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Abstract: Difficulty in detecting tumours in early stages is the major cause of mortalities in patients,
despite the advancements in treatment and research regarding ovarian cancer. Deep learning al-
gorithms were applied to serve the purpose as a diagnostic tool and applied to CT scan images of
the ovarian region. The images went through a series of pre-processing techniques and, further,
the tumour was segmented using the UNet model. The instances were then classified into two
categories—benign and malignant tumours. Classification was performed using deep learning
models like CNN, ResNet, DenseNet, Inception-ResNet, VGG16 and Xception, along with machine
learning models such as Random Forest, Gradient Boosting, AdaBoosting and XGBoosting. DenseNet
121 emerges as the best model on this dataset after applying optimization on the machine learning
models by obtaining an accuracy of 95.7%. The current work demonstrates the comparison of multi-
ple CNN architectures with common machine learning algorithms, with and without optimization
techniques applied.

Keywords: ovarian tumours; UNet; convolutional neural networks; VGG 16; DenseNet; ResNet; Dice
score; Jaccard score

1. Introduction

Ovarian cancer stands out as a commonly diagnosed type of cancer worldwide. Con-
sidering the fact that it usually goes unrecognised until it reaches terminal stages, ovarian
cancer is a leading reason for high mortality rates among women as a gynaecological illness.
Ranking fifth in deaths due to cancer among women, the risk of being diagnosed with
ovarian cancer peaks between the ages of 55 and 64, on average [1]. Silent symptoms
and undetermined causes act as major factors for late diagnosis and ineffective screening
methods.

The American Cancer Society claims that around 19,710 women will be diagnosed
with ovarian cancer and that around 13,270 deaths will occur from ovarian cancer in
2023 in the United States [2]. In the past few years, significant developments in the
field of biomedical imaging have contributed to the domain of cancer detection. With
interdisciplinary approaches being popularized to solve objectives, Medical Imaging can be
combined with Machine Learning and Deep Learning disciplines to effectively detect and
categorize tumours. Ultrasound and CT scan images contain large amounts of information,
making them ideal to use in the case of the implementation of Deep Learning algorithms.

Diagnostics 2023, 13, 2282. https://doi.org/10.3390/diagnostics13132282 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13132282
https://doi.org/10.3390/diagnostics13132282
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://doi.org/10.3390/diagnostics13132282
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13132282?type=check_update&version=1


Diagnostics 2023, 13, 2282 2 of 16

The symptoms are not only vague in nature, such as bloating, abdominal pain, fatigue,
etc., but they are also noticeable only in the later stages. The lack of symptoms showing up
early often leads to delayed medical examination of the subject and therefore late detection
of the tumour in general. Also, unlike in a few other cancers, there is no ascertained
screening process for ovarian cancer. The most common approach is to have the subject
undergo a scanning process, usually a CT scan, where the radiologist would go through
hundreds of images and determine if there is a tumour present or not. Not only is this
time-consuming, but also prone to error due to possible false positives. All of the above
reasons can be considered as the main challenges to detect ovarian tumours. The advent
of technology like Deep Learning mechanisms can aid in the detection of a tumour by
increasing its efficiency in terms of time and accuracy.

This paper aims to provide a comparative study of the detection and classification
of ovarian tumours using Machine Learning and Deep Learning algorithms, using CT
images of ovaries. Multiple ML models and CNN variants were used for this purpose
and the comparison was carried out inter-categorically as well as intra-categorically. The
Literature Survey section covers the latest developments and ongoing research, not only in
the detection of ovarian cancer but also in how state-of-the-art Deep Learning algorithms
are used in other medical scenarios.

The organization of the paper is as follows: Section 2 reports the literature survey of
the latest research performed in the area of biomedical imaging and of several learning
algorithms used. Section 3 demonstrates the methodology, along with the steps and the
models used in the current work. Section 4 presents the experimental results and the
discussion. Section 5 provides the concluding thoughts.

2. Literature Review
2.1. Medical Imaging Classification Using CNN

Jung et al. [3] used ultrasound images of the lower body region of females to remove
unwanted information in the frame and classify the ovaries into five classes—normal,
cystadenoma, mature cystic teratoma, endometrioma, and malignant tumour. They used a
texture-based analysis for tumour detection and trained a convolutional autoencoder or
CNN-CAE. The images before and after the autoencoder are both fed into CNNs such as
Inception, ResNet and different variants of DenseNets. Weighted class activation mapping
or Grad-CAM was used to visualise the result. It can be noted that the model classified better
when unnecessary data were removed using CNN-CAE. DenseNet121 and DenseNet161
were the better performers amongst all the algorithms used when parameters like accuracy,
sensitivity, specificity, and the area under the curve (AUC) were considered to be metrics of
performance.

Wang et al. [4] used pelvic CT scan images to detect and segment out ovarian cancer
tumours simultaneously, i.e., creating a multi-task deep learning model. They proposed
a model called YOLO-OCv2, which was an enhancement of their previously proposed
algorithm. Mosaic enhancement was also used here, in order to improve the background
information of the object. However, the multitask model YOLO-OCv2 outperformed other
algorithms like Faster-RCNN, SSD and RetinaNet, which were trained on the COCO dataset.
In this work, Mahmood et al. [5] created a Nuclei segmentation model that could be used
to segment out the nuclei in multiple locations of the body. The authors used Conditional
Generative Adversarial Networks, or cGAN, as they can control the GAN training output
depending on a class. The model was trained on synthetically generated data along with
real data in order to make sure that sufficient input was present. The model was trained
with data from nine organs and was tested on four organs, where it outperformed its peers,
such as FCN, U-Net and Mask R-CNN. Guan et al. [6] used mammographic images to
detect breast cancer using CNN models. The authors focused on Affine transformations
and synthetic data generation using GANs.
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2.2. Medical Imaging Classification Using Ensemble Deep Learning

According to Karimi et al. [7], a Vision Transformers (ViT) algorithm was proposed
which divided images into Image Patches. The proposed algorithm using transformers did
not use any convolution operations to segment the brain cortical plate and the hippocampus
in MRI images of the brain. The results were compared with FCN architectures like
3D UNet++, Attention UNet, SE-FCN and DSRNet. The proposed network performed
segmentation accurately when compared to the other, and with a significantly smaller
number of labelled training images. Xu et al. [8] worked on histopathological whole-
slide images (WSIs) to detect ovarian cancer using CNNs trained on images of multiple
resolutions. The authors proposed a new modified version of ResNet50 called the Heatmap
ResNet50 algorithm for CNN-based patch selection, and ResNet18 along with MR-ViT was
used for ViT-based slide classification. Li et al. [9] introduced a variation of UNet known as
CR-UNet to simultaneously segment out ovaries and follicles from transvaginal ultrasound
(TVUS) images. The proposed model was then compared with models like DeepLabV3+,
PSPNet-1, PSPNet-2 and U-Net to find that the proposed model outperformed them
all. In the proposed work by Goodfellow et al. [10], an adversarial net framework was
suggested that loosely resembles a minimax two-player game. Nagarajan et al. [11] and
Zhao et al. [12], in their research work, provided three approaches that were used to classify
ovarian cancer types using CT images. The first approach used a deep convolutional
neural network (DCNN) based on AlexNet, which did not provide satisfactory results. The
second approach had an overfitting problem. To overcome this, GAN was used in the
third approach to augment the image samples along with the DCNN, which provided the
best results out of the three approaches in metrics such as precision, recall, f-measure and
accuracy. The research work of Saha et al. [13] included a novel 2D segmentation network
called MU-net, which was a combination of MobileNetV2 and U-Net used to segment out
follicles in ovarian ultrasound images. An USOVA3D Training Set 1 dataset was used. The
proposed model was evaluated against several other models from previous works in the
literature, and was shown to be more accurate, with an accuracy of 98.4%. Jin, J et al. [14],
in their work, used four UNet models: U-net, U-net++, U-net with Resnet and CE-Net to
perform automatic segmentation. In Thangamma et al. [15], the k-means algorithm and
fuzzy c-means algorithm were used on ultrasound images of ovaries. It was concluded
that the fuzzy c-means algorithm provided a better result than the k-means algorithm The
work by Hema et al. [16] involved FaRe-ConvNN, which applied annotations on the image
dataset, where the images had three categories: epithelial, germ and stroma cells. In order to
avoid overfitting and other issues due to the small dataset size, image augmentation using
image enhancement and transformation techniques like resizing, masking, segmentation,
normalization, vertical or horizontal flips and rotation was undertaken. FaRe-ConvNN
was used to compensate for manual annotation. After the region-based training in FaRe-
ConvNN, a combination of SVC and Gaussian NB classifiers was used to classify the
images, which resulted in impressive precision and recall values [17]. In the works carried
out by Ashwini et al. [18–20], various Deep Learning models were used to segment the
CT scanned images and classify them using variants of CNN. In the work [18,19], Otsu’s
method was used to segment the tumour and a dice score of 0.82 and Jaccard score of
0.8356 were obtained. Further, to perform segmentation, cGAN was used [20] and, in this
study, the segmentation and classification of tumours were carried out in a single pipeline,
which obtained the dice score of 0.91 and the Jaccard score of 0.89. Similarly, in the works
carried out by Fernandes et al. [21,22], according to the work [21], the authors proposed
the segmentation of brain MRI images using entropy-based techniques. As per [22], the
detection and classification of brain tumours by parallel processing was carried out using
big data tools such as Kafka and PySpark.

2.3. Deep Learning in Medical Imaging Segmentation

Koonce et al. [23] shed light on EfficientNet, which comprised the inverted residual
blocks of MobileNet v2 combined with the MnasNet architecture to form a robust model
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for performing Image Recognition. Rehman et al. [24] at BU-Net used a Residual Extended
Skip (RES) block and a Wide Context (WC) block in a U-Net architecture to implement the
proposed model, BU-Net, to segment Brain tumour cells in MRI scanned images. In the
current work by Rehman et al. [25], the authors proposed a model named BrainSeg-Net to
achieve the segmentation of tumour. The proposed model included a Feature Enhancer
(FE) block at every encoder stage to protect critical information that could be tampered
with during the convolution and transformation processes. Jalali et al. [26] proposed
ResBCDU-Net for lung segmentation in CT images, which was used in applications such as
in detecting lung cancer. To form the ResBCDU-Net, a pre-trained ResNet-34 network was
used in place of an encoder in a typical U-Net model. The proposed method performed
better than models like U-Net, RU-Net, ResNet34-UNet and BCDU-Net when measured
using several evaluation metrics. Maureen et al. [27] and Neelima et al. [28] carried out
an extensive review of bone image segmentation by considering the methods used in
medical additive manufacturing. According to this review, global thresholding is the most
commonly used method for segmentation and has obtained an accuracy of under 0.6 mm.
Further, the authors have proposed using other advanced thresholding methods that may
improve the accuracy to 0.38 mm. In the work carried out by Minnema et al. [29], the
CNN-based STL method was applied for bone segmentation in CT scan images, which
was able to accurately segment the skull and obtain a mean dice value of 0.92 ± 0.4. As
per [30], a residual spatial pyramid pooling (RASPP) module was proposed to minimize
the loss of location information in different modules. On similar lines, the work proposed
by [31] optimized the CNN UNet model by applying it on a CT dataset generated from the
MRI images. The results showed that the model performed well on the CT images when
compared with the MRI images.

3. Methodology
3.1. Dataset Description

The current research work was carried out in collaboration with SDM Dharwad
Hospital, Dharwad, Karnataka, India. The dataset used in the research work was obtained
from SDM Dharwad College and Hospital. The entire work has been approved by the
ethical approval committee of the hospital. The radiologist annotated the lesions, which
acted as the ground truth for the study. The size of the dataset is as follows: there were
2560 benign and 2370 malignant images. For the complete study of the tumours, all three
orientations of the images were considered—axial, coronal and sagittal views. The images
were 2D.

3.2. Segmentation Using U-Net Model

U-Net is one among the oldest image segmentation models, first introduced in the
paper U-Net: Convolutional Networks for Biomedical Image Segmentation. It comprises
an encoder–decoder architecture for down-sampling and up-sampling, respectively. The
U-Net [32] architecture is displayed in Figure 1.

The connections between encoder and decoder were the skip connection, which
concatenated the encoder feature map with the decoder. This helped in the training
process due to the backward flow of gradients. Image segmentation could be assumed as
a combination of classification and localization tasks. The skip connections and decoder
networks constituted the important aspects of the U-Net. The encoder network, also known
as the contracting network, learned a feature map of the input layer. The task of the encoder
was very similar to a classification task, in identifying the objects present in the image. In
between the encoder and decoder networks lies the bottleneck layer, which comprised
two convolutional layers followed by the ReLU activation layer. This layer produced the
final feature map representation. The decoder network, also called the expansive network,
took the feature map, as outputted by the bottleneck layer, as an input and outputted a
segmentation mask. This was accomplished with the aid of skip connections. The task of
the decoder is mainly to localize the object in the image. Skip connections, indicated with
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the grey arrows in the architecture, used contextual features learned from the encoder block
and generated the segmentation map.
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3.3. Detailed Methodology

Figure 2 describes the implementation flowchart. The CT scan images of the ovarian
region collected were used as input images for the algorithms. These images underwent
pre-processing techniques before they were fed into these models as input. Pre-processing
includes a series of digital image processing techniques to support the segmentation of the
input image. Intensity transformation was performed to obtain higher-quality images, by
enhancing the pixel intensity of the image. Median filter was applied to reduce speckle-like
patterns formed by noise in the CT scanned image and for better edge detection. Histogram
equalization helped in highlighting fine details in the image to segment out the Region of
Interest (ROI), which in our case was the ovarian tumour, with ease.

After undergoing the pre-processing steps, the images were fed as input to a UNet
model for segmenting out the tumour in the CT scanned image. UNet [32] is a Con-
volutional Neural Network (CNN) architecture applied to medical images to perform
segmentation tasks. It is mainly used to segment images with complex shapes and sizes,
such as tumours. With its increasing popularity in biomedical imaging, it is also being used
in other fields such as satellite imaging, etc. The segmented images were then used as input
in several deep learning CNN variants and machine learning models for classification.
The input instances were classified into two categories, namely, benign and malignant
tumours, to detect whether the subject is at risk of Ovarian cancer or not. The CNN models
implemented included the simple CNN model, ResNet 152, DenseNet 121 and Inception—
ResNet v4. VGG16 and Xception. These are the state-of-the-art models. The reason for
choosing smaller layers of these models was due to small dataset available for this research
work. Machine learning models like Random Forest, Gradient Boost algorithm, AdaBoost
and XGBoost were also used. The outcomes of all these algorithms were then compared.
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4. Results and Discussions

The results section is divided into three parts. The first section describes the segmenta-
tion results using UNet, the second section describes the classification results using variants
of CNN and the third section shows the comparison of the deep learning results with
machine learning results.

4.1. Experimental Settings

Using bicubic interpolation, all the images were resized to 512 × 512 pixels. The batch
size was set to 64 and every model was trained up to 1000 epochs. A final fully connected
layer with ReLU activation function had 256 hidden neurons, followed by a dropout layer
with a probability of 0.5 to prevent overfitting. Adam optimizers were used with the
parameter values (beta 1 and beta 2) set to 0.6 and 0.8 and the learning rate as 0.0001. The
last dense layers of all architecture were modified to output two classes corresponding
to benign and malignant. All pre-trained CNN models were fine-tuned separately. The
training and testing of the proposed architecture was implemented using Python using the
keras package and run on Nvidia RTX 3060 GPU with 32 GB RAM.

4.2. Segmentation Results Using the UNet Model

The performance metrics used to evaluate the segmentation process were Dice and
Jaccard scores. The loss function used in the UNet was Softmax.
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Dice score: This metric was used to determine the similarity between two images.
Here, two images refer to the ground truth and the segmented image. The equation for the
Dice score is given below:

Dice =
2 ∗ |S ∩ G|
|S|+ |G|

where S indicates the segmented region that needs to be evaluated and G indicates the
ground truth of the image. | | indicates the cardinality of the set. The Dice score always
has a value between 0 and 1. The greater the value, the better the segmentation.

Jaccard score: This metric is used to calculate the overlap area between the segmented
and the ground truth. The equation for the Jaccard score is given below:

Jaccard =
dice

2− dice

The evaluated values of the Jaccard score range lie between 0 and 1; the greater the
value, the better the segmentation results obtained.

Figure 3 presents the images of the input, ground truth (label) and the segmented
images for benign images. It is observed from Table 1 that UNet performed well for the
benign images, as the shape of the tumour was well-grown and the borders were clear.
Table 1 has the 20 sample results from the testing set.
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Table 1. Dice score and Jaccard score for benign tumour.

Image Benign

Class0_Dice Class1_Dice Class0_Jaccard Class1_Jaccard

CT_1 0.99756 0.98193 0.99514 0.96451

CT_2 0.99775 0.98975 0.99552 0.97972

CT_3 0.99758 0.98710 0.99518 0.97454

CT_4 0.99738 0.98974 0.99479 0.97969

CT_5 0.99777 0.97334 0.99556 0.94807

CT_6 0.99701 0.98348 0.99404 0.96751

CT_7 0.99761 0.97269 0.99523 0.94684

CT_8 0.99729 0.99024 0.99459 0.98068

CT_9 0.99895 0.98740 0.99790 0.97512

CT_10 0.99882 0.92817 0.99765 0.86597

CT_11 0.99786 0.97470 0.99577 0.95066

CT_12 0.99814 0.97956 0.99637 0.95994

CT_13 0.99862 0.96864 0.99724 0.93920

CT_14 0.99718 0.95798 0.99439 0.91935

CT_15 0.99460 0.88555 0.98926 0.89461

CT_16 0.99696 0.96709 0.99395 0.93623

CT_17 0.99686 0.96678 0.99375 0.93569

CT_18 0.99777 0.96998 0.99553 0.94171

CT_19 0.99643 0.94171 0.99290 0.88984

CT_20 0.99724 0.96965 0.99450 0.94101

From Figure 3, it can be observed that the ground truth and the segmented images
were very close and the same is reflected in the Dice and the Jaccard score tabulated in
Table 1. The column “class0” indicated the background and the column “class1” indicated
the tumour. The average Dice score was 0.998 ± 0.12 for class0 and 0.981 ± 0.19 for class1.
The average Jaccard score was 0.995 ± 0.22 for class0 and 0.964 ± 0.20 for class1.

Figure 4 presents the images of the input, ground truth (label) and the segmented
version of malignant images. It can be observed from Table 2 that UNet did not perform
well in detecting malignant instances, as the shape of the tumour was very uneven and
small and the borders were very uncertain due to the characteristics of the malignant
tumours. Table 2 has 20 sample results from the testing set.

From Figure 4, it can be observed, from the malignant image in the first row, that
the tumour size was very small and that the pixel intensity is much less. Due to size
and intensity, the UNet model performance was low, with the dice and Jaccard score as
follows: class0_dice was 0.98 and class1_dice was 0.87, and class0_jaccard was 0.99 and
class1_jaccard was 0.84.

On similar lines, in the malignant image present in the middle row, we observed that
the tumour had grown fully and the intensity of the pixel was high. Due to this, UNet
performed well, with the Dice and Jaccard scores as follows: class0_dice was 0.996 and
class1_dice was 0.950, and class0_jaccard was 0.993 and class1_jaccard was 0.926. The
malignant image in the last row shared a similar characteristic to the first row image. The
tumour was very uncertain with respect to size, shape and border. Hence, lower values
were obtained in the segmentation results.
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Table 2. Dice score and Jaccard score for malignant tumour.

Image Malignant

Class0_Dice Class1_Dice Class0_Jaccard Class1_Jaccard

CT_1 0.99485 0.917209 0.989753 0.847079

CT_2 0.996533 0.950731 0.993091 0.906089

CT_3 0.994843 0.912769 0.989738 0.839535

CT_4 0.996412 0.881644 0.992849 0.788339

CT_5 0.998503 0.9179 0.99701 0.848258

CT_6 0.99661 0.951691 0.993242 0.907835
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Table 2. Cont.

Image Malignant

Class0_Dice Class1_Dice Class0_Jaccard Class1_Jaccard

CT_7 0.997797 0.927598 0.995603 0.864972

CT_8 0.997502 0.969651 0.995017 0.941091

CT_9 0.996653 0.961937 0.993328 0.926665

CT_10 0.995213 0.926677 0.990471 0.863373

CT_11 0.983532 0.836238 0.967598 0.718565

CT_12 0.995118 0.866793 0.990284 0.764902

CT_13 0.999053 0.966729 0.998107 0.9356

CT_14 0.995317 0.861702 0.990677 0.757008

CT_15 0.997093 0.952554 0.994203 0.909406

CT_16 0.997117 0.965229 0.99425 0.932794

CT_17 0.995457 0.727209 0.990954 0.57135

CT_18 0.986163 0.701614 0.972704 0.540374

CT_19 0.998494 0.914519 0.996992 0.842501

CT_20 0.998775 0.918228 0.997552 0.848818

Table 2 shows 20 sample image performances from the test dataset. Due to the nature
of the malignant tumours’ size, shape, border and intensity of the pixels, the performance
of UNet on malignant tumours was overall less when compared to the performance on
benign tumours.

The mean of Tables 1 and 2 is shown in Figure 5. From the graph below, depicted
in Figure 6, we can see that UNet performed well on benign images when compared to
malignant images. The dice score range for benign images was between 0.992 and 0.998,
whereas the dice score for the malignant category ranged between 0.70 and 0.91. Figure 7
shows the Jaccard score comparison for benign and malignant images.
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4.3. Classification Results Using Variants of the CNN Model

Since the current research work is in the medical domain, it is extremely important to
measure TP, TN, FP and FN and take appropriate measures for the necessary treatment. The
different performance metrics used to analyse the classification results in our experiment
were accuracy, precision, recall and F1 score. The metrics were expressed mathematically, as
follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100

Precision =
TP

TP + FP
× 100

Recall =
TP

TP + FN
× 100
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F1 score =
2× Precision× Recall

Precision + Recall
From Table 3 and Figure 8, it was observed that DenseNet121 outperformed the other

CNN models used. Owing to the connectivity patterns in the DenseNet architecture, the
information would not be lost or vanished by the time it reached the last layer.

Table 3. Performance of various CNN in classifying ovarian tumours.

Sl. No CNN Architectures Accuracy Precision Recall F1 Score

1. CNN 89.7% 89.1% 88.0% 89.4%

2. ResNet 152 92.7% 92.4% 91.5% 92.7%

3. DenseNet121 95.7% 95.2% 94.3% 95.6%

4. Inception-ResNet V4 94.3% 94.1% 93.2% 94.2%

5. VGG 16 91.5% 91.6% 90.5% 91.4%

6. Xception 87.2% 87.3% 86.7% 86.3%Diagnostics 2023, 13, x FOR PEER REVIEW 13 of 17 
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The results were then compared with ensemble machine learning models using the
same data, for classification. From Table 4, it can be noted that AdaBoosting outperformed
the other ensemble machine learning models. From Table 5 and Figure 9, it can be observed
that the performance of the learning algorithms was improved with the tuning techniques.

Table 4. Performance of the ensemble learning model for classification.

Sl. No Ensemble ML Models Accuracy Precision Recall F1 Score

1. Random Forest 82.4% 82.7% 83.6% 81.5%

2. Gradient boosting 80.9% 80.3% 80.88% 79.5%

3. AdaBoosting 89.4% 88.5% 89.1% 87.6%

4. XGBoosting 79.5% 80.2% 79.8% 80.3%
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Table 5. Improved performance with hyperparameter tuning techniques.

Sl. No Ensemble ML Models Accuracy Precision Recall F1 Score

1. Random Forest 86.3% 86.3% 87.9% 86.2%

2. Gradient boosting 82.7% 82.7% 83.7% 81.3%

3. AdaBoosting 91.37% 91.87% 90.3% 91.78%

4. XGBoosting 80.34% 81.67% 80.48% 81.78%
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The different optimization techniques used for fine tuning the parameters were Hy-
perOpt, Optuna and Multi-Fidelity Optimization. After fine tuning the parameters, the
machine learning algorithms’ performances had improved.

HyperOpt works as follows: When compared with other hyperparameter techniques
like randomised search and grid search, HyperOpt reduces the number of trials to find the
best parameters by defining the search algorithm which selects the best input values from
each new iteration. The key feature of the Optuna hyperparameter is its automated search
for optimized hypermeters even in the large search space by pruning the unpromising
trails for faster results. This technique also has a unique characteristic of parallel search,
which makes searching faster. The multi-fidelity technique is well suited when the model
is very large or when the size of the dataset is very large.

After fine tuning the parameters, the improved results using ML algorithms are as
follows.

5. Conclusions and Discussion

Ovarian cancer is one of the most dangerous diseases found in women. An alarming
number of deaths are caused every year due to the diagnosis of ovarian cancer only in the
third and fourth stages. Advancements in the field of deep learning have helped to solve
several issues in the medical field, as well. Although a completely dependable solution, we
can find a significant amount of work carried out in helping doctors and radiologists to
detect tumours.
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The findings of this work can be generalised and extended to other clinical settings,
but only with datasets having similar characteristics, for example, to detect the presence
of tumours in other organs of the body, like breast mammographic, whose images detect
breast cancer, or MRI or CT scans to segment follicles or parts of the brain using MRI
images, nuclei cell segmentation, etc., but only after undergoing the process of fine tuning
of parameters. Regarding the concept of transfer learning, deep learning models can
increase the performance. By means of transfer learning, the efficiency of the models
implemented in other cases can be improved, as it would leverage the knowledge gained
by being trained on a larger and more diverse dataset. Using ensemble architectures could
also improve the accuracy and robustness of the model. However, it is important to note
that there are a few limitations to extending the work. The type of data, the objective to be
achieved and the environment of the experiment could be very different from the current
work. The resolution of the images, noise levels and parameters considered in consolidating
the dataset also affects the performance. The type of model used in the experiment would
also be one of the factors.

These computer screening methods take CT scan images of the ovarian region as
input and perform pre-processing, segmentation and classification on them, using various
algorithms. In the current work, multiple algorithms in machine learning, as well as in deep
learning fields, have been implemented and compared. Segmentation was carried out using
the UNet model. A total of 20 images were sampled from both the categories—benign and
malignant—on which the UNet algorithm was applied. The performance was measured
using the Jaccard score and Dice score. It was found that the model performed better when
segmenting benign tumours. The UNet model did not perform well for the extremely
small tumours, as seen in the malignant results. Therefore, more complexed model such as
Transformers can be tried for the segmentation of smaller and uncertain tumours.

Deep learning models include several variants of CNNs such as CNN, ResNet 152,
DenseNet 121, Inception-ResNet V4, VGG16 and Xception. The evaluation metrics used
are accuracy, precision, recall and F1-score. It was observed that DenseNet 121 surpasses
the other CNNs in all the metrics, while scoring an accuracy of 95.70%. The machine
learning algorithms involved were Random Forest, Gradient Boosting, AdaBoosting and
XGBoosting. The same metrics used above were used to evaluate these models, as well.
Values obtained clearly showed that AdaBoosting outperformed the other Machine Learn-
ing algorithms considered, scoring an accuracy of 89.40% and leading the other metrics as
well.

To boost the performance of the machine learning models, hyperparameter tuning
was performed using HyperOpt, Optuna and Multi-Fidelity Optimization techniques.
The resulting values were significantly better than those sans optimization. However,
AdaBoosting remained the best performing technique among the ML models considered.
We noted that deep learning architectures performed more efficiently than machine learning
models with optimization techniques when classifying benign and malignant tumours in
the CT scanned images, which proves them to be an aiding tool.

This experiment can be used as a Computer Aided Detection (CAD) system which
helps doctors and radiologists by narrowing the region of the tumour present, segmenting
it precisely and classifying the tumour into benign and malignant categories. The person
in charge could use this as an assisting tool, as it would reduce effort and time while
increasing accuracy.
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