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Abstract: Pneumonia is an acute respiratory infection that affects the lungs. It is the single largest
infectious disease that kills children worldwide. According to a 2019 World Health Organization
survey, pneumonia caused 740,180 deaths in children under 5 years of age, accounting for 14% of
all deaths in children under 5 years of age but 22% of all deaths in children aged 1 to 5 years. This
shows that early recognition of pneumonia in children is particularly important. In this study, we
propose a pneumonia binary classification model for chest X-ray image recognition based on a deep
learning approach. We extract features using a traditional convolutional network framework to
obtain features containing rich semantic information. The adjacency matrix is also constructed to
represent the degree of relevance of each region in the image. In the final part of the model, we use
graph inference to complete the global modeling to help classify pneumonia disease. A total of 6189
children’s X-ray films containing 3319 normal cases and 2870 pneumonia cases were used in the
experiment. In total, 20% was selected as the test data set, and 11 common models were compared
using 4 evaluation metrics, of which the accuracy rate reached 89.1% and the F1-score reached 90%,
achieving the optimum.

Keywords: deep learning; image classification; pneumonia diagnosis

1. Introduction

Pneumonia refers to the inflammation of the terminal trachea, alveoli, and pulmonary
interstitium. With the improvement of social medical care, improvement of nutritional
status, popularization of related vaccines, and widespread use of antibiotics, the incidence
and fatality rate of pneumonia have decreased to a certain extent; however, it still cannot be
controlled at the ideal level. In particular, the impact of pneumonia on the life and health
of the elderly and children [1] cannot be ignored. Studies have shown that pneumonia is
still the leading cause of death among children from the neonatal period to the age of 5,
and among the elderly over the age of 65 [2].

Imaging examinations, such as X-ray and CT, are important auxiliary examination
methods for the diagnosis of respiratory diseases. According to the image display, the
anatomical distribution of lesions in patients with pneumonia can be basically clarified,
and thus classified into lobar pneumonia, lobular pneumonia, and interstitial pneumonia.
Imaging results are also one of the important references for the timing of using of antibiotic
and the selection of treatment plans [3]. Although the widespread use of CT has improved
the early detection rate of patients with severe clinical manifestations, X-ray is still the first
choice for clinical screening and imaging follow-up due to its advantages of simplicity,
speed, and low cost. It is also the most commonly used examination method for chest
diseases at present. The appearance of pneumonia on chest radiographs includes the
thickening and blurring of early lung markings [4] and decreased transparency of the lungs.
Typically, patchy shadows can be seen. In the current global pandemic of the new crown
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pneumonia epidemic, the demand for chest X-ray examination in hospitals has greatly
increased, which requires radiologists to increase their ability to identify and distinguish
pneumonia signs.

With the development of information technology and computer technology, image
digitization and automatic recognition are widely used in various fields of society, which
promote the transformation of production and lifestyle. Digitized images that are obtained
by sampling, quantization, and encoding are scanned, identified, compared, analyzed by
the computer, and information contained in the image is obtained, which can help radiolo-
gists make quick judgments under the premise of ensuring diagnostic efficiency. Compared
with more complex computer technology application scenarios, such as face recognition [5]
and iris recognition [6], the main difficulties affecting the interpretation of signs of chest
radiograph pneumonia include the reflection of medical professional knowledge, such as
the identification of similar signs, the identification of small lesions, the identification of
areas near the mediastinum, and the identification of non-inflammatory small lesions nod-
ules or old foci in the image information [7]. With the development of artificial intelligence,
machine learning, and big data computing technology, the automatic image recognition
of artificial intelligence has the potential to be applied. In the field of medical imaging,
compared with the manual analysis by clinicians or radiologists, the recognition images
made by computer technology can be automatically optimized by adjusting the contrast
and so on [8], reducing the difficulty of image recognition. This article is based on a large
amount of real clinical data, and quickly and accurately interprets the signs of pneumonia
on the chest X-ray through the learning and training of artificial intelligence.

2. Related Work

In recent years, deep learning has developed rapidly and has been applied in many
fields. Currently, intelligent driving [9], facial recognition [10], intelligent AI [11], and so
on are all developed based on deep learning. At the moment of the epidemic, there is
a shortage of medical resources, and most of the medical staff fighting on the front line
cannot meet the current medical needs, which has prompted a large number of people
to delve into the idea of intelligent diagnosis, and use artificial intelligence technology to
solve the current problems that difficult to seek medical treatment and slow waiting.

Early on, machine learning was first applied in the medical field. Machine learning is
often used to classify data (such as benign or malignant tumors [12]) or predict long-term
systemic responses (such as wound healing time [13]). With continuous development, vari-
ous machine learning algorithms suitable for disease diagnosis and prediction have been
derived, including Alzheimer’s disease, cardiovascular disease, characteristic dermatitis,
and even multi-type models for predicting up to 39 diseases. For example, Kim et al. [14]
proposed a tree-based interpretable learning method to explore the optimal exercise therapy
for patients with knee osteoarthritis, which generated interpretable processing rules by
using random forests, which yielded low bias estimation but reduces the black-box aspects
of machine learning algorithms.

However, deep learning is more suitable for image data than traditional machine
learning. In machine learning, features for most applications need to be identified by
experts and then hand coded according to the data type. The deep learning algorithm
learns more advanced features from the data, which is a very unique part of deep learning
and a part different from traditional machine learning. Deep learning reduces the task
of developing a new feature extraction for each problem and tries to learn low-level
features, such as edges and lines at an early level, such as convolutional neural networks
(CNN), and then parts of the face. The last is the high-level representation of the face.
Compared with machine learning, this method has a higher improvement in training time
and cost. In view of the advantages of deep learning, a large number of scholars have
applied it to the classification of pneumonia. Liang et al. [15] proposed a pneumonia
binary classification model consisting of 49 layers of convolution-based on the idea of
residual, using transfer learning to overcome the problem of insufficient data volume.
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For the data, about 5856 patients aged 1 to 5 in the Guangzhou Women and Children’s
medical center, they finally achieved a good result on both the training and testing data.
Wang et al. [16] used the new crown pneumonia data set named COVIDx and proposed the
COVID-Net model that considers the diversity of the network structure. Experiments have
proved that the model is better than VGG-19 and ResNet50. Shaban et al. [17] introduced
a new hybrid diagnostic strategy to rank selected features by projecting them into the
proposed patient space, constructing a feature connectivity graph (FCG), showing each the
weight of a feature and the degree of combination with other features. Ozturk et al. [18]
proposed a model for the automatic detection of COVID-19, which uses raw chest X-ray
images and is called DarkCovidNet. The model aims to provide accurate judgments for
binary classification (COVID-19 patients vs. normal) and 3-category (COVID-19 patients
vs. normal pneumonia patients vs normal). The model made improvements based on
DarkNet-19. Compared with the original DarkNet-19, DarkCovidNet uses fewer layers and
filters, greatly improving performance. Li et al. [19] developed a unique voting algorithm
that can accurately classify images into four categories (normal, bacterial pneumonia,
viral pneumonia, and new coronary pneumonia). He combined 17 CNNs as a whole to
generate an AI model to optimize the adaptability of the data, and the final result adopted
a decision-making method of the majority rule. Bhandari et al. [20] proposed a lightweight
convolutional neural network for the detection of new crown pneumonia, pneumonia,
tuberculosis, and normal.

In this study, we propose an effective correlation reasoning network (graph-model),
which is different from previous models. It is able to perform good region reasoning
before the output of deep learning frameworks to achieve higher performance for image
classification. The structure of this article is as follows. The third part mainly describes the
structure of the proposed model, the fourth part introduces the experimental steps and
results in detail, and the fifth part is a summary of the paper.

3. Method

In this section, we first detail the motivation and overall structure of the proposed
method. Next, we detail the modules: adjacency matrix encoder and relation reasoning.
Finally, we introduce a supervision strategy for training.

3.1. Motivation

For medical images about pneumonia, it is very difficult to automatically identify
objects with high similarity to the surrounding environment. For general CNN-based
deep learning frameworks, extracting features from images with extremely high intrinsic
similarity is difficult to achieve accurate classification. The use of computers to discriminate
diseases has gradually attracted the attention of many researchers. Inspired by the research
on the visual system in biology, an ideal vision algorithm can achieve the reasoning and
interaction of contextual information to a great extent in a given pneumonia medical
image, so as to mine valuable clues. It is similar to the idea of identifying pneumonia
in humans: from the perspective of the global image, establish the global dependencies
between pixels, and make judgments based on the modeling of the dependencies to find the
unusual. Intuitively, our target can benefit from mining valuable information in long-range
dependency modeling and correlation reasoning. On the one hand, most of the existing
medical image classification methods are implemented by the simple feature extraction
of convolutional networks or modification of some convolution operations, and finally
output the number of classifications by the full connection. On the other hand, they use
additional convolutions to increase the depth or the width of the network to improve the
recognition performance. However, these operations limit the exploration of the image
area, and the correlation between the location information is not fully modeled and utilized.
At the same time, the blind pursuit of the network dimension will bring less and less return
on performance improvement. Exploring well-designed regional reasoning is beneficial for
the classification of pneumonia before the logical output of the deep learning framework.
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According to the above elaboration, we propose an efficient correlation reasoning
network in this work to achieve higher-performance image classification. We first use the
traditional convolutional network framework to extract features containing rich semantic
information that is helpful for classification. Then we integrate the outputs of the last layer
and the second layer of the baseline to generate an adjacency matrix, which expresses
the degree of correlation of each region of the image. Finally, we use graph reasoning to
complete the global modeling to help classify pneumonia diseases.

3.2. Overview

Figure 1 shows the overall design structure of our method. The proposed network is
a two-stage encoding structure, including feature extraction, feature embedding, and the
generation of the adjacency matrix. Considering that the information of the first layer of the
baseline contains too much noise and insufficient effective information, for the generation
of the adjacency matrix, we not only use the high-level semantic cues of the last layer
but also integrate the rich spatial detail information contained in the second layer, which
makes the embodiment of the correlation relationship more comprehensive and accurate.
In our method, the generated adjacency matrix and embedded feature nodes are fed into
the correlation reasoning, which can explicitly model long-range dependencies, providing
guiding information in the process of learning classification. Finally, the feature information
of reasoning is converted into logical output and supervised. Next, we briefly describe our
two-stage structure.
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Figure 1. Overall architecture of proposed network.

In the first stage, given an input lung image I ∈ R3×H×W , where W and H denote the
height and width of the image, a traditional backbone network is adopted to extract multi-
level features from five convolutional blocks, which are denoted as {Ci |i= 1, 2, 3, 4, 5},
where i indicates the convolutional block. The backbone we use here is MobileNet [21], and
we discard the original fully connected logic output. For the realization of the following
graph reasoning, we complete graph feature projection and adjacency matrix generation
after the feature extraction of the backbone.

In the second stage, after we have feature projection Gs ∈ C × HW and adjacency
matrix Ã ∈ HW × HW, we feed them into the method of graph reasoning to model global
dependencies and explore valuable information. The overall flow of the algorithm can be
described as follows:

Ci = gnet(I), i = 1, 2, 3, 4, 5 (1)

Ã = GAM(C5, C2) (2)

out = FC
(

graph
(

Ã, Gs

))
(3)
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where gnet represents the backbone called GoogLeNet. GAM represents the generation of
the adjacency matrix in the first stage. graph denotes the operation of graph reasoning in
the second stage. FC represents our final logical output operation, which is stacked fully
connected operations. out is our final output.

3.3. The Generation of Adjacency Matrix

In this subsection, we elaborate on how matrix Ã is defined to indicate the degree
of correlation between feature regions. On the one hand, the adjacency matrix is aimed
at the global correlation of features. Convolution only aggregates context in small local
neighborhoods. Although redundant global calculations are naturally avoided, it is difficult
to model global dependencies due to the limited receptive field; thus, directly using the
feature information of the convolution output to generate the correlation will lead to
the wrong reasoning of the information. On the other hand, the integration of spatial
detail information will help to optimize the correlation, which is beneficial to generate
a more accurate adjacency matrix. In addition, similar to most methods, we use the
Euclidean distance to represent the degree of correlation between pixel i and pixel j in the
adjacency matrix Ã ∈ HW × HW. In this work, we implement it as the dot product and
matrix multiplication.

Based on what was mentioned above, we divide the generation of the adjacency matrix
into two steps as shown in Figure 1. In the first step, in order to assist CNN and benefit from
the achievements of visual transformers in image processing in recent years, we embed a
transformer block with multi-head self-attention after the final output of the convolution
backbone, and perform subspace division on the current vector for attention calculation,
realizing the attention calculation of the subspace, and then combine the calculation results
with concatenation. This block naturally associates long-distance targets by comparing the
global similarity. The process is as follows:

T = C5 + MHSA(norm(C5)) (4)

M = T + mlp(norm(T)) (5)

where norm denotes the operation of LayerNorm. MHSA represents the multi-head self-
attention. mlp denotes multilayer perceptron for forward propagation. At this step, we can
obtain the optimized output M.

In the second step, we focus on the operation of the dot product and multiplication of
matrices to obtain correlation coefficients representing Euclidean distances. We divided
it into two branches as shown in Figure 2, which is called the feature encoder. In the first
branch, we first use convolution with a 1× 1 kernel to scale the features into a single-channel
space to improve the computational efficiency. Then the spatial correlation is obtained by
matrix transposition and matrix multiplication. We can obtain As ∈ HW × HW by the
first branch:

As = Conv1(M)× Conv1(M)T (6)

where Conv1 refers to convolution with a 1× 1 kernel. T is the transpose of the matrix, and
× represent matrix multiplication.

In the second branch, for the input of the fifth layer, we use convolution to scale it
to two channels, which corresponds to the number of our logical outputs, and for the
input of the second layer, considering that the shallow features contain more noise, we
first adopt the spatial attention unit to filter information from it, modeling the importance
of spatial locations, finding the most important parts of the cues, and focuses on task-
relevant regions. The feature information from the two layers is then combined by the dot
product of the matrix and the maximum value method is used to obtain the single-channel
feature of the combined information and the high-level information after dimensionality
reduction. The degree of correlation is represented by the maximum probability value,
which further enhances the reliability of the association. After the two information streams
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are extracted again by 1× 1 convolution, respectively, matrix multiplication is used to
obtain Ai ∈ HW × HW:

h1 = Conv1(M) (7)

h2 = reshape(SA(C2)) · h1 (8)

Ai = Conv1(Max(h1))× Conv1(Max(h2)) (9)

where · represents the operation of the dot product, Max denotes the selection of the maxi-
mum value, SA represents the spatial attention, and reshape is an operation representing
dimension matching.

Finally, the output results of the two branches are integrated by an element-wise
addition to obtain the final correlation matrix Ã:

Ã = So f (As) + So f (Ai) (10)

where + denote element-wise addition, So f denotes the softmax function.

Conv:Wq 

× 

Trans

Softmax

Conv:WY  SA

reshape

Max()

Conv:1×1

Max()

Conv:1×1

× 

Softmax+

1×HW

HW×1

HW×HW HW×1
1×HW

HW×HW

Figure 2. Feature encoder.

3.4. Graph Reasoning

Graph reasoning aims at mining and interacting with structured image data in the
form of graph structure. We need to convert the three-dimensional image data into a
two-dimensional matrix that depends on the graph structure. We first project the feature
space of the image. For the feature nodes of the graph, here, each pixel of the feature map
is a node, which is a C × N matrix, where N(HW) is the total number of pixels, that is,
the number of graph nodes, and C is the feature dimension of each node. Given an input
feature map S ∈ C× H ×W, we project it to Gs ∈ C× HW so that we construct a graph
space containing HW nodes, in which each node has the feature dimension of C× 1.

After obtaining feature node Gs and adjacency matrix Ã, we feed them into graph con-
volution. Our goal is to explore valuable information by modeling long-range dependence
and obtain Gout ∈ C× H ×W after graph reasoning, which is defined as

Gout = σ
(

ÃGsW
)

(11)

where σ denotes the ReLu activation, and W is a trainable parameter. Here, we use a
one-dimensional convolution with a convolution kernel of 1× 1. In order to preserve the
original information and enhance the robustness of the features, we reuse the output of the
graph convolution layer with the input
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Gout = Gout + Gs (12)

Finally, we reconstruct the output Gout ∈ C× HW on the graph space to C× H ×W.
As described above, we feed the output of graph reasoning into stack of fully connected
layers to obtain the logical output of the classification:

out = FC(Gout) (13)

3.5. Supervision Strategy

The proposed method obtains the logical output of b× 2 at the end. We optimize the
training parameters by supervising this output and computing their cross-entropy loss
as follows:

l = −
2

∑
x=1

G(x) log(S(x)) + (1− G(x)) log(1− S(x)) (14)

among them, G(x) and S(x) represent the ground truth and predicted value of the corre-
sponding category, respectively. We aim to judge whether there is pneumonia disease, so
the logical output category is 2.

4. Experiment and Results

In this section, we first introduce the details of the data set we used in this paper, then
introduce the parameters in the model processing, experimental configuration, and model
evaluation methods, and finally state the experimental results of the model.

4.1. Data

The data set contains 6189 pediatric pneumonia diagnostic images, including 3319 nor-
mal cases and 2870 pneumonia cases. In deep learning, the bigger the number of data we
have, the better the scores we obtain. Sufficient data can not only improve the training
accuracy of the model but also prevent overfitting of the model in the case of complex mod-
els. Moreover, sufficient data can better simulate various cases in real scenarios, making
the model more expressive. To this end, the data-enhancement method is used to process
the original data of the existing data set in the following angles to enhance the expression
of the original data: the horizontal and vertical rotation of the image, the rotation of the
random angle, the change of the image brightness, chroma, contrast and color temperature,
and the addition of some random noise. Considering that the size of each image is different
and there are too many redundant features, in order to unify the model input, the image
is scaled to the pixel size of 480 × 480, and the range of pixel values is normalized to the
interval of 0 ∼ 1. In addition, considering the redundancy and interference of irrelevant
features in the non-target area of the image, a center cropping operation with an aspect ratio
of 0.9 was adopted for all images, that is, the shaded parts on both sides and the parts other
than the upper and lower heads and ribs were removed as shown in Figure 2. The reason
for this is that, from a physician’s perspective, most pneumonia judgments only consider
the lungs, and the role and contribution of the areas outside the lungs to the diagnosis
are not very large, which can better reflect the clinical significance of the operation. The
expanded data are shown in Table 1. There were 5974 normal cases and 5166 pneumonia
cases, with a total of 11,140 samples.

Table 1. Data set.

Images Stage1 Stage2

Normal 3319 5974
pneumonia 2870 5166

Total 6189 11,140
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Figure 3 shows the comparison of the image data before and after enhancement. From
the human perspective, this is just a simple image flip, but for the computer, these are two
different pictures. Because the computer, after reading the picture, is the size of each pixel
in the picture, each pixel value is different to show different information, so it is much more
sufficient and more accurate than the information observed by human eyes. The value
of each pixel in the picture shown in Figure 2 is different. Therefore, for the computer,
the data-enhancement operation can expand the number of samples in a favorable way,
increase the performance ability of the data, and simulate a variety of complex situations in
the real scene as much as possible so that the model has stronger generalization ability and
can give more accurate prediction in other situations.

Figure 3. The original image is on the (left), and the rotated image is on the (right) after the data-
augmentation operation.

4.2. Experimental Setup

We divide the data set into a training set and test set according to the ratio of 0.8. The
number of samples in the training set is 9902, the number of samples in the test set is 1238,
and the number of model iterations is set to 150 epochs. We adopt a minibatch stochastic
gradient descent with a momentum of 0.9 to train our mode. The weight decay and initial
learning rate are set to 0.0005, and the batch size of the experiment is set to 16. We optimize
the parameters of the model through continuous iteration on the training set and, finally,
evaluate the performance of the model through the test set. Since this is a classification task,
in order to better evaluate the classification accuracy and performance of the model, we use
four metrics based on the confusion matrix—accuracy, precision, recall, and F1-score—to
evaluate the overall performance of the model.

4.3. Results

As shown in Figure 4, the result of the model about the classification of pneumonia
on the test set, the confusion matrix is based on true positive (TP), true negative (TN),
false positive (FP) and false negative (FN), which is a common method to evaluate the
performance of the model. TP represents the number of samples that were correctly
identified as positive by the model, TN is the number of samples that were correctly
identified as negative by the model, FP is the number of samples that were misclassified as
negative by the model, and FN is the number of samples that were incorrectly classified as
positive (pneumonia) by the model. The upper left and lower right corners of the confusion
matrix represent the percentage of true positives and true negatives in the total sample,
while the lower left and upper right corners represent the percentage of false positives and
false negatives in the total sample, respectively. It can be found that the number of true
positives and true negatives correctly predicted by the model is more than the number of
false positives and false negatives, while the number of incorrect predictions is very small.
The F1-score index can also reflect the superiority of the model from another perspective.

In order to reflect the superiority of the model in this task, Figure 5 lists the comparison
results of 12 models in the pneumonia classification task, in which 4 metrics are, namely,
the accuracy, precision, recall, and F1-score, respectively.



Diagnostics 2023, 13, 2125 9 of 14

0 1

0
1

48.95 % 4.68 %

6.14 % 40.23 %

Confusion Matrix

Figure 4. Confusion matrix.

0.80 0.82 0.84 0.86 0.88 0.90

Vgg11

Vgg13

Vgg16

Resnet18

Resnet34

Resnet50

Densenet121

Densenet161

Inception_v3

Convnext

Mobilenet_v3

ours

Accuracy

(a)

0.80 0.82 0.84 0.86 0.88 0.90

Vgg11

Vgg13

Vgg16

Resnet18

Resnet34

Resnet50

Densenet121

Densenet161

Inception_v3

Convnext

Mobilenet_v3

ours

Precision

(b)

0.86 0.88 0.90 0.92 0.94

Vgg11

Vgg13

Vgg16

Resnet18

Resnet34

Resnet50

Densenet121

Densenet161

Inception_v3

Convnext

Mobilenet_v3

ours

Recall

(c)

0.80 0.82 0.84 0.86 0.88 0.90 0.92

Vgg11

Vgg13

Vgg16

Resnet18

Resnet34

Resnet50

Densenet121

Densenet161

Inception_v3

Convnext

Mobilenet_v3

ours

F1-score

(d)

Figure 5. It is a comparison of the model metrics, (a) is Accuracy, (b) is Precision, (c) is Recall, and
(d) is F1-score.

Metrics of vgg11, vgg13, and vgg16 models shown in Figure 5 indicate that when using
the vgg framework, the deeper the network, the better the improvement of the accuracy,
recall, and F1-score. Similarly, for resnet18, resnet34, and resnet50, the deeper the network,
the better the metrics with the accuracy and precision. For the accuracy and recall metrics
of Densenet121 and DenseNet161, although the deeper the network structure, the higher
the accuracy. However, the deeper the network, the larger the number of model parameters
and the longer the inference time.For example, the accuracy of Densenet121 to Densenet161
is only improved by 0.2%. The enhancement of the network has a limited impact on the
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metrics, and when designing the framework, we must consider not only the number of
parameters in the model, but also the enhancement of the effect due to the number of
parameters.Considering the limitations of the number of model parameters in practical
applications, we compare different backbone models with a small number of parameters,
including Vgg11, ResNet18, Densenet121, Inception v3, Convnext, and Mobile v3. Mobile
v3 is a prominent model in lightweight networks, and it can be found that there is not a big
gap between the metrics of this network and other models through comparison. Therefore,
Mobile v3 is used as the backbone to explore this basis. Based on the adjacency matrix and
graph reasoning modules, the model in this paper reaches the optimal method.

It can be found that for accuracy, our method achieved an improvement compared
with the best model, Densenet161, and reached the optimal performance of 0.891. Similarly,
for the precision, it surpassed the Densenet121 model and reached 0.888, and for the F1-
score, our model surpassed the Densenet121 and reached 0.900. The above three metrics
reached the optimal performance in the participating comparison model.

Figure 6 shows the accuracy of the model on the training set and the test set. In the
experiment, we set 150 epochs. Red represents the change curve of the accuracy rate during
the training process, and green represents the change curve of the accuracy rate during
the testing process. It can be found that as the number of iterations increases, the accuracy
of the model on the testing set is almost stable at the 50th epoch, but the accuracy on the
training set is still improving. Therefore, it can be considered that subsequent training will
not improve the generalization ability of the model. Based on this, the optimal selection of
weight is retained in the 50th epoch. To further analyze the performance of our model, we
visualize the parameters of the model weight using Grad-CAM [22].

0 20 40 60 80 100 120 140
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65

70

75

80

85

90
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cu
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cy
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)

Model Accuracy
training acc
testing acc

Figure 6. Training and test accuracy curves.

Figure 7 is the heat map after the visualization of Grad-CAM. It can be seen that the
trained model can pay more attention to the double lung area, which is the red area in the
heat map. It indicates that our model accurately uses effective features to make decisions.
This is also in line with the judgment criteria of clinicians.
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(a) (b) (c)

Figure 7. (a) is the original image, (b) is the heat map generated by the comparison model, and (c) is
the heat map generated by our model.

5. Discussion

In this section, we systematically analyze the proposed method in comparison with
other algorithms based on the experimental results of the previous section and discuss the
advantages of the algorithm as well as the current problems.

5.1. Comparison with Related Algorithms

Common classification algorithms for machine learning include logistic regression, K-
nearest neighbor, SVM, and parsimonious Bayes. However, these classification algorithms
have some limitations when used for image classification. First, the dimensionality of
image data is very high, which can cause some distance or density-based algorithms
(e.g., K-nearest neighbor and parsimonious Bayes) to be very time consuming and space
consuming in terms of computation and storage. In addition, image data contain a large
amount of noise, distortion, illumination, scale, etc., which can affect the feature extraction
and recognition of image data, resulting in some linear or global feature-based algorithms
(e.g., SVM), failing to effectively capture the local and nonlinear features of the image
data. Second, there may be significant differences or similarities between different classes
of medical images, which may lead to the inability of some hypothesis-based or a priori
algorithms to accurately depict the distribution and probability of image data. For these
reasons, machine learning algorithms are not applicable to this data set.

As shown in Figure 5, deep learning has developed rapidly in the last two years, and
this paper uses the common classification models in recent years as a comparison. The
advantages and disadvantages of these models are summarized as follows:

• Vgg [23]: The advantage of vgg is its simple structure and easy implementation of
algorithms that use multiple repeated convolutional and pooling layers to build deep
networks. However, it is relatively computationally intensive, takes a long time to
train, and its fully connected layers account for a large proportion of the parameters
relative to the overall model.

• ResNet [24]: ResNet uses the idea of residuals to solve the problem of difficult training
of deep networks with strong generalization ability, but its network structure is more
complex and requires more computational resources.

• DenseNet [25]: This is an algorithm that uses dense connectivity to enhance feature
propagation and feature diversity. Its advantage is that it can effectively utilize low-
level features, reduce gradient disappearance and overfitting problems, and improve
classification performance; its disadvantage is that it requires more memory space and
computational resources.

• Inception [26]: This is an algorithm that uses multi-scale and multi-branch convo-
lutional structures to extract features at different levels and degrees of abstraction.
Its advantage is that it can adapt to images of different sizes and shapes to improve
classification accuracy and efficiency; the disadvantage is that the network structure is
more complex and requires more parameter tuning.

From the above, it can be seen that the deep learning algorithms that have achieved
good results in the past two years often have a huge number of parameters, which especially
occupy memory and computational resources. Therefore, in this paper, we adopt the
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lightweight framework mobileNet as the backbone and use deep separable convolution
to reduce the number of parameters and computation, which can improve the running
speed and efficiency, and combine with the graph convolution model structure [27]. Graph
convolution can take advantage of the lightweight and efficiency of mobileNet, as well as
its own adaptability and local perception ability to handle the classification of data and
improve the accuracy of the model.

5.2. Disadvantage

In this paper, we combine the graph convolution algorithm to improve the accuracy
of mobile networks, but other problems arise. First, graph convolution occupies a large
amount of memory space when constructing the adjacency matrix, which is not conducive
to storage and computation. Second, the nonzero elements of the adjacency matrix reflect
the direct connection relationship between nodes, and when considering the influence
between nodes with larger distances, multiple multiplication operations are required for
the adjacency matrix, which will increase the computational complexity and sparsity.

6. Conclusions

In this paper, we applied deep learning to solve medical imaging problems, make
improvements to medical imaging and achieve good performance. We proposed a model
with relevant reasoning based on the feature extraction of the backbone using the mobileNet
network. We first used the low-level spatial detail information and high-level rich semantic
information to generate an adjacency matrix by matrix point multiplication and matrix
multiplication operations, which represent the degree of correlation of each pixel in the
feature matrix. Then, inspired by the idea of graph convolution, our method establishes
long-distance relationships and model global dependencies from a global perspective. Fi-
nally, through modeling and reasoning on dependencies, we can focus on the inflammatory
lesion area to judge the occurrence of pneumonia. We compared 11 classic models including
the backbone we used, and adopted 4 evaluation indicators, in which 3 indicators achieved
the best results: the accuracy reached 0.891, the precision reached 0.888, and the f1-score
reached 0.900. This shows that our proposed algorithmic model is superior to using only
the baseline model.

In future work, we will increase the diversity of data to improve the difficulty of model
classification. Medical data sets are difficult to collect, with label inconsistency and noise
interference, including subjective factors of physicians, so new data augmentation and
self-supervised learning methods need to be developed to improve the data utilization
and representation capability of models. In addition, medical research often encounters
scenarios where diagnoses cannot be made with a single piece of data and usually needs to
rely on multiple examination data to identify diseases. Therefore, it is necessary to combine
image data with other related tasks to achieve multimodal data input in order to improve
the generalization capability of the model.
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