of AI technology are provided to enhance the compre-
hension of cutting-edge concepts.

The context of AI in medical systems is explored, accompanied by a detailed discussion
on ethical, legal, and trust-related concerns. This analysis aims to bolster public confidence
in AI.

An examination of the reliability and utility of AI technology in healthcare applications
is conducted.

After assessing the challenges and opportunities arising from the extensive integration
of AI in healthcare, potential areas for future research are identified. These areas highlight
avenues for further exploration and investigation.

Nevertheless, it is important to acknowledge the limitations of our research. Primarily,
our study concentrated solely on a select few medical specialties within the vast realm of
AI applications. This decision was driven by the authors’ intention to remain within the
boundaries of their own field of expertise.

Additionally, it is worth noting that our research takes the form of a narrative review,
primarily due to the heterogenous nature of the included studies. In order to provide
quantifiable data, further investigations such as systematic reviews and meta-analyses are
required to yield quantifiable data and enhance the level of evidence in this particular
subject matter.

11. Conclusions

In this review, we have conducted an analysis of the applications and impacts of
artificial intelligence and machine learning in healthcare infrastructure. We have explored
the diverse uses of AI in the medical sector, including areas such as diagnoses, prognosis
research, and development. The review highlights the significant contributions that AI
systems have made in healthcare by enabling machines to emulate human-like behavior
and exhibit intelligent capabilities.

This paper explores the benefits but also the challenges associated with integrating AI
on a large scale in healthcare, and examines the ethical, legal, trust-building, and future
implications of AI in the healthcare domain. Limitations of AI systems include the need for
high-quality data, the potential for algorithmic bias, ethical concerns, and limitations in
the capabilities and accuracy of AI algorithms. The insights presented in this paper aim
to benefit the research community in developing AI systems tailored to healthcare, taking
into account all the crucial aspects.
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However, it is important to recognize the fact that our research focused solely on a
limited number of medical specialties, a choice made to stay within the area of expertise of
the authors. Furthermore, our research adopts a narrative format; additional investigations
such as systematic reviews and meta-analyses are needed.

It is important to understand that we are still in the early stages of regulating the
responsible design, development, and utilization of AI for healthcare, as the field is evolv-
ing rapidly. Nevertheless, it is our responsibility to conscientiously consider the ethical
implications of implementing AI and to provide appropriate responses, even as the ethical
landscape continues to evolve. As we continue to uncover their capabilities, AI systems
have the potential to reshape healthcare delivery and improve patient outcomes.
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Abbreviations

3CLpro 3C-like protease
AD Atopic dermatitis
AF Atrial fibrillation
AI Artificial intelligence
ANN Artificial neural network
AUC Area under the curve
CASNET Causal associational network
CBCT Cone-beam computed tomography
ChatGBT Chat generative pre-trained transformer

CHIEF
Congestive heart failure treatment performance
measure information extraction framework

CI Confidence interval
CNN Convolutional neural network
COVID-19 Coronavirus disease 2019
CRSwNP Chronic rhinosinusitis with nasal polyps
CT Computed tomography
CVD Cardiovascular disease
DL Deep learning
DNN Deep neural network
ECG Electrocardiogram
eCRSwNP Eosinophilic chronic rhinosinusitis with nasal polyps
EF Ejection fraction
EMR Electronic medical record
FFR Fractional flow reserve
GCG Gyrocardiography
HF Heart failure
HGAT Heterogeneous graph attention
IVF In vitro fertilization
LightGBM Light gradient boosting machine
LS Longitudinal strain
LV Left ventricular
ML Machine learning
MLP Multilayer perceptron
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MMTOP Multiple models for missing values at time of prediction
MRI Magnetic resonance imaging
NLP Natural language processing
OCNet Optimal channel networks
PCA Principal component analysis
PCOS Polycystic ovary syndrome
PNN Probabilistic neural network
PPG Photoplethysmography
PPT Postprandial targeting
RBD Receptor-binding domain
R-CNN Region-based convolutional neural network
RNA Ribonucleic acid
ROC Receiver operating characteristic
RV Right ventricular
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
SCG Seismocardiography
SLE Systemic lupus erythematosus
SNN Simulated neural network
SVM Support vector machine
TTE Transthoracic echocardiography
VF Ventricular fibrillation
VT Ventricular tachycardia
XGBoost Extreme gradient boosting
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