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Abstract: Today, coronary artery disease (CAD) continues to be a prominent cause of death worldwide.
A reliable assessment of coronary stenosis represents a prerequisite for the appropriate management
of CAD. Nevertheless, there are still major challenges pertaining to some limitations of current
imaging and functional diagnostic modalities. The present review summarizes the current data
on invasive functional and intracoronary imaging assessment using optical coherence tomography
(OCT), and intravascular ultrasound (IVUS). Amongst the functional parameters—on top of fractional
flow reserve (FFR) and instantaneous wave-free ratio (iFR)—we point to novel angiography-based
measures such as quantitative flow ratio (QFR), vessel fractional flow reserve (vFFR), angiography-
derived fractional flow reserve (FFRangio), and computed tomography-derived flow fractional
reserve (FFR-CT), as well as hybrid approaches focusing on optical flow ratio (OFR), computational
fluid dynamics and attempts to quantify the forces exaggerated by blood on the coronary plaque and
vessel wall.

Keywords: fractional flow reserve; coronary artery disease; percutaneous coronary intervention;
optical coherence tomography; intravascular ultrasound; instantaneous wave-free ratio; quantitative
flow ratio; computed tomography-derived flow fractional reserve; angiography-derived fractional
flow reserve; optical flow ratio

1. Introduction

Coronary artery disease (CAD) continues to be a prominent cause of mortality world-
wide. The primary diagnosis of this disease includes coronary artery imaging, to initiate
relevant therapeutic management decisions, which mainly focus on revascularization.
Coronary artery visualization techniques can be divided into two groups—invasive and
non-invasive. Revascularization using percutaneous coronary intervention (PCI) or coro-
nary artery bypass grafting (CABG) restores epicardial blood flow and, consequently,
relieves symptoms of angina and related myocardial ischemia [1].

Apart from angiography, a well-established gold standard in the field of morphological
imaging, among modern coronary invasive assessing techniques we distinguish primarily
fractional flow reserve (FFR), optical coherence tomography (OCT) and intravascular
ultrasound (IVUS). The mechanisms behind them differ and concentrate on the diverse
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issues regarding CAD pathophysiology which provides a characterization of different
properties of lesions to provide efficacious personalized treatments.

Angiography presents itself as a two-dimensional image, which is a limiting issue
considering the complex three-dimensional structure of coronary vessels [2]. Another
restriction is that angiography acts as a luminogram, showing only changes in the lumen,
without the possibility to visualize coronary artery wall morphology [3]. What is more,
this technique does not assess the lesion severity regarding physiological significance. It
seems to be particularly problematic in cases of intermediate stenoses, which are defined as
a 40–70% vessel obstruction, where angiography detects less than half of them [4]. This
inability to distinguish which lesions may lead to ischemia within the myocardium and an
urge to perform revascularization has encouraged the adoption of other coronary assessing
techniques (Figure 1) [5,6].
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Figure 1. Different techniques used in the assessment of coronary stenosis after PCI: (A) coronary
angiogram, white line = stent (diameter 2.5 mm and length 23 mm) in mid LAD, red asterisk = FFR
measurement site, blue star = OFR measurement site; (B) FFR = 0.85, in-stent ∆FFR = 0.05; (C) OCT at
distal reference, MSA (2.78 mm2) site, and proximal reference; (D) color-coded OFR on the 3D-OCT
lumen view. OFR = 0.85, in-stent ∆OFR = 0.06; (E) OFR, pullback curve and lumen diameters (short
diameter in grey and long diameter in white). 3D, three dimensional; FFR, fractional flow reserve;
LAD, left anterior descending artery; MSA, minimum stent area; OCT, optical coherence tomography;
OFR, optical flow ratio; PCI, percutaneous coronary intervention. Reproduced under a Creative
Commons license from [6].
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In this article, we provide brief characteristics of the different techniques used in the
assessment of coronary stenosis which indicates therapeutic management. Our article
contains a review of invasive and non-invasive techniques for the visualization of coronary
stenosis, to evaluate the diagnostic values of procedures accompanying PCI.

2. Fractional Flow Reserve

The FFR is an invasive method of assessment of coronary blood flow disturbances in
a stenotic artery. It is defined as an index of maximal blood flow in a stenosed coronary
vessel to the theoretical normal maximal flow, i.e., in the absence of the obstructive lesion,
in the same distribution. This ratio is calculated by measuring distal coronary pressure
behind an obstruction and dividing it by either proximal coronary pressure or aortic
pressure [7]. A coronary flow must be determined during maximal blood flow (hyperemia)
with a measured pressure ratio. Only under this condition coronary vessel flow is stable,
vascular resistance is reduced to a minimum and a linear relationship between blood flow
and pressure can be obtained [8,9]. In a non-stenotic vessel, the FFR expected score is
1.0. According to numerous studies, values above 0.75 allow for safely deferring PCI
implementation. However, many recent studies support using 0.80 rather than 0.75 as a
threshold below which percutaneous intervention is indicated [10]. In the current guidelines
of myocardial revascularization of the European Society of Cardiology (ESC), FFR equal to
0.80 (iFR equal to 0.89) is described as the standardized cut-off value in the estimation of
hemodynamic relevance of coronary stenosis [11]. The ESC recommends FFR assessment
for coronary artery lesions with intermediate stenosis of 40–90% to provide an efficacious
treatment strategy for affected vessels in patients without evidence of ischemia in non-
invasive testing or in those with multivessel disease [12,13].

Steady-state of maximal hyperemia can be induced through administering multiple
agents in which adenosine plays a pivotal role, but nitrates are also reported in the literature.
Before adenosine was introduced into general use, papaverine had been the agent of choice
in the assessment of coronary blood flow. Its use has been replaced with adenosine because
of concerns about complications, such as QT prolongation [14]. Hyperemic agents can be
administered either intravenously or intracoronary (IC) as a bolus. Peripheral and central
vein infusion is associated with a more frequent occurrence of significant hemodynamic
changes and transient symptoms, such as chest discomfort, chest pain, and shortness of
breath, in comparison to intracoronary adenosine [15]. On the other hand, the intracoronary
route of administration can provoke atrioventricular blocks, but it is rarely observed in
clinical practice [14].

Taking into consideration the adverse effects of hyperemia-inducing agents, investiga-
tors tried to define a variant of FFR that would be independent of the maximal vasodilata-
tion procedure. Sen et al. in their Adenosine Vasodilator Independent Stenosis Evaluation
(ADVICE) study compared flow and pressure measurements during a cardiac cycle, when
adenosine was infused with a cardiac cycle, and when the hyperemic agent was not used.
The purpose of such a designed trial was to find a certain period during the cycle, when
vascular resistance is naturally minimalized and stable, despite the absence of adenosine.
This interval was defined during diastole and a new pressure-derived index of stenosis
severity, that does not require pharmacologic vasodilation, was termed instantaneous
wave-free ratio (iFR) [16]. iFR was the primary method of measuring pressure without
hyperemia. When asked if there was another measure as useful for the determination of
the pressure ratio, Van’t Veer et al. showed that each interval gave numerically almost
identical results to iFR [17]. Newer non-hyperemic pressure ratio (NHPR) methodologies,
such as the full resting cycle ratio (RFR), the diastolic hyperemia-free ratio (DFR), and the
diastolic pressure ratio (dPR) have been found to be consistent with the iFR and thus can
be used interconvertible for clinical use. The dPR is defined as the mean Pd/Pa during
the entire diastole. The DFR is defined as the mean Pd/Pa while Pa is less than the mean
Pa with a negative slope. The RFR is defined as the lowest average Pd/Pa during the
entire heart cycle [18]. The analysis corroborated that there were no relevant differences in
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the values of pressure ratios at rest during the entire cycle (Pd/Pa and RFR) and diastolic
(dPR and mathematically derived iFR) (Figure 2 and Table 1) [19,20]. Whole-cycle NHPRs
show better repeatability and clinical precision after PCI than diastolic NHPRs, possibly
due to less disturbance caused mainly by diastolic reactive hyperemia and left ventricular
stunning. Studies have confirmed that NHPRs have similar diagnostic efficacy to FFR
before PCI to forecast long-term outcomes [20]. A series of studies were conducted to
evaluate the correlation between conventional FFR and iFR. They proved that iFR is not
inferior to FFR regarding the primary endpoint, defined as the rate of major cardiovascular
adverse events for 1 year of clinical outcomes [21,22]. Moreover, among the group with
FFR guidance, a significantly higher rate of procedural adverse signs and symptoms was
reported [21].
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Figure 2. Schematic representation of the commonly available non-hyperemic pressure ratios and
the periods of the cardiac cycle from which they are calculated. Pd/Pa, distal coronary pressure to
aortic pressure ratio; iFR, instantaneous wave-free ratio; RFR, resting full-cycle ratio; DFR, Diastolic
Hyperaemia-Free Ratio. Reproduced under a Creative Commons license from [19].
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Table 1. Currently available non-hyperemic pressure ratios (NHPRs).

NHPR Calculation Period of the Cardiac Cycle Threshold

Instantaneous wave-free ratio (iFR) Pd/Pa calculated during the WFP 2 within
diastole. WFP 2 in diastole ≤0.89

Resting full-cycle ratio (RFR) The lowest Pd/Pa 1 over the entire cardiac
cycle. Mean of 4–5 consecutive cycles.

Whole cycle ≤0.89

Diastolic hyperemia-free ratio (DFR)
Average Pd/Pa 1 over the approximated

diastolic period averaged over five
consecutive cardiac cycles.

Diastole ≤0.89

Resting Pd/Pa 1 Resting Pd/Pa 1 averaged over the entire
cardiac cycle.

Whole cycle ≤0.91

1 Pd/Pa, ratio of mean distal coronary artery pressure to mean aortic pressure in the resting state; 2 WFP, wave-free
period. Reproduced and adapted under a Creative Commons license from [19].

3. Non-Invasive Fractional Flow Reserve Indices

Despite the indisputable value of the FFR assessment, which has made it the gold
standard for the physiological evaluation of intermediate stenoses, this modality was not
a widely adopted technique. Several limitations, such as generating additional expenses
through the cost of the pressure wire and the obligatory adenosine administration, con-
tributed to this occurrence [23]. This issue is well-reflected by a 2014 survey research, that
in clinical practice, a large percentage of clinicians base the decision solely on angiography,
despite the possibility of using other modalities, indicating a troubling lack of consistency
between clinical practice and guidelines [24]. This prompted the researchers to approach
FFR in a different way.

Quantitative flow ratio (QFR) is one of those techniques, that overcomes the above-
mentioned limitations. QFR is a novel vascular assessing modality, that allows rapid
measurement of FFR, based on a 3-dimensional angiographic reconstruction and the flow
dynamics algorithms-contrast flow frame count. 3-dimensional quantitative angiography
is obtained by selecting 2 diagnostic angiography projections, at least 25◦ apart [25]. Most
importantly, the whole procedure is performed with neither wire nor hyperemia. Therefore,
it indirectly answers the question of what the physiological severity of epicardial stenosis
is, due to evaluating the morphology of the examined artery. Clinical trials show significant
correlation and agreement between QFR and FFR measurements of the post-PCI patient.
Both techniques may be effective in the assessment of suboptimal coronary stenting identi-
fication [25–29]. Additionally, large prospective studies are ongoing with a specific focus
on clinical follow-up and prespecified angiography acquisition protocols [30]. Comput-
ing software innovations allow for an increasingly accurate evaluation of non-invasive
FFR. Techniques such as vessel fractional flow reserve (vFFR) and angiography-derived
fractional flow reserve (FFRangio) correlate well with the FFR values obtained by conven-
tional means and are characterized by a high diagnostic accuracy to detect FFR ≤ 0.80
(Figure 3) [31–33].

The DOCTOR study compared QFR before PCI to post-stenting FFR and post-stenting
QFR to post-PCI FFR in patients with NSTEMI-ACS. The analysis had a good correlation.
Biscaglia et al. proved that post-PCI QFR lower than 0.90 was related to a higher risk of
cardiovascular death, myocardial infarction and ischemia-driven revascularization con-
nected with target vessel [34]. IVUS-guided treatments were associated with less frequent
2-year vessel-oriented composite endpoints (VOCEs) [35]. When comparing patients with
normal and reduced left ventricle ejection fraction (LVEF), those with reduced seem to have
more benefits after successful revascularization. A greater increase in post-PCI QFR value
and LVEF was observed [36]. In the PANDA III study, researchers screened patients with
diabetes mellitus (DM). The achievements of post-PCI were comparable in both DM and
non-DM. Vessels with low post-PCI QFR (<0.92) were proportionately connected with an
increased risk of 2-year VOCE [37].
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Figure 3. vFFR result after 3D reconstruction CFD simulation showing a vFFR in the LAD of 0.74.
vFFR, vessel fractional flow reserve; LAD, left anterior descending artery. Reproduced and adapted
under a Creative Commons license from [33].

Computed tomography-derived flow fractional reserve (FFR-CT) is also based on
imaging techniques to derive FFR. Recent improvements in computational fluid dynamics
(CFD) and mathematical models have made it possible to obtain measurements of coronary
flow and pressure from computed tomography angiography (CTA) of coronary vessels. In
addition, CTA allows assessment of the forces exerted on the vessel wall called wall shear
stress (WSS) [38,39]. Three principles form a basis for this FFR computing. The first one
claims that baseline coronary flow depends on the myocardial oxygen demand. According
to the second one—the resistance of the microcirculatory bed at rest is inversely, not linearly,
proportional to the size of the feeding vessel. Finally, the third one defines, that the coronary
microcirculation has a predictable response to adenosine, which is produced from the break-
down of ATP when the oxygen supply to myocardial cells is reduced [40,41]. Investigators
have shown that FFR-CT is strongly correlated with invasively pressure-wire-derived
FFR [42–44]. PACIFIC study also reported an improved diagnostic discriminative ability
compared with coronary CTA, single-photon emission computed tomography (SPECT),
and positron emission tomography (PET) [45].

4. Optical Coherent Tomography

Optical coherent tomography (OCT) is an invasive imaging modality, which provides
rapid acquisition of coronary artery cross-sectional images. Similarly, to IVUS, OCT also
necessitates a catheter advanced into the coronary artery. However, these two visualization
systems differ significantly—OCT uses a light source in the near-infrared spectrum instead
of ultrasounds. It implicates the properties of the resulting image and the possibility of vi-
sualizing changes in the vessels. While the axial resolution of IVUS ranges between 150 and
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200 microns, OCT enables acquisition in a ten times higher range, i.e., 12–18 microns [46].
This allows for a finer visualization of the lumen and the arterial wall layers—intima, me-
dia, and adventitia—where coronary pathology requiring evaluation is most prevalent [9].
Oppositely, near-infrared light penetration is limited to 1–3 mm compared with 4–8 mm
achieved with IVUS, except for heavily calcified plaques, in which ultrasounds propagation
is limited [46]. It is also worth highlighting the usefulness of this modality in evaluating
and optimization of stenting after PCI. The high image quality and resolution allow for
assessment of the conditions of stent placement wherein either coronary angiography or
FFR examination is obstructed [29].

OCT, as high-resolution intravascular imaging for the rapid evaluation of stent cover-
age, apposition and detailed characterization of neointimal tissue and vessel wall pathology,
can provide information about mechanical abnormalities and help guide the management
of CAD [47,48]. OCT-guided PCI assesses plaque preparation, lesion length, segmental
reference sizes, lesion coverage, stent expansion, malapposition, wire positions, and ostial
results in order to provide adequate vessel and stent expansion, full stent apposition, and
optimal lesion coverage [49]. The underexpansion of stented segments can provide the base
of in-stent restenosis causing suboptimal results after PCI but may be solved by different
techniques such as the proximal optimization technique or by modifying fibrocalcified
plaques sufficiently before implanting stents. OCT enables checking for underexpanded
stents and assessing the potential need for a proximal optimization technique [49,50]. OCT
and IVUS guidance show a similar degree of stent expansion with a low frequency of major
stent malapposition, tissue prolapse, and edge dissections [51]. Underexpansion is one of
the leading causes of acute stent thrombosis (ST), a rare phenomenon, but associated with
serious clinical consequences [52,53]. However, cases of ST have different pathophysiology
with increasing time from PCI and have a variety of factors affecting this process [54,55].
From the clinical perspective understanding the underlying pathophysiological process
leading to ST is crucial and OCT makes that goal feasible [55]. This intravascular technique
detects an underlying morphological abnormality in 97% of cases of confirmed ST [48].
Recent researches show that one of the main components of pathophysiology of very late
ST is neoatherosclerosis which is de novo process of atherosclerosis in the neointimal region
of the stented segment [56]. OCT providing information about macrophage infiltration,
lipid accumulation, in-stent calcification, or neointimal rupture, exert a key role in this
regard assessment of neoatherosclerosis [48,56].

The mentioned above characteristics of OCT led investigators to use this technique
to reconstruct the vessel geometry to reproduce FFR values. Owing to mathematical
algorithms pressure loss across stenosis can be calculated by diagnostic software. The
OCT-derived FFR, called optical flow ratio (OFR), provides the ability to assess physi-
ological aspects of the obstruction with simultaneous morphology imaging in a single
pull-back. OFR correlation with conventional wire-derived FFR was observed as excellent,
by extending the OCT acquisition procedure by just a few minutes [6,57–60]. OFR demon-
strated superiority over QFR in determining physiological the significance of coronary
stenosis [61–63].

Among all characterized modalities above, OFR tends to be the most feasible tech-
nique regarding its compliance and predominance with alternative morphophysiological
assessments. Recent reports support this method, suggesting it could facilitate everyday
clinical practice [62].

However, it is worth mentioning that the role of coronary intravascular imaging is
limited in everyday clinical practice. A survey among 1105 interventional cardiologists was
conducted and the high cost of intravascular imaging was the most commonly reported
reason limiting the clinical use of these visualization techniques [64]. Even though, unlike
ultrasound, OCT catheters contain no transducers within their frame, they are more ex-
pensive than IVUS catheters [65–67]. The lack of coverage for such procedures by most
insurance companies causes practical difficulties on the data acquisition front as well [68].
Nonetheless, the added value of this modality is constantly better recognized and in some
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countries is refundable by the insurance companies [69]. OCT has initial incremental in-
creases in expenses but also is a more cost-effective diagnostic strategy than IVUS along
with coronary angiography for patients with CAD [65].

5. OCT versus FFR in Clinical Trials

Since so far mostly conventional coronary angiography has been separately compared
with either intracoronary imaging or physiologic vascular assessment and their impact on
PCI outcomes [70,71]. Relatively few studies have compared OCT with FFR examination.
Follow-up length, study design, and location of examined obstructive lesions varied among
individual studies, and different therapeutical management were compared [72–74]. Due
to the number of dedicated trials comparing OCT with FFR Burzotta et al. carried out The
Fractional Flow Reserve vs. Optical Coherence Tomography Guide to Revascularization of
Intermediate Coronary Stenoses (FORZA) trial [72].

The above-mentioned study sought to examine the rate of significant residual angina
and major adverse cardiovascular events after performing on intermediate stenotic coro-
nary artery either OCT- or FFR-guided PCI, depending on randomization. FFR guidance
coronary procedure was indicated when the value of <0.80 was measured on the targeted
angiographically intermediate coronary lesion. This group underwent PCI in order to
achieve an FFR equal to or above 0.90. Patients with primary FFR higher than 0.80 were
treated with optimal medical therapy only. Accordingly, in an OCT guidance there had
to be at least one of the three criteria present. The following were: stenosis area ≥ 75%,
stenosis area from 50% to 75% with a minimal lumen area < 2.5 mm2, and major plaque
ulceration evidence in OCT [72]. As OCT enables to visualize in high resolution, such
stenting disturbances as underexpansion, malapposition, uneven stent strut distribution,
or small intra-stent thrombotic formations can be observed. As a consequence, in the case
of impaired stent implantation, OCT guidance also includes further optimization [74,75].
The purpose of the study was defined as a prospective assessment of improving symptoms,
the recurrence of residual angina, and the rate of major adverse cardiovascular events,
which included all-cause death, myocardial infarction, and target vessel revascularization,
at thirteen months follow-up as the primary endpoint. The further secondary endpoint was
the global cost evaluation of a particular strategy at one- and thirteen-month follow-up [72].

The investigators found at one-month follow-up, that in the group randomized to
OCT guidance, a significantly lower number of patients was indicated for treatment with
optical medical therapy and a higher number of stents per patient was used (p < 0.0001).
Additionally, OCT was more frequently used after PCI than FFR to optimize stent implan-
tation, but this finding was insignificant (p = 0.09), and consequently, an optimal stenting
effect was more commonly achieved after OCT-guided PCI than FFR. Furthermore, OCT
guidance was associated with higher iodine-based contrast consumption and as a result
higher rate of contrast-induced acute kidney failure, not required in any of the cases of
hemodialysis. According to the primary endpoint, researchers discovered that the rate
of significant residual angina and major adverse cardiac events (MACE) was slightly dif-
ferent in favor of FFR but statistically insignificant (p = 0.84). Moreover, a trend toward
longer hospitalization and higher procedural costs were associated with OCT guidance in
comparison to FFR (0.07 and <0.0001, respectively) [76].

In general, initial observation showed a greater benefit of performing FFR-guided PCI
in terms of economic issues and less frequent renal insufficiency resulting from decreased
contrast supply during the procedure. The researchers concluded that despite more PCIs
performed in the OCT group than in the FFR group, clinical outcomes were not significantly
affected, at least in this follow-up period of one month. This study period could have
supported better guidance of FFR, but the results of the study were to come after a second
follow-up at 13 months [77].

The clinical outcomes at 13 months presented quite differently. MACEs and significant
residual angina occurred more frequently in the FFR group in comparison to the OCT one.
Procedural costs and the number of patients that continued to be managed with optimal
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medical therapy remained higher in the OCT group. Over 13 months in both groups, a
steady improvement in angina status was reported [77].

The considered study presents long-term results of the clinical management depend-
ing on the chosen diagnostic modality. However, like any clinical trial, this is not without
limitations. First of all, as earlier described, these two techniques provide answers to differ-
ent questions. Therefore, they should not be juxtaposed with each other but considered
complementary. What is more, the investigation took the form of an unblinded trial or
otherwise known as open-label. From the definition, the consequence of this could lead
to biases regarding mostly target vessel revascularization, which was included among
the major adverse cardiac events of this study. Another matter is the rate of MACEs that
occurred during follow-up. Those that occurred after a longer period of observation may
seem less significant. When considering MACEs, we should pay attention to the dual
antiplatelet therapy used after the percutaneous procedure. The more patients undergo
PCI, the more receive therapy, which results in lower cardiovascular event prevalence in
those in the OCT group [78,79].

6. Intravascular Ultrasound

The significant role of IVUS in contemporary stent-based PCI is invaluable. This
imaging tool brings more detailed information about lumen size and vessel wall thickness,
assesses plaque composition, selects proper stent sizes, and optimizes stent expansion, ap-
position, and geographic miss [80]. Doppler guidewire velocimetry provides clinicians with
measurements of post-stenotic flow velocity continuously during the coronary intervention,
previously unavailable from earlier studies using larger Doppler catheters [81]. IVUS
systems for clinical use can be divided into 2 main types: the mechanical single-element
rotating transducer and the solid-state electronic phased array transducer. The advantage
of the solid-state catheter over rotational systems includes enhanced trackability and lack
of non-uniform rotational distortion artifacts [80].

The current gold standard of lesion-specific coronary revascularization decisions in
patients with stable CAD-FFR is well-correlated with values measured using established
equations and accurate 3-dimensional IVUS imaging [43,82]. This invasive visualization
technique became a new standard in cases with younger patients, who have less high-
risk clinical features, and have more complex lesions such as left main and multivessel
disease in which IVUS yields the largest benefit in reducing MACE and target-lesion
revascularization [83,84].

In cases of left main coronary artery stenosis (LMCS), accurate lesion assessment is
crucial in guiding clinical management [85]. Underestimation of the significance of LMCS
beholds the risk of inappropriate deferral of revascularization in cases in which stenosis is
associated with a poor long-term outcome, whereas overestimation of mild to moderate
LMCS stenosis provides unnecessary interventions and may lead to the premature closure
of either the native vessel or the graft [86,87]. Unfortunately assessing angiographic lesion
severity localized in the left main coronary artery is associated with high interobserver
variability and low agreement (41% to 59%) [88,89]. Difficulty in the assessment of LMCS-
induced application of new visualization techniques such as IVUS which can evaluate
stent under-expansion, incomplete lesion coverage, small stent area, large residual plaque,
and stent malapposition, which have been found to predict stent thrombosis after stent
placement [90,91]. IVUS application in the assessment of lesions of the left main coronary
artery significantly reduced the risks of all-cause mortality by ~40% and cardiac death
by 53% compared with conventional angiography-guided PCI [92]. This intravascular
imaging technique cause usage of more appropriately sized stents and indicate a lower
risk of subsequent stent thrombosis [93]. IVUS became an excellent diagnostic tool in
cases of LMCS in situations such as LV dysfunction where maximal hyperemia may not be
achieved [94]. IVUS guidance is recommended for patients undergoing LMCA intervention
by The European Bifurcation Club (EBC). This intravascular imaging technique provides
clinically significant information before PCI about the risk of the side branch, optimal
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stent length, optimal stent diameters, and measurements of the proximal optimization
technique [95]. Furthermore, this visualization technique can be used after PCI of LMCA in
the assessment of residual edge stenosis, edge dissection, stent expansion and apposition,
accidental abluminal rewiring, and other complications [95,96].

IVUS plays an important role in the recanalization of chronic total occlusion (CTO)
during PCI, which remains a great challenge for clinicians [97]. This coronary artery
visualization technique was associated with less in-stent late lumen loss and in-stent
restenosis and ST when stenting occurred within the true lumen [98]. The risk of the
composite of cardiac death or myocardial infarction and major adverse cardiac event rates
were significantly lower in the IVUS-guided group than in the angiography-guided group
during CTO-PCI [99].

IVUS-derived minimal lumen dimension (MLA) is a well-known strong predictor of
MACE [87]. Despite that, the optimal cutoff value of an MLA remains debatable, and studies
suggest values from 5.9 to 9.6 mm2 as the cut-off points of significant LMCS [100–103].
Most clinicians suggest that 6 mm2 is a safe value for deferring revascularization of the
LMCA [103]. Apart from MLA, IVUS measurement of minimal lumen diameter (MLD) also
became an important quantitative predictor of cardiac events [87]. Both MLA with the cut-off
of 5.9 mm2 and MLD with the cut-off of 2.8 mm are extremely useful tools in the assessment
of LMCS (sensitivity of 93%, specificity of 95% and sensitivity of 93%, specificity of 98%,
respectively) [100]. Current ESC guidelines recommend IVUS for the risk stratification of
patients with intermediate LM stenosis and assessment of cardiac allograft vasculopathy and
plaque stability [13]. This visualization technique should be also considered in the detection
of stent-related mechanical problems leading to restenosis [11].

IVUS-derived MLA accuracy is highly variable according to the localization of the lesion
and shows a better correlation with FFR in LM lesions than in non-LM lesions [104,105].
Vessel size is the main factor that should be taken into consideration during the assessment
of functional ischemia using MLA. The most accurate value for FFR < 0.8 correspond to
MLA < 2.4 mm2 for lesions with reference vessel diameters of 2.5–3 mm, MLA < 2.7 mm2

in lesions with reference vessel diameters of 3–3.5 mm, and MLA < 3.6 mm2 with reference
vessel diameters of >3.5 mm [11,106,107]. In addition to MLA’s moderate correlation to FFR
values, MLD cut-off values in non-LM lesions are also problematic. Researches show that
optimal sensitivity and specificity correspond to MLD < 1.8 mm in identifying significant
lesions [108].

However, only a few data from large-scale multicenter studies for patients with CAD
are available for current techniques of intravascular imaging such as IVUS or OCT, and
procedural-based outcomes related to intravascular modality guidance compared with
angiography guidance still require further investigation (Figure 4) [83,109–115].
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7. Biomechanics and Plaque Stress

Rupture of an atherosclerotic plaque is the most frequent underlying cause of acute
coronary syndromes (ACS), nevertheless, the mechanism of plaque rupture is not fully
understood [116]. A variety of components participates in setting the stage for rupture,
calling attention to the plaque composition and biomechanical factors [116,117]. Studies
have identified several structural characteristics of rupture-prone plaques: a large lipid
pool inside a plaque, a thin fibrous cap (<65 µm), and increased macrophage infiltration
within the cap [117–119]. Biomechanical factors that may predispose a plaque to rupture
are hemodynamic shear stresses, turbulent pressure fluctuations, transient compression,
mechanical shear stresses, sudden increases in intraluminal pressure, rupture of the vasa
vasorum, and tensile stress concentration within the wall of the lesion [116,120–125]. Both
biomechanical and structural elements require high-resolution imaging techniques [126].
OCT as a new imaging method with a resolution of 10–20 µm is correlated well with the
histological examination and easily demonstrates the internal elastic laminae, which cannot
be identified by IVUS (Figure 5) [126–128]. In addition, OCT shows the superior delineation
of vessel layers and ring-down artifacts do not occur compared with IVUS [129]. OCT
images can be also used for assessing plaque structural stress (PSS) over the cardiac cycle.
That technique embraces automatic plaque characterization and finite element analysis
(FEA) by a fully automated process connected with artificial intelligence [130]. FEA is
an engineering technique that divides complex structures into smaller segments (finite
elements) and using powerful computers, allows for the calculation of the distribution of
stress within the original complex structure [116,131].
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Figure 5. Optical coherence tomography cross-sectional images with measured lumen dimensions
at various locations: (A) distal reference segment; (B) minimum lumen area; (C) proximal reference
segment. Reproduced and adapted under a Creative Commons license from [128].

Permanently pulsating pressure waves in cardiac vessels generate strain and influence
plaque caps resulting in fatigue and breakage [116]. Thereupon, assessment of cyclical
plaque structural stress may increase the prognostic value for cardiac events to prevent
forthcoming ACS. As it happens, even fine-scale changes such as lumen diameter or thick-
ness of fibrous cap induce significant variation in PSS [130]. Furthermore, the cap and
necrotic core thickness have the most significant influence on the calculation of stresses [132].
Likewise, the vascular structure defined by OCT presents a relevant basis for biomechanical
analysis [133]. Studies have shown that high plaque stress correlates with plaque rupture
and acute coronary syndromes [128,134]. In normal coronary segments, substantially lower
∆PSS occurs, compared with normal and diseased coronary segments in the examination.
By the same token strain and plaque stress in the proximal segments are larger than in
the distal segments of the lesion and that equals more often plaque ruptures in proximal
segments. Moreover, ∆PSS positively correlates with lipidic plaque area (LPA) and nega-
tively with fibrous cap thickness, in such a way corroborating a direct connection between
∆PSS and morphologically rupture-prone plaque. That affirms the importance of plaque
morphology and composition in establishing the actual plaque stress [130]. Assessment of
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coronary lesions using OCT to compute proximal shoulder and MLA can lead to optimal
therapeutic management decisions reducing the risk of future adverse events [135].

Considering the application of PSS to assess morphology and risk of complications
of ruptured atherosclerotic lesions, this parameter should be used as a complementary
tool in the diagnostic process. By supplementing imaging studies, such as IVUS, with PSS,
we can estimate with greater accuracy the incidence of MACE resulting from ruptured
lesions and, especially, from non-culprit lesions, as they are more frequent in coronary
vessels [134,136]. However, the relationships between lesion sites, properties, and sizes of
plaques and vessels are complex and may affect PSS values in different ways [136]. The
results are encouraging, but further studies are required to realize the true potential of PSS
in the diagnostics of coronary atherosclerosis.

Interest in CFD increased with the wider availability of FFR-CT, which allowed no-
invasive measurement of WSS, in contrast to previous modalities that remained invasive
techniques such as IVUS and angiography [137]. The WSS is a force on the vessel wall and
its oscillation mainly affects the line of first contact between the blood and the vessel tissue,
which are the endothelial cells. The cell phenotype shows a tendency to convert towards
proatherogenic cells through the higher accumulation of low-density lipoprotein cholesterol,
oxidative stress, and activation of inflammatory reaction and consequent atherosclerotic
progression [138]. Restenotic and early atherosclerotic lesions are identified with low and
oscillatory WWS, leading mainly to lesions at sites such as bifurcations, ostia, or vessel
suture sites in the case of CABG. In contrast, late atherosclerosis and endothelial erosion
are a consequence of both high and low values. Further, plaque rupture is localized to areas
with increased values [139,140].

Studies have shown a correlation between WWS and plaque progression, properties,
and distant prognosis of complications [139,141]. For low WWS, an association with future
revascularization of the vessel stented with bare metal stent and MACEs related to non-
culprit lesions has been demonstrated [134,142]. High WWS values have been associated
with increased plaque vulnerability, thrombogenic potential, and the eventual occurrence
of plaque-related events such as myocardial infarction [143]. In addition, the studies show
the incremental prognostic value over FFR of WSS measured in the proximal segments of
lesions to predict myocardial infarction in patients with stable CAD [144]. According to
experts’ opinions, in clinical practice, the best modalities to assess the impact of WWS on
plaque both characteristics and progression, and stented areas remain measurements based
on CTA or OCT/IVUS fusion with biplane angiography. The equal placement of invasive
and non-invasive techniques should be carefully considered in the diagnostic process,
keeping in mind the possible complications of invasive modalities. In low-risk patients,
CTA is recommended over invasive methods, which have limited use in this group [139]. A
broader application of WWS as an adjunctive modality may assist diagnostic management
by allowing more accurate detection of at-risk patients and estimation of the natural history
of atherosclerotic plaque. However, in clinical practice, we should remember the primacy
of widely approved diagnostic tests.

8. Conclusions

Optimal assessment of coronary stenoses continues to represent a significant clinical
challenge. The development of invasive and non-invasive visualization techniques provides
useful hybrid tools which after proper validation can guide the optimal management of
intermediate coronary lesions. For clinicians, it is crucial to have a thorough understanding
of these imaging tools which are expected to be increasingly advocated in the upcoming
guidelines and recommendations.
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