
Citation: Shahzad, M.; Tahir, M.A.;

Alhussein, M.; Mobin, A.; Shams

Malick, R.A.; Anwar, M.S.

NeuPD—A Neural Network-Based

Approach to Predict Antineoplastic

Drug Response. Diagnostics 2023, 13,

2043. https://doi.org/10.3390/

diagnostics13122043

Academic Editors: Francesco Sessa,

Wan Azani Mustafa and Hiam

Alquran

Received: 6 March 2023

Revised: 1 June 2023

Accepted: 5 June 2023

Published: 13 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

NeuPD—A Neural Network-Based Approach to Predict
Antineoplastic Drug Response
Muhammad Shahzad 1,† , Muhammad Atif Tahir 1,† , Musaed Alhussein 2, Ansharah Mobin 1,†,
Rauf Ahmed Shams Malick 1 and Muhammad Shahid Anwar 3,*

1 FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST),
Karachi 75030, Pakistan; mshahzad@nu.edu.pk (M.S.); atif.tahir@nu.edu.pk (M.A.T.);
k190958@nu.edu.pk (A.M.); rauf.malick@nu.edu.pk (R.A.S.M.)

2 Department of Computer Engineering, College of Computer and Information Sciences, King Saud University,
P.O. Box 51178, Riyadh 11543, Saudi Arabia; musaed@ksu.edu.sa

3 Department of AI and Software, Gachon University, Seongnam-si 13120, Republic of Korea
* Correspondence: shahidanwar786@gachon.ac.kr
† These authors contributed equally to this work.

Abstract: With the beginning of the high-throughput screening, in silico-based drug response analysis
has opened lots of research avenues in the field of personalized medicine. For a decade, many different
predicting techniques have been recommended for the antineoplastic (anti-cancer) drug response,
but still, there is a need for improvements in drug sensitivity prediction. The intent of this research
study is to propose a framework, namely NeuPD, to validate the potential anti-cancer drugs against
a panel of cancer cell lines in publicly available datasets. The datasets used in this work are Genomics
of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE). As not all drugs
are effective on cancer cell lines, we have worked on 10 essential drugs from the GDSC dataset
that have achieved the best modeling results in previous studies. We also extracted 1610 essential
oncogene expressions from 983 cell lines from the same dataset. Whereas, from the CCLE dataset,
16,383 gene expressions from 1037 cell lines and 24 drugs have been used in our experiments. For
dimensionality reduction, Pearson correlation is applied to best fit the model. We integrate the
genomic features of cell lines and drugs’ fingerprints to fit the neural network model. For evaluation
of the proposed NeuPD framework, we have used repeated K-fold cross-validation with 5 times
repeats where K = 10 to demonstrate the performance in terms of root mean square error (RMSE)
and coefficient determination (R2). The results obtained on the GDSC dataset that were measured
using these cost functions show that our proposed NeuPD framework has outperformed existing
approaches with an RMSE of 0.490 and R2 of 0.929.

Keywords: NeuPD; cell lines; gene expression; machine learning; neural networks; drug response
prediction; XGBoost

1. Introduction

The field of precision medicine in cancer has attracted serious attention from re-
searchers at different stages. The identification of underlying genomic features that lead
to mutations has become an effective research area. The identification of specific muta-
tions, methylation, copy number variants (CNVs), and gene expression are considered
important contributors in cancer studies. The specific changes in particular genes may
result in specific resistance to generally available drugs. On the other hand, as complexities
develop at the individual level, they demand specific interventions for the particular target
in the area of precision medicine. The identification of specific genes and the association
of biomarkers with particular diseases require evidence-based studies to report the drug
response accordingly. In the presence of hundreds of drugs, particularly for cancer, it is
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important to evaluate the specific response against the specific biomarkers and expres-
sion level of particular tumors. Moreover, to identify the most appropriate drugs, the
method is being applied at the individual level for better results. This paper presents
drug response prediction, which is a crucial topic in the field of cancer precision medicine.
Precision medicine refers to the treatment that is best suited to the individual based on
their multi-omics characteristics [1]. A drug might have a positive or negative effect on a
patient’s body due to differences in individual biological characteristics. As conducting
drug trials on each individual for large-scale research is expensive, time consuming, and
challenging [2], we have worked on cell lines of tumor samples which are taken from the
GDSC [3] and CCLE [4] datasets. These datasets contain multi-omics data such as gene
expression, mutation, methylation, copy number variants, and so on for different cancer
cell lines.

The deep learning-based techniques in the drug sensitivity prediction problem have
been in use for a couple of years. Ref. [5] performed a systematic review of the literature
covering 105 research papers that focused on using machine learning and deep learning
techniques to predict the response of anti-cancer drugs. The review described multiple
methods designed to enhance and categorize the response of cancer types to drug treatment.
Due to the remarkable results of the deep learning models, we have also adopted the same
technique. Our novelty in the proposed work is choosing the top 10 drugs’ chemical
features with gene expression features to train our proposed model. These drugs have top
modeling performance according to previous studies. This makes our proposed model
simple and more robust in the drug sensitivity prediction problem.

Recently, the DREAM challenge has been opened, which attracts researchers and data
scientists to use these datasets to solve the drug response prediction problem [6]. Many
predictive models have been proposed to contribute to this problem, such as [7–18]. Some
of the work includes anti-cancer drug repositioning [19–21]. Most of these works focus on
the prediction of drug sensitivity to a panel of cancer cell lines using gene expression data.
The drug sensitivity is measured in terms of the half-maximal inhibitory concentrations
IC50 value in (µM) units. In addition, the lower IC50 value means that the drug is more
sensitive or more effective against the disease, whereas a higher IC50 value means drug
resistance or that it is not effective.

Many predictive models have been used to solve the drug sensitivity prediction
problem. All of these computation models use multiple omics datasets to predict drug
sensitivity. Recently, ref. [22] proposed a set of guidelines for the proper use of machine
learning models with gene expression data. Moreover, the emergence of these computa-
tional methods has had a significant influence on the identification of new applications for
existing drugs [23]. Furthermore, these computational approaches have greatly facilitated
a more systematic and rational approach to drug development processes, resulting in
reduced timeframes for bringing drugs to market [24]. In summary, through the utilization
of computational models and the integration of various data sources, these methodologies
facilitate expedited and more effective drug screening, personalized treatment decision
making, drug repurposing, prediction of drug toxicity, and identification of drug resistance.
This advancement holds immense potential for advancing the efficiency and efficacy of
healthcare interventions.

The authors in [25] proposed a DNN-PNN fresh parallel DL method to predict drug
sensitivity by combining the strengths of two deep learning models. The first uses a DNN
with a continuous gene expression profile as input, while the second uses a deep neural
network based on a product and its discrete drug fingerprint traits. With higher prediction
accuracy, faster convergence, and greater stability, the DNN-PNN outperforms both con-
ventional and cutting-edge machine learning models, according to extensive experiments.

In [26], the authors used random forest to predict drug activity for cell lines based on
chemical and genomic information. In contrast, Chiu et al. [27] recommended a DeepDR
model that predicted drug response based on the cancer cell lines. This model comprises
deep neural networks and a dataset taken from “TCGA: The Cancer Genome Atlas”. The
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model predicted values for 265 given drugs and was tested on 622 cell lines. The mean
square error was 1.96 on the testing sample set. Another computational approach named
ProGENI [28] detects genes that exhibit the strongest correlation with variations in drug
response among diverse individuals. This method relies on gene expression data and
distinguishes itself from existing approaches by additionally leveraging prior knowledge
of protein–protein and genetic interactions. Random walk techniques are employed within
ProGENI to incorporate this prior knowledge effectively. Another study was conducted
using 678 drugs on only three cell lines. On both pathway and genetic levels, DNN
performs better than the other model of SVM [29]. The limitation was that they used only
three cell lines.

Deep learning is widely used to interpret the concepts based on deep layers to extract
the representations of the data: see Refs. [30–33]. A deep learning model named DeepPre-
dictor is proposed in [34] that predicts drug sensitivity using CCLE data. The results claim
that the DeepPredictor performed better, and the coefficient of determination gave a value
ranging from 0.68 to 0.75.

Another model named DeepDSC for drug sensitivity in cancer was proposed based
on deep learning [35]. Their study obtained a dataset from GDSC and CCLE. The recom-
mended model consisted of two stages. In the first stage, an autoencoder is used to extract
the cell line features from gene expression data. In the second and final stage, the features
will be presented as input to the deep neural network for sensitivity prediction. The vali-
dation was performed like [34] on the given datasets. The performance was measured by
the coefficient of determination and the root mean square error (RMSE). The value of the
coefficient of determination shows that it performed better than previous ones with R2 0.78
for the GDSC and CCLE datasets; as we discussed in [34], the maximum value achieved
was 0.75, indicating that DeepDSC might help cancer therapy and predict drug responses
in the future.

An approach was taken for the purpose of classifying drug responses using regression.
The proposed model AutoBorutaRF [36] was built to predict drug response. For the feature
selection, the Boruta algorithm was used to improve the prediction. Dr.VAE [37] was a
generative model that concurrently trains drug-induced changes on transcriptomic data
and on drug response. As the term implies, the technique employs a VAE to generate latent
representations of pre-treatment gene expression and match them with post-treatment
gene expression in terms of prediction. In order to forecast drug reactions, both latent
models are then put into a logistic regression classifier. Dr. VAE outperformed many
traditional classification methods in terms of cross-validated AUROC ratings. As compared
to our proposed work, Dr. VAE used drug sensitivity data as a classification problem, i.e.,
responders or non-responders, whereas we treated drug response as a regression problem
because the discretizing sensitivity score loses some information.

MOLI [38] is another deep learning model that encodes mutation, copy number
variants (CNVs), and gene expression data separately and concatenates them to represent
cancer cell lines for drug classification. MOLI was trained on the GDSC dataset and tested
on patient-derived xenografts. They have achieved up to a 0.75 AUC score on TCGA
Cisplatin data with gene expression data. Whereas in our proposed method, we have
reached a 0.490 IC50 value on the GDSC dataset for the top ten selected drugs, which is
quite higher than many recent models.

A bit of a different approach was described in [39], which follows the deep learning
concept along with a drug synergy named DeepSynergy. DeepSynergy is the mapping of
input vectors to a single output that is known as the synergy score and predicts the scores
of drugs for cancer cell lines. This proposed new model was compared with support vector
machines, random forests, and boosting machines, and it proved to show better results
with an increase of 7.2%.

For predicting drug response, a hybrid graph convolutional network model called
DeepCDR was created [40]. This proposed method outperformed different techniques of
classification and regression, such as ridge regression and random forest. The DeepDCDR
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achieved a 1.058 RMSE. A study of cultured cell line sensitivity and drug profiles was
conducted to predict the inhibition patterns of the drugs along with the cell line profiles [10].

Although these methods can work reasonably well on CCLE and GDSC datasets with
full genomic features set along with a maximum number of drugs, the downside of these
methods is that they were limited to a casual integration of genomic and drug features. This
drawback can lead to increased computational complexity and potentially make it difficult
for readers to discern the key contributing factors in drug sensitivity prediction. Hence,
there is a pressing need for a solution that enables a more comprehensive understanding
of the integration between targeted drugs and genomic features while also facilitating the
evaluation of biological significance.

To address this issue and take inspiration from the swift advancement of deep learning
technology, this paper introduces a novel deep learning framework, NeuPD, designed for
the prediction of drug sensitivity on cancer cell line data taken from GDSC and CCLE.
Our approach involves the fusion of genomic profiles of cell lines and chemical profiles of
compounds, forming a comprehensive architecture for predicting drug sensitivity.

In this research work, the data are extracted from GDSC, which is then preprocessed
by applying a Mix–Max Scaler for normalization and then Pearson’s correlation for di-
mensionality reduction. Standard machine learning approaches, which are elastic net,
XGBoost, and neural networks, are applied to the preprocessed data and then compared,
giving rise to the proposed model, which is a deep neural network named NeuPD to assist
medical practitioners and researchers in cancer therapeutics by working on essential cancer
genes and the top 10 anti-cancer drugs. Different evaluation measures are used to verify
the results.

To be precise, the novelty of our proposed model can be summarized in the
following directions:

• Our contribution to modeling the drug sensitivity prediction problem is the selection
of the top 10 drugs of interest. These drugs have been deduced from previous studies
based on achieving top modeling performance. We took these drugs’ chemical fea-
tures to integrate them with genomic features and trained our proposed deep neural
network. The remarkable performance of our model shows that deep learning can
enhance the work on drug response prediction. Our proposed approach has achieved
outstanding results when compared with previous models.

• Our model has been applied to GDSC and CCLE datasets and was tested using RMSE,
MAE, and R2 scores. By comparing the results, the lowest RMSE score shows the
achievable part of our proposed model.

The structure of the rest of the paper is as follows: Section 2 presents the Material and
Methods, Section 3 discusses the experimental environment, and Section 4 presents the
results and discussion. Finally, the conclusion and future work are presented in Section 5.

2. Materials and Methods
2.1. Materials

To predict the drug sensitivity on unseen cancer cell lines, a deep learning neural
network named NeuPD is proposed. As an input, gene expression data for cell lines, drug
response data, and drug compound fingerprints were integrated into the model.

The drug response data were collected from the public repository of Genomics of Drug
Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/, accessed on 5 March 2023)
and Cancer Cell Line Encyclopedia (CCLE), while data related to genes are collected from
COSMIC Cancer Gene Census (https://cancer.sanger.ac.uk/cosmic/, accessed on 5 March
2023, [41]).

2.1.1. GDSC

This is the largest publicly available repository for drug response in cell lines. The
baseline dataset contains 17,737 genes from 1018 human cell lines, and the drug response

https://www.cancerrxgene.org/
https://cancer.sanger.ac.uk/cosmic/
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data contain IC50 measurements of 198 anti-cancer drugs across more than 500 human
cell lines for each of them, respectively. The IC50 was converted to Loge-IC50, and smaller
values of Loge-IC50 mean a better response: that is, more cancer cells are dying. The
compound structures for 10 drugs in 2D structures were collected from PubChem (https:
//pubchem.ncbi.nlm.nih.gov/, accessed on 5 March 2023, [42]) in Structure-Data File (SDF)
which contains a compound structure-data file format that can link data with one or more
chemical structures. It is commonly referred to as SDF, .sdf, or SD file. The structures are
illustrated in Figure 1.

Figure 1. GDSC drugs 2D structures (a) Afatinib, (b) Alectinib, (c) Bleomycin, (d) Dabrafenib,
(e) GNF-2, (f) Linifanib, (g) Methotrexate, (h) Quizartinib, (i) SN-38, and (j) Trametinib.

The collected structures were processed for hashed count Morgan fingerprints of
256 bits, making the obtained drug feature vectors length of 256. The final matrix consists
of drug responses, gene expressions, and drug features which are then further processed
for the training of the model. The list of all selected drugs along with their PubChem
Compound ID number is given in Table 1.

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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Table 1. GDSC drug names and PubChem ID.

Drug Name PubChem CID

Afatinib 10184653
Alectinib 49806720

Bleomycin (50 uM) 5460769
Dabrafenib 44462760

GNF-2 5311510
Linifanib 11485656

Methotrexate 126941
Quizartinib 24889392

SN-38 104842
Trametinib 11707110

2.1.2. CCLE

This contains 16,383 gene identifiers of 1037 cell lines that were downloaded from
the CCLE website. The drug responses were given in values of IC50. The 2D compound
structures for 24 drugs were collected in the same way as GDSC, making the feature vector
of size 256. The structures are illustrated in Figure 2.

Figure 2. CCLE drugs 2D structures: (a) AEW541, (b) Nilotinib, (c) 17-AAG, (d) PHA-665752,
(e) Lapatinib, (f) Nutlin-3, (g) AZD0530, (h) PF2341066, (i) L-685458, (j) ZD-6474, (k) Panobino-
stat, (l) Sorafenib, (m) Irinotecan, (n) Topotecan, (o) LBW242, (p) PD-0325901, (q) PD-0332991,
(r) Paclitaxel, (s) AZD6244, (t) PLX4720, (u) RAF265, (v) TAE684, (w) TKI258, (x) Erlotinib.

The list of all selected drugs along with their PubChem Compound ID number is
given in Table 2.
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Table 2. CCLE drug names and PubChem ID.

Drug Name PubChem ID Drug Name PubChem ID

AEW541 11476171 Irinotecan 60838
Nilotinib 644241 Topotecan 60700
17-AAG 6505803 LBW242 11503417

PHA-665752 10461815 PD-0325901 9826528
Lapatinib 208908 PD-0332991 5330286
Nutlin-3 216345 Paclitaxel 36314
AZD0530 10302451 AZD6244 10127622
PF2341066 11626560 PLX4720 24180719
L-685458 5479543 RAF265 11656518
ZD-6474 3081361 TAE684 16038120

Panobinostat 6918837 TKI258 135611162
Sorafenib 216239 Erlotinib 176870

2.2. Datasets Preprocessing

Before the model training, we performed normalization to scale the numerical data
without distorting its actual shape. For this step, we have used the Min–Max Scaling
method using Equation (1) in which the data are scaled to a range of 0–1. Each value at the
features is processed in a way that the minimum value will be transformed into the value
of 0, and thus, the maximum value will scale to the value of 1.

xscaledvalue =
x−min(x)

max(x)−min(x)
(1)

Equation (1) is the mathematical formula for the Min–Max Scaler where x is a single
feature of the data.

After normalization, we have reduced the size, i.e., 10 drugs instead of 198 drugs from
the GDSC dataset. We selected these drugs based on the top-ranked cancer drugs with the
process defined in [43]. The selection of these drugs followed two criteria: Firstly, they were
identified as the most suitable candidates for modeling based on all the feature selection
methods employed. Secondly, they exhibited a noteworthy superiority in modeling when
compared to the other type of feature selection methods, either genome-wide or biologically
driven. Among the selected drugs, five demonstrated superior modeling performance
when utilizing genome-wide features, whereas the remaining five exhibited better modeling
outcomes with biologically driven features. This gives us the best top 10 modeled drugs.
From the GDSC dataset, 851 cell lines against 10 selected drugs as response data have been
extracted. From the CCLE dataset, we took 24 drug responses against 491 cell lines.

The total samples with all available drugs X cell − lines in the final data matrices are
given in Table 3.

Table 3. Preprocessed Data.

Dataset Drugs Cell Lines Data Points

GDSC 10 851 8510
CCLE 24 491 11,784

2.3. Cell Line Features Selection

For both CCLE and GDSC datasets, cell line features are expressed as a vector of gene
expression values which are quite larger than the drug Morgan feature vector of 256 bits.
So, to avoid the dominance of gene expression features over the drug features during
model training, we have reduced the gene expression features by using dimensionality
reduction. To achieve this objective, we used the Pearson correlation coefficient (PCC)
method to obtain the optimized gene expression features up to 500 feature vectors. To find
the correlation between all pairs of variables, a Pearson correlation matrix was calculated.
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This will give us a table of correlation coefficients, one for each pair of variables. Its range
lies between −1 and 1, where −1 means a negative correlation, 0 means no correlation,
and +1 means a positive correlation. PCC measures the linear relationship between two
variables. The focus will be on variables having a high correlation coefficient. Equation (2)
is the mathematical formula for calculating the Pearson correlation coefficient.

P =
∑N

n=1(xi − x′)(yi − y′)√
∑N

n=1(xi − x′)2
√

∑N
n=1(yi − y′)2

(2)

Let us assume that there are N samples, i.e., cancer cell lines in dataset S, where P is
the correlation coefficient, xi here represents the gene expression values as x-variables in
the sample, x’ is the mean of the gene expression values of the x-variables, yi represents the
drug sensitivity (IC50) values of the y-variables to the panel of cancer cell lines samples,
and y’ is the mean of the IC50 values of the y-variables. If P > 0, then it implies a positive
relation, P < 0 implies that it is a negative correlation, while P = 0 represents that there is
no correlation between the two variables.

2.4. NeuPD

With the increase of more neural units and layers, a feedforward deep neural network
(DNN) would be able to produce a more universal approximator [44]. In many scientific
areas, the powerful modeling technique has been extensively used [20,21,45,46]. These
neural network-based modeling capabilities have been applied in drug sensitivity pre-
diction problems for a couple of years. In spite of high-dimensional pharmacogenomics
profile data, DNN has achieved remarkable results both in regression and classification
tasks. In the regression task, DNN is used to predict drug sensitivity value in terms of IC50
value. While in the classification task, drug sensitivity values are discretized. However,
ref. [14] has pointed out that the drug sensitivity prediction as a classification task loses
more information than that of the regression task. Moreover, representing drug sensitivity
data as a regression problem has also outperformed the classification problem. Based on
these facts, we have used IC50 values as regression values to train our proposed deep
learning model.

Figure 3 gives the overall workflow diagram of our proposed model, which is a
NeuPD. The work is undertaken on two different datasets, i.e., GDSC and CCLE. These
datasets contain different numbers of cell lines with gene expression values as cell line
feature vectors. There were around 20,000 genes in both datasets, from which we further
extracted 1610 essential oncogenes expressions based on CRISPR experiment [47]. The
gene expressions were first normalized using the method defined in Equation (1), and then,
the Pearson correlation method was applied to further reduce the cell lines features up to
500 features vector. The reason for this reduction is to make gene expression features close
to the drug’s Morgan fingerprint features in terms of vector length. Moreover, to build final
input matrices, drug features with known drug responses to a panel of cancer cell lines
were integrated.

2.5. Experimental Environment

All methods are implemented using Python3 Scikit-learn, Keras, and TensorFlow
libraries. For the process of forming hash values of Morgan fingerprints, an environment of
RDKit is built for importing the required modules. The code is created in Python 3.9 on
a 4.9 GHz Intel Core i7 CPU with 16 GB RAM equipped with high-performance NVIDIA
GeForce MX130 GPU, using Google Colab and a Jupyter Notebook.

The architecture is then implemented using Keras embedded with four layers exclud-
ing the input and output layer, each having a weight less than the previous layer. The
input dimension assigned in an input layer is 756, which comprises 500 dimensions for the
reduced gene expressions data and 256 for the Morgan fingerprints. The first layer con-
tains 1000 neural units, the second layer contains 800 neural units, the third layer contains
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500 neural units, and the fourth contains 100 neural units. The activation function used for
all hidden layers is ReLU (Rectified Linear Activation Function).

In the output layer, a weight of 1 neural unit is applied with no activation function, so
the output range will not be restricted to a specific range. The loss function applied is of
root mean square error to measure the magnitude of error in the applied model.

To overcome the issue of overfitting, early stopping is used with patience of 30, and a
dropout rate of 0.1 is set after each layer. By the term dropout, it means to randomly select
some neurons to omit during training.

Evaluation Measures

There are many different metrics used for measuring the performance of the model
and measuring the magnitude of the error. The functions which are used to measure the
error are known as loss functions. Some of the metrics used in this thesis work are RMSE,
MAE, coefficient of determination (R2), and MSE.

• RMSE Among all these metrics, RMSE is the loss function that is used to measure the
error of the model as it is more suitable and accurate to measure the drug response
model. RMSE is calculated by taking the difference between the predicted and target
variable and then taking the root of the value, giving only positive values. The formula
of RMSE is given in (3) where yi is the target variable that is drug response and yi

’ is
the predicted variable that is the features and N is the total size of the test data. (yi−yi

’)
is the target and predicted drug sensitivity data.√

∑(yi − y′i)
2

N
(3)

• MSE: It is the measure of the average squared difference between the predicted values
and the actual value.

• MAE: It is the mean absolute error that measures the magnitude of errors between the
predicted and actual value of the dataset.

• R2: It is the coefficient of determination and is used to measure the predictive per-
formance in our model which is NeuPD. It explains how much divergence of one
variable can occur by its relationship to the other variable.

To be specific with the training details, the Keras framework is used based on the
backend of TensorFlow and validated with 10-fold cross-validation by taking one fold for
validation and remaining folds for training that were repeated ten times, as illustrated in
Figure 4.

We applied 10-fold cross-validation. The ReLU activation function is used in the full
connection layer for the network structure in the feature extraction stage. The optimizer
used is Adamax.

2.6. Summarized Model

A flowchart of the NeuPD is illustrated in Figure 3.
The process starts by gathering the data from different public repositories of GDSC

and CCLE. The data are then normalized using Min–Max Scaler. For reducing the dimen-
sion, Pearson correlation is applied to reduce it to a dimension of 500. The datasets are
preprocessed by extracting essential genes, the top 10 best-modeled drugs, and extracting
the 2D structure of drugs from the PubChem repository. The 2D structures are converted
into Morgan fingerprints to identify the drug features. The final matrix consists of chemical
features that are the Morgan fingerprints and genomic features that are the gene expression.
The drug features are of 256 bits, and the gene expression dimension as mentioned above is
500, making the final matrix of size 756. The final matrix consists of gene expressions and
drug features versus the target variable, which is the drug response. The model is fitted by
tuning different parameters, which are already defined. The fitted model is trained in the
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proposed NeuPD, and predictions are made by adding new data and evaluating the results
using different metrics or loss functions of RMSE, MSE, MAE, and R2.

Figure 3. Diagram of the NeuPD model. (a) The process commences with data acquisition from the
CCLE and GDSC datasets, which is followed by a selection of oncogenes’ expression data and then
data normalization followed by PCC-based gene feature selection. (b) Extracting 2D drug structures
from PubChem datasets, converting them into Morgan fingerprints as drug features and finally
merging them with gene expression data to produce the final response data. (c) Both genomic and
drug features are concatenated together as the input to train the neural network model. The model
performance is evaluated in terms of RMSE and R2.
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Figure 4. 10-fold cross-validation.

3. Results

To achieve less biased results in performance analysis, we used 10-fold cross-validation
in performance analysis of the NeuPD trained on the datasets of GDSC and CCLE. An
average is taken for all loss functions to achieve the final results accordingly. The mean
of the values is taken across the genes, novel cell lines, and drug responses. Different
ML-based techniques are used to validate and compare the results obtained on GDSC and
CCLE datasets.

3.1. Baseline Methods

Apart from the proposed method, two competing machine learning techniques are
also used to compare the results, which are outlined below.

1. Elastic Net
It is a regularized linear regression model having L1 and L2 penalty functions. It is a
further extension to the regular linear regression by adding regularization penalties
during the training phase to the loss function. It has two hyperparameters: alpha and
lambda. Alpha can be set by declaring l1_ratio and lambda by alpha. A default value
of 0.5 is assigned for “l1_ratio” and for “alpha”, a full weighting is used of 1.0, as
there were no major changes in the results when different values were tried. Previous
studies used the elastic net as a technique to predict drug response [48,49]. This elastic
net model was implemented using the sklearn library applied to the processed dataset
by using a repeated 10-fold cross-validation five times. To evaluate the results, loss
functions were used of RMSE, MSE, MAE, and R2.

2. XGBoost
It is a gradient boosting library that is implemented under the framework of gradient
boosting. It is beneficial as it provides a parallel way to solve data-related issues in
a fast and precise way. This model supports Scikit-learn advanced features along
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with regularization. In a SciPy environment, it can be easily installed using pip. The
command to install xgboost is: sudo pip install xgboost.
XGBoost gives a wrapper class, which means that the models can be treated as classi-
fiers or regressors in the Scikit framework. The models for the classifier and regressor
are “XGBClassifier” and “XGBRegressor”. To make predictions, a model.predict()
function is used, which is a Scikit-Learn built-in function. After fitting the model,
evaluation is performed using different metrics.

3.2. Comparison on CCLE Dataset

As already discussed, the CCLE dataset consists of 16,383 gene expressions for
1037 cell lines and 24 drugs. The results achieved from cross-validation were compared
with the state-of-the-art study [50] in which the CCLE dataset was used, giving an RMSE
of 5.378 for the elastic net, while the RMSE achieved in our research is 3.202 for elastic
net and 2.074 for XGBoost. NeuPD showed a much lower value of RMSE than the elastic
net and XGBoost, which is 1.784. The methods comparison based on root mean square
error (RMSE), mean absolute error (MAE), mean square error (MSE), and coefficient of
determination (R2) is given in Table 4 below.

Table 4. Results on CCLE Dataset.

Method RMSE MSE MAE R2

Elastic Net ±3.202 ±10.25 ±2.972 0.281
XGBoost ±2.074 ±4.308 ±1.491 0.317
NeuPD ±1.784 ±3.192 ±1.568 0.543

3.3. Comparison on GDSC Dataset

As already described above, these data contain 983 cell lines related to 1610 genes
for 10 drugs. The final matrix thus is made up of drug responses, gene expressions, and
Morgan fingerprint for 10 drugs that are 256 bits.

The results achieved outperformed the results by having an RMSE of 0.490, while
the coefficient of determination R2 is 0.929. The closer the R2 is to 1, the better it fits the
value. The RMSE achieved is 1.784 for CCLE. The lesser the value of RMSE, the better the
model is because it means that the error value is less, and in precision medicine, we need
an approach that gives less error as compared to other approaches.

The methods comparison based on RMSE, MAE, coefficient of determination (R2), and
MSE is given in Table 5.

Table 5. Results on GDSC Dataset.

Method RMSE MSE MAE R2

Elastic Net ±2.419 ±5.851 ±2.020 0.532
XGBoost ±1.337 ± 1.794 ±0.953 0.609
NeuPD ±0.490 ±0.246 ±0.392 0.929

By comparing the results with two other approaches performed—elastic net and
XGBoost—it can be seen that the elastic net again performs worse than XGBoost and
NeuPD by having the RMSE value of 2.419 and R2 of 0.532, which means it did not fit the
model well. Meanwhile, XGBoost performed much better than the elastic net, having an
RMSE of 1.337 but for the R2, not much improvement was seen, as the value differs by
only 0.1. The proposed model, again, outperformed the other baseline methods used in
this research.

The results of both datasets are given in Figure 5.
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Figure 5. RMSE comparison for GDSC and CCLE dataset.

3.4. Comparisons to Previous Studies

The RMSE achieved by applying NeuPD is 0.490 and the R2 achieved is 0.929. By
looking at previous studies, the comparison can be made for the results achieved with
other existing relevant models. All these existing studies used 10-fold cross-validation to
calculate their RMSE scores. The RMSE achieved was 0.52 ± 0.01 and R2 was 0.78 ± 0.01 by
using neural networks with 10-fold cross-validation [35]. A model named DeepCDR [40]
achieved an RMSE of 1.058 ± 0.006. In a matrix factorization approach [51], an RMSE
of 1.73 was achieved for the GDSC dataset. A study using the GDSC dataset along with
Morgan fingerprints achieved a lower RMSE of 0.75 ± 0.01 and R2 of 0.74 ± 0.01 [10]. The
results are given in Table 6 below.

Table 6. Results on GDSC Dataset.

Dataset Method RMSE

GDSC SRMF [51] ±1.73
DeepCDR [40] ±1.058

PGM [10] ±0.75
DeepDSC [35] ±0.52

NeuPD ±0.490
CCLE Ridge Regression [50] ±6.576

Random Forest [50] ±5.738
Elastic Net [50] ±5.378

Lasso [50] ±5.333
NeuPD ±1.784

The performance of the proposed NN-based NeuPD model was compared to the
elastic net (EN) regression and XGBoost. By looking at the results, NeuPD achieved the best
results compared with other baseline models and different studies. To lessen the chance
of overfitting, early stopping is also used in which the training phase was stopped if the
validation loss did not decrease after 500 epochs. The performance of each algorithm was
evaluated by using the root mean square error (RMSE). The best value of RMSE is 0.490,
which was achieved for the GDSC dataset over 10 drugs. For the CCLE dataset, the least
value achieved for RMSE is 1.784. So, in these datasets, the proposed model performed
better for GDSC than CCLE.
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4. Discussion

The abundance of cancerous control and disease datasets at the genomic and pro-
teomics levels allow us to better understand the drug and disease appropriateness. The
genomic data including the gene expression level have been found to be an important
biomarker toward the state and nature of cancer disease. The medicine prescription has
entered the era of precision medicine that aimed to prescribe the most appropriate drug for
the target disease sample based on the association with respective genomic biomarkers.

The availability of cancer cell lines, in particular, allowed AI experts to predict associa-
tions among hundreds of available drugs and associated genes through ML and DL tools.
Several DL models have been proposed to identify the right drug for the GDSC and CCLE
datasets. Drugs’ chemical compositions are being used to represent drug features.

There are numerous recent computational methods such as [7–9,35] that potentially
contributed to the drug sensitivity prediction problem. Despite the effectiveness of these
methods on CCLE and GDSC datasets using complete genomic features and a wide range
of drugs, they have a limitation when it comes to integrating genomic and drug features
causally. This limitation results in increased computational complexity and can make
it challenging for the scientific community to identify the key factors influencing drug
sensitivity prediction.

In this research work, we proposed a deep learning model named NeuPD that predicts
the antineoplastic drug sensitivity of cancer cell lines. Our proposed model was trained
on GDSC and CCLE datasets downloaded from the public repository. The data were
normalized by applying Mix–Max Scaler, and then Pearson’s correlation was applied for
dimensionality reduction. For the drug features, the 2D structures were downloaded for
each drug from PubChem for both the GDSC and CCLE drugs. The structures were then
converted into hash values using Morgan fingerprints. For the training of the model, gene
expressions are selected as cell line genomic features, and Morgan fingerprints are selected
as chemical features of compounds. Both cell line features and drug features were combined
as the inputs for the NeuPD.

The results have shown that NeuPD outperformed previous state-of-the-art models
and techniques by having the lowest value of RMSE which is 0.490 and the highest value
of the coefficient of determination R2, which is 0.929. Moreover, the performance of the
proposed model was evaluated using 10-fold cross-validation.

The present research work has also a few limitations, i.e., the size of the data and
the applied DL tools employed during the course of the study. The applicability of our
research findings is based on the available current state-of-the-art published results and the
associated data. The biological scientific community is publishing tremendous results on
an (almost) weekly basis, which demands the inclusion of the newly published results in a
continuously updated mode. This inclusive nature demands extensive evaluation matrices
of our results in consideration of the current state of the art. Secondly, high dimensionality
is a challenge to the applicability of our research at a clinical level. In future, this work
can be extended by integrating additional molecular features such as mutations, copy
number variations, and methylation along with the gene expression data. Furthermore,
incorporating explainability and interpretability into the framework would enable explicit
extraction of biological significance from the obtained results.

5. Conclusions

In the recent past, the identification of appropriate drugs for particular genomic mark-
ers was found to be important in diagnostics and the prescription of drugs accordingly.
Several machine learning and deep learning methods are being used to predict a signifi-
cantly reduced subset of hundreds of available drugs. This study performed experiments
on cancerous datasets extracted from different tissues and identified the most appropriate
drugs for particular gene expression levels. The implemented and tested NeuPD method
outperformed the existing state of the art and was helpful in predicting associations among
the drugs for respective biomarkers across the different types of cancer disease. The study
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is aimed to develop results that have the potential to be employed by clinical practitioners
in the future.
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