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Abstract: Bone Scan Index (BSI) is an image biomarker for quantifying bone metastasis of cancers.
To compute BSI, not only the hotspots (metastasis) but also the bones have to be segmented. Most
related research focus on binary classification in bone scintigraphy: having metastasis or none. Rare
studies focus on pixel-wise segmentation. This study compares three advanced convolutional neural
network (CNN) based models to explore bone segmentation on a dataset in-house. The best model
is Mask R-CNN, which reaches the precision, sensitivity, and F1-score: 0.93, 0.87, 0.90 for prostate
cancer patients and 0.92, 0.86, and 0.88 for breast cancer patients, respectively. The results are the
average of 10-fold cross-validation, which reveals the reliability of clinical use on bone segmentation.

Keywords: Mask R-CNN; Double U-Net; Deeplabv3 +; bone segmentation; bone scintigraphy

1. Introduction

Bone is the most common targeted site for metastatic cancer, especially in the advanced
and later phases of cancer progression—notably breast, prostate, and lung cancers, with the
highest incidence rates [1]. Bone metastases can severely impact patients’ daily activities
and quality of life due to severe pain and associated major complications. The protracted
clinical course of bone metastasis poses significant challenges to treatment. Per a 2022
report published in the Taiwan National Health Insurance Research Database [2], prostate
cancer ranked sixth among the leading causes of cancer death among Taiwanese men. In
contrast, breast cancer ranked second among the leading causes of cancer death among
Taiwanese women. Diagnostic techniques for bone metastasis currently include bone
scintigraphy (BS), X-ray imaging, computed tomography (CT), and magnetic resonance
imaging (MRI), while BS serves as the most cost-effective early screening method. BS can
diagnose bone metastasis earlier than CT or X-ray, within 3 to 6 months [3].

Bone metastasis typically affects the central skeletal system and the proximal regions
of the upper and lower limbs. The central skeletal system contains red bone marrow, which
may contribute to the formation of bone metastasis due to its physiological characteris-
tics [4]. Physicians often perform a whole-body bone scan (WBBS) to diagnose the presence
of bone metastasis. 99mTc-MDP is the radiopharmaceutical injected into a patient’s vein,
which can enter the bone cells and deposit with mineral components in four hours. Conse-
quently, Tc-99m MDP tends to accumulate in areas of active bone formation in the affected
region, resulting in localized increased radiopharmaceutical activity that appears as a “hot
spot” on BS, allowing physicians to identify bone metastasis [5]. However, BS may suffer
from ambiguity owing to impacts such as bone injury, arthritis, and degenerative changes,
and causes interpretation challenges. Inexperienced clinical physicians may struggle to
make accurate judgments or even misinterpret images.

Diagnostics 2023, 13, 2302. https://doi.org/10.3390/diagnostics13132302 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13132302
https://doi.org/10.3390/diagnostics13132302
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-7955-9234
https://doi.org/10.3390/diagnostics13132302
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13132302?type=check_update&version=2


Diagnostics 2023, 13, 2302 2 of 14

Bone scan index (BSI) is an imaging biomarker used to quantify the extent of bone
metastasis in cancers [6]. BSI is calculated as the ratio of “the number of bone lesions
indicating bone metastasis” to “the number of regions with a high incidence of bone metas-
tasis” [7–9], as shown in Figure 1. With artificial intelligence, machine learning, and big
data, BSI calculation has become more objective, accurate, and diagnostically efficient. BSI’s
most attractive application is monitoring treatment and prognosis, providing significant
clinical value. Armstrong et al. from Duke University introduced the automated bone
scan index (aBSI) as an objective imaging parameter [10], which can evaluate the prognosis
of metastatic castration-resistant prostate cancer (mCRPC) patients undergoing systemic
treatment in clinical trials. In [11,12], manual and automated BSI measurements were
highly correlated (ρ = 0.80), and automated BSI scoring demonstrated reproducibility, elim-
inating the subjectivity of clinical judgment while retaining the same clinical significance as
manual BSI scoring. Furthermore, some studies confirmed the utility of aBSI in mCRPC
patients [13–15], while other studies have begun to explore its application and refinement
in other tumors [16].
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Generally, computer-assisted diagnosis (CAD) systems that utilize machine learning 
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of WBBS images [Appendix A], which provides effective skeleton segmentation data for 
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the area ratio of (c) to (b).

Generally, computer-assisted diagnosis (CAD) systems that utilize machine learning
or neural network (NN) framework for calculating BSI on WBBS images can be divided into
two parts: lesion segmentation and skeleton segmentation, which respectively reflect the
numerator and denominator of the BSI value [17–20]. Recently, numerous studies [21,22]
and related patents [23,24] on lesion segmentation using the NN framework have been
conducted. However, the performance of the lesion pixel-wise segmentation has not been
thoroughly and rigorously investigated. Similarly, research on skeleton segmentation using
deep learning and NN models is scarce in previous studies [20,25] despite the mention of
its skeleton segmentation approach in [20], which lacks comparison with other NN models.
Although [25] compared its performance with U-Net, it remained confined to traditional
semantic segmentation network architectures. Thus, the field of skeleton segmentation
using NN remains insufficiently explored. This paper uses different NN models for skeleton
segmentation on WBBS images and investigates their results. Additionally, we have built a
website platform for online skeleton segmentation of WBBS images [Appendix A], which
provides effective skeleton segmentation data for further evaluation of BSI.

2. Materials and Methods
2.1. Materials

In this retrospective study in collaboration with the Department of Nuclear Medicine
at China Medical University Hospital, 196 WBBS images of patients with prostate cancer
were collected. Among the 196 patients, 110 patients had bone metastasis, and 86 patients
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had no evidence of bone metastasis. We also collected 163 WBBS images of patients with
breast cancer. All of them had bone metastasis. The study was approved by the Institutional
Review Board (IRB) and the Hospital Research Ethics Committee (CMUH106-REC2-130) of
China Medical University.

The radiopharmaceutical used for WBBS was Tc-99m MDP, and the imaging was per-
formed 4 h after the vein injection. A Gamma camera (Millennium MG, Infinia Hawkeye 4,
or Discovery NM/CT 670 system; GE Healthcare, Waukesha, WI, USA) was used for planar
bone scanning, with a low-energy high-resolution or general-purpose collimator, a matrix
size of 1024 × 256, a photon energy centered on the 140 keV peaks, and a symmetric 20%
energy window. The collected bone scan images were in DICOM format, with a spatial reso-
lution of 1024 × 512 pixels (composed of anterior-posterior (AP) and posterior-anterior (PA)
views), and the intensity information of each pixel was saved in 2-byte (uint16). The images
were preprocessed using the dedicated GE Xeleris workstation (GE Medical Systems, Haifa,
Israel; version 3.1) before being uploaded to PACS.

A standard WBBS image contains two views: anterior and posterior. The original
DICOM images were first converted to PNG format after removing any identifiable in-
formation. Following the approach described in [22], pre-processing was performed by
normalizing the image size and intensity. Afterwards, the anterior and posterior views
were cropped into a single image with a size of 950 × 512, without any scaling or geometric
transformations, as shown in Figure 2.
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Figure 2. Two WBBS, (a) has bone metastasis and (b) has no metastasis.

2.2. Region Definition

To identify the skeletal regions where bone metastases occur most frequently, we
consulted with two experienced nuclear medicine physicians and established standards.
The standards require the approval of these two board-certified nuclear medicine physicians.
The regions are the skull, spine, chest (including ribs, scapula, and clavicle), humerus
(proximal to midshaft of the femurs), femurs (proximal to midshaft of the humerus),
and pelvis.

The positions of the humerus on images differ significantly, as shown in Figure 2.
Different from only one category on femurs, we categorize humerus into four categories,
i.e., the left and right humerus in the anterior and posterior views separately. The reason
for doing so will be addressed in the discussion. Furthermore, Tc-99m MDP undergoes
renal metabolism, which can result in the kidneys appearing as high signal areas. In some
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situations, the kidney will be misclassified as metastasis. To alleviate this problem, we
created an extra kidney category to exclude ambiguity.

In summary, there are in total ten categories (Figure 3), including the skull, spine,
chest (including ribs, scapula, and clavicle), anterior right humerus (AR), anterior left
humerus (AL), posterior right humerus (PR), posterior left humerus (PL), femurs (proximal
to midshaft of the humerus), pelvis, and kidney.
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2.3. Neural Network Architectures

Three different neural network architectures were tested, including Mask R-CNN [26],
Double U-Net [27], and Deeplabv3 plus [28]. We used similar hyperparameters on these
three models to conduct experiments to compare their performances.

The Mask R-CNN architecture shown in Figure 4 comprises four main parts: backbone
architecture, RPN, RoIAlign, and head architecture. We used ResNet-50 as the backbone.
The hyperparameters hold the same learning rate of 0.005, batch size of 4, and 100 epochs.
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The Double U-Net architecture shown in Figure 5 comprises two sub-networks, dilated
convolution, spatial pyramid pooling, and an SE block. It was originally designed for binary
classification. Here we modified it to make the multi-class classification. We changed the
output layer of Network 1 to have a SoftMax activation function to enable multi-class
classification. The hyperparameters were set to be a learning rate of 0.0005, batch size of 4,
200 epochs (without data augmentation), or 20 epochs (with data augmentation).
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classification, we modified the output of Network 1 and the input of Network 2.

The Deeplabv3 plus architecture shown in Figure 6 includes an encoder, decoder,
dilated convolution, and depth-wise separable convolution. We used ResNet-50 as the
encoder backbone. The hyperparameters were set to be a learning rate 0.0005, batch size
of 4, and 200 epochs.
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The learning rate is a hyperparameter used in various machine learning algorithms,
particularly in gradient-based optimization. It determines the step size at which the model
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updates its parameters during training. The choice of learning rate depends on the specific
problem. Typically, every model has its own suggested learning rate. In this study, we
choose a balance between accuracy and training speed. For this task, Mask R-CNN uses a
learning rate of 0.005, while Double U-Net and DeeplabV3 plus use a learning rate 0.0005.

2.4. Image Pre-Processing

The input matrix size for Mask R-CNN was 950 × 512. Double U-Net and Deeplabv3
plus’s input matrix size was adjusted to 960 × 512 by padding with zeros due to their
restriction. The labels were saved in PNG format with integers ranging from 0 to 10.

Augmentation included rotations (−3◦, 0◦, 3◦) with step 1◦, scaling (0.9, 1, 1.1) with
step 0.1, and brightness adjustments (0.8, 0.93, 1.06, 1.19, 1.32, 1.45, 1.58, 1.7 times). The
augmented images had the same matrix size as the original images, resulting in a total rate
of 63 times increase. The augmentations were only used in training.

2.5. Evaluations

In this study, the terms true positive (TP), false positive (FP), true negative (TN),
and false negative (FN) were defined in pixel scale. The evaluation metrics used in the
experiment were precision (Equation (1)) and sensitivity (Equation (2)), and the overall
model evaluation was based on the F1 score (Equation (3)).

Precision = (True positive)/(True positive + False positive), (1)

Sensitivity = (True positive)/(True positive + False negative), (2)

F1 score = 2(Precision × Sensitivity)/(Precision+ Sensitivity), (3)

3. Results
3.1. 10-Fold Cross-Validation

In this study, validations on these three models used 10-fold cross-validation. Two
datasets comprised 196 prostate cancer WBBS images and 163 breast cancer WBBS images,
respectively. The ratio of training, validation, and test was set to be 8:1:1. The main goal
of this experiment was to compare the performance differences among each network and
to evaluate the impact of prostate and breast cancer WBBS images on network training.
The hyperparameters used in the experiment are in Table 1, and the results are depicted
in Tables 2 and 3, compared in Table 4. The qualitative results of bone segmentation are
shown in Figures 7 and 8.

Table 1. Hyperparameters were used for the 10-fold cross-validation experiments with each neu-
ral network.

Hyperparameters Mask R-CNN Double U-Net DeeplabV3 Plus

Learning Rate 0.005 0.0005 0.0005
Batch Size 4 4 4

Epochs 100 200 200

Table 2. The comparing results of 10-fold cross-validation on prostate cancer WBBS image dataset.

Category Mask R-CNN Double U-Net DeeplabV3 Plus
Precision Sensitivity Precision Sensitivity Precision Sensitivity

Skull 97.22 94.43 96.05 96.13 95.34 95.91
Spine 93.90 88.62 91.16 91.30 89.94 89.79
Chest 95.33 93.58 94.83 94.52 93.61 93.87

AR_humerus 91.82 84.80 89.65 90.18 87.42 87.88
AL_humerus 92.46 85.30 89.76 90.12 87.94 89.02
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Table 2. Cont.

Category Mask R-CNN Double U-Net DeeplabV3 Plus
Precision Sensitivity Precision Sensitivity Precision Sensitivity

PR_humerus 91.72 84.41 88.68 89.55 85.77 87.25
PL_humerus 89.94 82.01 87.89 88.78 87.50 83.64

Pelvis 92.32 88.26 90.76 90.83 90.99 87.84
Femurs 88.40 81.75 86.08 84.85 85.59 82.60
Kidney 86.13 79.23 82.45 82.73 80.15 81.87
Average 91.93 86.24 89.73 89.90 88.43 87.97

Average (w/o kidney) 92.57 87.02 90.54 90.70 89.34 88.64

The F1 scores are 89.71, 90.62, and 88.99 for Mask R-CNN, Double U-Net, and DeeplabV3, respectively. The Double
U-Net has the best F1-score.

Table 3. The comparing results of 10-fold cross-validation on the breast cancer WBBS image dataset.

Category Mask_R-CNN Double U-Net DeeplabV3 Plus
Precision Sensitivity Precision Sensitivity Precision Sensitivity

Skull 97.24 94.23 96.18 95.88 95.91 93.24
Spine 93.20 88.61 91.15 90.68 90.56 87.76
Chest 95.17 93.48 94.10 94.32 92.78 93.40

AR_humerus 89.67 80.23 87.21 86.01 85.88 81.90
AL_humerus 89.07 81.20 86.44 84.97 87.15 80.26
PR_humerus 89.65 82.10 87.58 86.46 85.41 83.66
PL_humerus 88.28 80.08 87.34 86.39 86.62 81.92

Pelvis 92.22 88.27 90.86 90.24 91.34 87.54
Femurs 89.95 81.39 87.05 84.83 88.06 81.71
Kidney 87.21 80.71 84.37 83.74 83.91 77.59
Average 91.17 85.03 89.23 88.35 88.76 84.90

Average (w/o Kidney) 91.61 85.51 89.77 88.86 89.30 85.71

The F1-scores are 88.45, 89.31, and 87.47 for Mask R-CNN, Double U-Net, and DeeplabV3, respectively. The
Double U-Net has the best F1-score.
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Table 4. The comparing results of 10-fold cross-validation on the two image datasets.

Database
Mask_R-CNN Double U-Net DeeplabV3 Plus

Pre. Sen. F1-Score Pre. Sen. F1-Score Pre. Sen. F1-Score

Prostate cancer 92.57 87.02 89.71 90.54 90.70 90.62 89.34 88.64 88.99
Breast cancer 91.61 85.51 88.45 89.77 88.86 89.31 89.30 85.71 87.47

Pre. = Precision, Sen. = Sensitivity.
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3.2. 10-Fold Cross-Validation with Data Augmentation

After the above experiments, we chose Double U-Net for investigation because it
slightly outperformed on F1-score. Following, we fine-tuned the epoch to trade-off the
training time and the performance to see what best performance we could reach. The
images of training for prostate cancer and breast cancer were augmented 63 times by
using rotation, scaling, and brightness adjustment described in the methods. Again, the
hyperparameters are in Table 5, and the quantitative results of the 10-fold cross-validation
are in Table 6.

Table 5. Hyperparameters for training Double U-Net.

Hyperparameters Double U-Net

Learning Rate 0.0005
Batch Size 4

Epochs 20

Table 6. 10-fold cross-validation on Double U-Net, used augmentation.

Fold Number
Prostate Breast

Precision Sensitivity Precision Sensitivity

1 86.67 96.05 83.95 94.84
2 87.01 94.92 86.18 95.26
3 91.22 91.33 81.14 96.05
4 93.01 91.37 81.87 96.32
5 85.69 94.85 84.35 96.18
6 94.18 89.28 96.23 76.73
7 96.10 86.81 95.64 85.26
8 93.43 88.31 95.37 84.49
9 92.99 87.74 95.57 85.51
10 93.89 88.12 94.97 89.19

Average 91.42 90.88 89.53 89.98
The F1 scores are 91.15 and 89.75, respectively.

4. Discussion

This study utilised Mask R-CNN, Double U-Net, and DeeplabV3 plus for skeleton seg-
mentation comparison on prostate cancer and breast cancer WBBS images. The quantitative
results were investigated via 10-fold cross-validation. Based on the quantitative findings,
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Mask R-CNN exhibited higher precision than Double U-Net by 2.03% in the prostate cancer
dataset and 1.84% in the breast cancer dataset. Mask R-CNN also exhibited higher precision
than DeeplabV3 by 3.23% in the prostate dataset and 2.31% in the breast dataset. On the
other hand, Double U-Net (90.70% & 88.86%) demonstrated higher sensitivity than Mask
R-CNN (87.02% & 85.51%) and DeeplabV3 plus (88.64% & 85.71%). This indicated that
Mask R-CNN had lower false positives (FP) during prediction, while Double U-Net had
lower false negatives (FN).

To better understand these results, we visualized the predictions, where white color
represented TP, green color represented FP and red color represented FN (as shown in
Figures 9 and 10). Mask R-CNN’s predictions shifted inward slightly compared to the
ground truth (GT), resulting in more FN in the edge regions and only a few FP. Double
U-Net’s predictions aligned well with the GT along the edges, resulting in slightly fewer
FN but more FP. DeeplabV3 plus exhibited irregularities along the edges compared to the
other two models, leading to noticeable erroneous FP and an overall increase in FP.
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These findings shed light on the performance of different models for skeleton seg-
mentation, emphasizing the trade-off between FP and FN. Further improvements can be
explored to address the limitations observed, particularly in the case of DeeplabV3 plus, to
enhance its stability and accuracy.

Further investigation of Mask R-CNN results revealed an increase in false negatives
(FN) when predicting smaller categories, such as the humerus and kidneys, as shown in
Figure 11a. This result could be caused by the following reasons:
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Figure 11. (a) Original test segmentation result with missing right humerus in the frontal view.
(b) Segmentation result after adjusting the brightness to 2.5 times and retest.

First, the insufficient brightness in the WBBS image may hinder feature detection. The
brightness of WBBS images depends on the counts collected by the scintillation crystal,
which can be influenced by factors such as patient thickness and radiopharmaceutical
activity. In cases where the received counts are insufficient, resulting in inadequate image
brightness, deep neural network models may struggle to make accurate judgments or even
make errors. Adjusting the image brightness and conducting further tests can help alleviate
this situation, as shown in Figure 11b.

Second, abnormal patient positioning in the WBBS image could cause another issue.
In a few instances, patient positioning in the WBBS image deviates to some extent from
standard clinical positions. This deviation made challenges for CNN prediction, as shown
in Figure 12. The degree of deviation is closely related to the patient’s clinical condition
and is difficult to entirely avoid in clinical practice. While other previous studies might
manually exclude misleading images to prevent such occurrences, this study aimed to
maintain a dataset that reflects real clinical scenarios, thereby we did not exclude any case.
To enhance the network’s ability to predict WBBS images with unusual positioning, future
considerations include employing hard negative mining techniques to improve the model’s
generalization capabilities.

Third, the model’s insensitivity to features of small objects in WBBS images could also
decrease performance. Quantitative results indicated relatively low precision for categories
such as upper limbs, femurs, and kidneys, which correspond to smaller objects. This
suggested Mask R-CNN facing certain difficulties in segmenting smaller regions.

These findings highlighted specific challenges encountered during the skeleton seg-
mentation process, particularly related to image brightness, abnormal patient positioning,
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and the segmentation of smaller objects. Addressing these challenges could improve the
performance of the Mask R-CNN model.
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Figure 12. A segmentation result showed the absence of the frontal and dorsal left femur due to abnor-
mal patient position, while this abnormal position was rare and did not exist in the training dataset.

On the other hand, we observed that DeeplabV3 plus and Double U-Net tended to mix
categories, resulting in unstable performance. Double U-Net and DeeplabV3 plus did not
exhibit the category missing issue observed in Mask R-CNN, but they experienced problems
such as category confusion and masks appearing in unintended areas, with DeeplabV3
plus being particularly affected. The issue of category confusion during prediction in
semantic segmentation network architectures was not explicitly mentioned in [20,25].
However, in our experiments, we did observe this problem. Figure 13a showed an incorrect
segmentation in the knee area in a Double U-Net skeleton segmentation result, while
Figure 13b depicted category confusion in the upper limbs and head in a DeeplabV3 plus
skeleton segmentation result.

This problem stemmed from different network architectures. Mask R-CNN utilizes
parallel branch networks to independently determine categories and select the appropriate
masks based on individual region-of-interest (ROI). Consequently, different ROIs could be
distinguished independently, and masks could be treated as separate entities. In contrast,
traditional fully convolutional network (FCN) architectures performed category and mask
predictions simultaneously, leading to competition between different categories and masks.
Additionally, due to the design of having one category per mask, FCN-based methods could
not treat ROIs independently. Another critical factor was using the Sigmoid activation
function and average binary cross-entropy loss in the branch networks, which mitigated
the adverse effects of cross-category competition encountered in traditional FCN methods.
This design yielded excellent instance segmentation results and avoided category overlap
or confusion. From the experiments, Mask R-CNN demonstrated itself more suitable for
skeleton segmentation in WBBS images than the other two network architectures.

From experiments shown in Tables 2–4, one might think that the models’ performance
is close to each other, and there might not be a statistically significant difference. It is crucial
to consider the context of image segmentation in deep learning. In this task, precision and
sensitivity are calculated pixel-wise. Therefore, even a small difference in percentage points
can have a significant impact.

In the experiments involving data augmentation, it was observed that it contributed
to a slight performance improvement. As the model already performed reasonably well
without data augmentation, the addition of data augmentation only led to marginal per-
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formance gains. According to related literature [29], incorporating data augmentation
helped reduce overfitting at higher learning rates, allowing the model to be trained for
more epochs without sacrificing accuracy. Further experiments and investigations were
warranted to explore the impact of data augmentation in more depth.
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The limitation of this study is the scarcity of original data and the homogeneity of
its source. In the future, it is desirable to establish collaborations with other medical
centers to acquire cross-centre data, thereby improving the performance and generalization
ability of the models. Additionally, we only investigated three relatively common network
architectures, and it would be an attractive research direction to explore newer architectures,
such as transformer-based networks. Different nuclear medicine imaging modalities, such
as planar and SPECT, differ in the resulting images. It would be worth investigating
whether these differences lead to heterogeneity in model predictions. This is an area for
further exploration in the future.

5. Conclusions

In this study, we investigated three CNN models on bone segmentation of the WBBS
images. We found that only one model was suitable for this goal, Mask R-CNN. The
Double U-Net and Deeplabv3 + had a problem with ‘category confusion’, which humans
would never have. We used a pixelwise scale to examine the model performance. The
best performance we had ever made for Mask R-CNN was the precision, sensitivity, and
F1-score: 0.93, 0.87, 0.90 for the prostate cancer dataset and 0.92, 0.86, 0.88 for the breast
cancer dataset, which was the average of 10-fold cross-validation.
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Appendix A

According to the previous research results, we established a skeleton segmentation
website equipped with a deep learning framework, enabling clinical physicians to utilize
website functions online to assist in calculating BSI and conducting clinical diagnoses,
thereby achieving the purpose of the previous research. This website has multiple functions
that allow clinical physicians to upload images and perform simple post-processing on the
images within the website. Finally, execute the skeleton segmentation deep learning model
for skeleton segmentation. The public IP address of the website is 140.128.65.129, and login
credentials are required (username: wbbsweb, password: wbbswebpass).
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