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Abstract: Artificial intelligence is highly regarded as the most promising future technology that will
have a great impact on healthcare across all specialties. Its subsets, machine learning, deep learning,
and artificial neural networks, are able to automatically learn from massive amounts of data and can
improve the prediction algorithms to enhance their performance. This area is still under development,
but the latest evidence shows great potential in the diagnosis, prognosis, and treatment of urological
diseases, including bladder cancer, which are currently using old prediction tools and historical
nomograms. This review focuses on highly significant and comprehensive literature evidence of
artificial intelligence in the management of bladder cancer and investigates the near introduction in
clinical practice.

Keywords: artificial intelligence; machine learning; deep learning; diagnosis; bladder cancer

1. Introduction

Artificial intelligence (AI) has been an explored area since the rise of computers and
software and studies as the human brain and its abilities to learn from experience, quickly
adapt to a novel setting, imagine and work with abstract concepts, and manipulate the
surrounding environment [1]. Nowadays, we are all speaking about AI, not just in the
scientific and research settings, mesmerizing us all with the ability of AI to interact with our
day-to-day activities such as social networks, smart devices, driving cars, and chat interac-
tions with AI software [2,3]. When it comes to medical sciences, cancer research, specifically
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bladder cancer (BCa), is benefiting from AI applications for the current advanced possibility
of diagnosis of this neoplasia. AI applications for the diagnosis of BCa integrate imaging
with bladder segmentation, tumor detection on cystoscopy, tumor staging, and tumor
grading [4]. Both AI subsets represented by machine learning (ML) and deep learning
(DL) techniques are heavily studied in regard to diagnosis, prognosis, and prediction of
outcomes of BCa [4–6]. In this review of the literature, we aimed to comprehensively
analyze the existing literature that focuses on the advancements of BCa diagnosis. First,
we described in an easily understandable fashion the concept of AI and specific terms
used focusing on ML and DL. Secondly, we reviewed the range of AI applications in BCa
diagnosis possibility. Lastly, we discuss the perspective of AI in the diagnosis of BCa
and the challenges that still need improvements for a wide clinical integration in optimal
cancer care.

2. Materials and Methods

We have developed a comprehensive review focusing our research on the improve-
ment in the knowledge of AI, to familiarize with AI applications, to establish further
potential research in the advanced diagnosis of BCa, and to explore the possibility of en-
tering in clinical practice of these applications. For this purpose, we have searched the
PubMed database to identify original articles on the mentioned topics from the last ten
years. Keywords used were “artificial intelligence”, “machine learning”, “diagnosis”, “deep
learning”, and “bladder cancer”. We have included articles up to March 2023 exploring
any methods or modalities of bladder cancer diagnosis, regardless if it was the first or the
follow-up diagnosis (recurrence or progression). The available research has been screened
by article title and abstract by two independent reviewers, and the included evidence has
been further interpreted after the approval of all authors.

3. Results

By searching the databases, we have found 94 research papers. No duplicate files
were removed, and 94 abstracts were screened for eligibility. Forty-eight met the criteria for
analysis using “artificial intelligence”, “machine learning”, “diagnosis”, “deep learning”,
and “bladder cancer” as keywords (Figure 1). After a full-text examination, all 48 papers
were ultimately included.

3.1. Generalities of Artificial Intelligence

Since the beginning, several definitions for AI have been established, but the main
element in these descriptions are the capabilities of a machine or computer’s ability to
mimic the human brain and cognition with the purpose of elaborating the optimal strategy
for the desired outcome [7–9].

3.1.1. Machine Learning

ML is an AI subset and computer science that uses enormous amounts of data and,
through mathematical and statistical algorithms aims to replicate the functionality of the
human brain. ML has the ability to build classification models or to make predictions based
on the data it is trained on [10]. The way it uses data and its algorithms is definitory as
ML does not receive pre-defined inputs from the surrounding environment in order to
learn and make predictions [7,8] and is trained to understand data (e.g., images, numbers)
and the connection between input variables. The process is based on examples, gained
experience, and if given instructions, ML can learn autonomously [11].

ML holds the potential to analyze outcomes without being explicitly pre-programmed
and uses data to learn how to perform a given task. This sub-branch of AI can generate
algorithms that can analyze data to predict outcomes. The interesting ability to, automat-
ically and without further human intervention, adapt its own programming in order to
reach the given task is a basic feature of ML [12]. Computer-aided systems use the ML
algorithm methods (from input features to output variables) to discover correct variable
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values from new, previously undiscovered features. The automated learning process uses
vast amounts of data that has to be of sufficient quality to render good results. The method-
ology basically incorporates training, validation, and test datasets. We have this flow of the
process pictured in (Figure 2).
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The problems of classification and regression of ML are due to the supervised learning
category, which means that the computer-aided diagnosis (CAD) system is fed with datasets
controlled by a human specialist. The annotations of the human specialists are mandatory
and pre-designated to the system as benign or malignant (e.g., histopathology, imaging
(computed tomography (CT), magnetic resonance imaging (MRI), cystoscopy images) of
BCa lesions. Therefore, the interaction between machine learning experts and medical
researchers is desired to be an efficient process for compiling the necessary features [4,12].

3.1.2. Deep Learning

Deep learning is a type of ML that relies on deep artificial neural networks. A basic
artificial neural network (ANN) has interconnected nodes that connect with nodes from the
next layer using edges. These edges give the interconnecting strength and can be measured.
A DL network has an input, an output, and in between several hidden layers [13]. As a
result, it does not need engineers to develop o model for learning [14]. The interconnecting
nodes are called perceptrons, which are a super-simplified version of a biological neuron
that takes different inputs and weighs them up to produce a single output [15]. Using
specific algorithms, hidden layers fine-tune the data to minimize error, and the activation
function gives the output data, and the ANN produces its result [16]. DL has the potential to
fully automate tasks based on the neural architecture of the human brain using multi-layer
neural network algorithms, and this enables DL to solve computational problems such as
image classification [15], which holds the promise to add value to the BCa diagnosis and
detection [17,18]. A type of ANN used to digitize images is a convolutional neural network
(CNN) because it recognizes patterns [19]. CNNs are great for identifying and classifying
images and visual recognition of problems in dermatology [20], ophthalmology [21], and
oncology [22]. Segmentation of images from imaging platforms such as urography CT,
MRI, and cone beam CT using deep learning models has been published lately as it can be
used to stage the primary tumor.

A deep neural network is designed to incorporate a vast amount of interconnecting
computed and computing neurons that have been constructed layer after layer [23,24].
Every neuron receives data from the neurons in the layer before and sends data to neurons
in the consecutive layer. All consecutive layers are also called hidden layers and receive
training data with the ground truth. This data goes into a process of multiplication,
divination, addition, and subtraction and then is transmitted to the output layer and offers
the prediction. Supervised learning is often used in medicine and uses images. CNNs used
in oncology have archived great performance, similar to human experts [25]. The imaging
data (lines, curves, different colors) are fed into the first layers of the algorithm; afterward,
the higher-level layers are retrained to offer diagnostic predictions [26].

Numerous DL approaches combine genomic, transcriptomic, and histopathological
data. The aim is to enhance patient diagnosis, prognosis, and treatment. The human
expert place still remains essential in oncology (clinicians have the ability to analyze data
in the clinical context), and DL is complementary to disease research [5,27]. The potential
of utilizing a large number of variables and parameters makes DL a good strategy for
predicting outcomes. A limitation is related to overfitting (i.e., adaptation to the background
noise that is unique to each sample). The generalization for new patient populations is
therefore limited and is typically healthcare where economics, data security, and patient
privacy issues often limit data availability [28]. Particularly in BCa, different DL methods
have been used in BCa diagnosis settings (bladder segmentation, tumor detection, tumor
staging, and grading), broadly by using bladder cystoscopy, different imaging techniques,
histopathology, and cancer genomics [4,12]. A depiction of how DL is working can be
found in Figure 3. The summarization of the terms generally used to shortly describe deep
learning is embedded in Table 1.
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Table 1. A glossary of deep learning workflow terms.

Term Brief Explanation

Perceptron a super-simplified version of a biological neuron, which takes different inputs and
weighs them up to produce a single output [15]

Backpropagation an algorithm that is used to train neural networks [15]

Artificial Neural Networks (ANN) a computational model (i.e., algorithms or physical hardware) which mimics the
human brain to process data and create patterns for decision-making [17]

Convolutional Neural Networks (CNN)
a neural network utilizing numerous identical copies of the same neuron, thus

allowing a network to learn a neuron once and use it in several places.
It is particularly useful for digitized images and pattern recognition [29]

Recurrent Neural Network (RNN) a neural network utilizing sequential information, thus relying on previous
computations [29]

Supervised Neural Network
a neural network for which, to produce an ideal output, a prior provided output is

required. It is ‘trained’ on a given pre-defined dataset and provides outputs
depending on the input it has received [30]

Unsupervised Neural Network
a neural network for which no labels are required. This involves giving a program
with an unlabeled data set (i.e., that it has not been previously trained for). It is

used to discover patterns and trends by clustering. [30]

ANN = Artificial Neural Networks; CNN = Convolutional Neural Networks; RNN = Recurrent Neural Networks.

3.2. Bladder Cancer Diagnosis
3.2.1. Bladder Tumor Detection through Cystoscopy

Cystoscopy still plays an important role in tumor detection (in primary diagnosis and
follow-up settings) of BCa. As it uses in most of the cases of classical white light, it is prone
to error in tumor detection (rates of 10–20%) [31,32]. AI has the potential to alleviate human
error when dealing with image interpretation.
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Eminaga et al. [33] aimed to detect cancerous features from cystoscopy images using
CNN models as instruments to perform diagnostic classification. In their case series, the
Xception model performed the best (F1 score = 99.52%).

Lorencin et al. [34] used an ANN model using cystoscopy frames from 1997 images
of BCa and 986 images of benign and normal-looking mucosa, and the results were very
good, achieving an AUC of 0.99. The same team of researchers [35] utilized another CNN
algorithm to separately identify benign from malignant lesions from 2983 images obtained
during cystoscopy and achieved an AUC of 0.99. Ikeda et al. [36] developed a CNN
algorithm obtaining good sensitivity and specificity (89.7% and 94%) for cancer detection
in 2102 images obtained from cystoscopy. Yang et al. [37] used CNNs (LeNet, AlexNet, and
GoogLeNet) and EasyDL platform to identify BCa images and found that EasyDL achieved
the best accuracy (96.9%). Du et al. [38] used a CNN-DL algorithm to recognize BCa from
175 patients’ images, with the best accuracy with an EasyDL of 96.9%.

Shkolyar et al. [39] developed a CNN algorithm to identify tumors in an automated
way (CystoNet). Images have been split into a training dataset (2335 images of normal blad-
der urothelium) and 417 images of papillary urothelial carcinoma from a total of 95 patients
with a sensitivity of 91% and a specificity of 99%. Wu et al. [40] reported a diagnostic sys-
tem based on cystoscopy images extracted with the ResNet 101 model and pyramid scene
parsing network (PSPNet) framework resulting in higher accuracy and rapidness in reading
and detection of BCa compared to expert urologists (accuracy = 93.9%, sensitivity = 95.4%).
Ali et al. [41] aimed to study the sensitivity and specificity of photodynamic detection (PDD)
blue-light cystoscopy and CNN algorithm to detect, grade, and stage BCa at cystoscopy,
achieving a classification sensitivity and specificity for detection of BCa tumors of 95.77%
and 87.84%, while the mean sensitivity and mean specificity of invasiveness of lesions are
88% and 96.56%, respectively. Yoo et al. [42] used AI SVM models and white light image
(WLI) cystoscopy for detection and employed the red-green-blue method to grade BCa
lesions. The sensitivity, specificity, diagnostic accuracy, and dice similarity coefficient (DSC)
of AI were 95.0%, 93.7%, 94.1%, and 74.7%, respectively. For white light, the red and blue
have been in accordance with tumor grade (p < 0.001), and the performance to distinguish
between benign and low-grade lesions has been evidenced as 98% and >90% for detecting
inflammatory lesions and CIS. Du et al. [38] used cystoscopy mages from 1002 normal
bladder and 734 from bladder lesions and trained Caffe DL and EasyDL platforms to
recognize BCa. Caffe DL obtained an accuracy of 82.9% and 96.9% on the EasyDL.

3.2.2. Bladder Tumor Detection through Urine Cytology

Nojima et al. [43] used a 16-layer Visual Geometry Group (16VGG) CNN to predict if
urinary cytology can identify malignant or high-grade lesions. The 16VGG CNN achieved
excellent performance for differentiating cancer from benign tissue (AUC 0.9890 and an
F1 score, 0.9002), and if the tumors were invasive BCa (AUC 0.8628 and an F1 score 0.8239)
or high-grade BCa (AUC 0.8661 and an F1 score 0.8218). Awan et al. [44] developed
a method to automatically identify atypical and neoplastic cells, and from all models,
Xception performed best in their validation set (AUC 0.99). Vaickus et al. [45] aimed
to identify the potential of a hybrid DL and morphometric model for the automation
of the Paris System. Urine cytology whole slide images have been documented from
51 negative, 60 atypical, 52 suspicious, and 54 positive cases, achieving a 95% accuracy
rate for the detection of cell type and atypia, and this can aid in automating the Paris
System. Sanghvi et al. [46] reported results using a CNN algorithm that aimed to diagnose
BCa on cytology images (2405 ThinPrep glass slides) and validated on a different data
set and showed that the algorithm achieved an AUC of 0.88 (95% CI, 0.83–0.93), with
a sensitivity of 79.5% and the specificity of 84.5% for high-grade urothelial carcinoma.
Khosravi et al. [47] employed CNN methods to differentiate four biomarkers of BCa and
four immunohistochemistry staining scores of BCa. The Inception V1-Fine tune algorithm
achieved the best discrimination of the blood biomarkers with an accuracy of 99%. Sokolov
et al. [48] scanned bladder cell surfaces using an imaging method (atomic force microscopy)
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involving multiple analyzed parameters to non-invasively detect BCa obtaining an accuracy
of 94%, significantly higher than cystoscopy applied in 25 BCa and 43 control patients. Lilli
et al. [49] used a DL model to detect cancer cells from urinary cytopathology images and
found a weak performance of standard CNN algorithm used, and only after applying focal
loss the model slightly improved accuracy and expected calibration error, up to 89.90% for
urinary cytology.

3.2.3. Bladder Tumor Detection through Urine Metabolomes

Some studies aimed to investigate the role of urine metabolomes in the detection of
BCa as this comes into direct contact with the urine. Shao et al. [50] profiled 87 samples
of BCa and 65 control samples and identified imidazoleacetic acid as a marker potentially
related to BCa using an ML model and a decision tree (DT) obtaining accuracy of 76.60%, a
sensitivity of 71.88%, and a specificity of 86.67%. Kouznetsova et al. [51] aimed to research
the urine metabolites as biomarkers to classify BCa with the use of an ML model. Early
stage BCa biomarker is D-glucose which is able to impact some potential neoplastic genes
(AKT, EGFR, and MAPK3). Additionally, late-stage BCa-identified biomarkers (glycerol,
choline, 13(S)-hydroxyoctadecadienoic acid, 2’-fucosyllactose, and insulin can have an
important role as detection biomarkers. The best-performing model predicted metabolite
class (accuracy of 82.54%, AUC of 0.84 on the training set).

3.2.4. Bladder Cancer Segmentation Research

Bladder auto-segmentation, with the aim of differentiating the bladder wall from the
surroundings, is mandatory to allow automatic diagnosis of bladder wall lesions. The blad-
der is a “shifting” organ in relation to its volume content, pressure, and physiology, by
variations of urine content and lesion appearance. Therefore, some BCa can be excluded
from the area of the region of interest (ROI), and other non-bladder-related images can be
detected as bladder tumors. The current manual delineation executed by expert radiologists
takes a long time and has great economic costs [52]. This makes segmentation challenging.
The development of automated capabilities to segment the bladder in line with results
obtained by the involvement of experts will alleviate the burdens in BCa research. Cha et al.
in 2016 [53] aimed to segment regions of interest from the outside and inside and to detect
bladder BCa from CT urography images from 173 patients (81 in the training set and 92 for
validation) with a CNN algorithm. The algorithm performed better for segmentation per-
formance compared to previously used methods. Exact segmentation of bladder walls and
ROIs is mandatory for imaging detection of tumor stage and grade and has been studied by
Dolz et al. using MRI and a CNN on 60 confirmed BCa patients. They obtained an accuracy
of 0.98, 0.84, and 0.69 for the inner wall, outer wall, and tumor region segmentation, respec-
tively [54]. Li et al. [55] proposed an automatic segmentation method on 1092 MRI images,
showing that the DL U-Net method can show high accuracy results with a DSC of 85.48%.
Niazi et al. [56] proposed a multi-class image segmentation method to discriminate between
bladder layers in an automatic fashion (U-Net) for T1 histopathologically confirmed tumors
and identified that a 12-layer model on hematoxylin-eosin stained images, achieved an
accuracy of 89.3% ± 0.6 out of 100% for segmentation. Ma et al. [57] developed a U-Net
DL model to segment the bladder through CT-urography using 81 patients for training
and 92 patients for testing. The improvements for DCNN compared to U-Net DL have
been statistically significant (p < 0.001). Zhang et al. [58] used AI to segment cystoscopic
images. The analyzed attention mechanism-based cystoscopic images segmentation model
indicated better performance in segmenting bladder tumors with a DSC of 82.7% and MIoU
of 69% based on a U-Net DL-CNN model.

3.2.5. Bladder Cancer Imaging and Artificial Intelligence

The most advancement in AI and urological cancer imaging is to be seen in prostate
and renal neoplasia. AI and BCa imaging is yet limited, and the role of cystoscopy is still
predominant in initial diagnosis. Several studies combined radiomics and AI to be able
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to recognize non-muscle invasive diseases due to the understaging of biopsies of about
50% [59]. Radiomics in prostate and renal cancers holds future promises, as seen in the
latest research evidence, and relies on the analysis of images with the help of CAD and
specific mathematical algorithms to obtain quantitative features not available to reader
observers [60–63]. Imaging segmentation challenges have been addressed in Section 3.2.3.
Xu et al. [64] aimed to analyze 3D texture features between bladder lesions and wall tissues.
Using T2w MRI images from 62 cancer lesions and 62 volumes of interest (VOI), obtaining
29 features from recursive feature elimination-based support vector machine classifier
(RFE-SVM) achieved good sensitivity, specificity, accuracy, and AUC and by augmentation
synthetic minority oversampling technique improved the sensitivity, specificity, accuracy
a AUCs values of 89.67%, 87.80%, 88.74% and 0.9416, respectively. Wu et al. [65] studied
radiomic MRI features to predict lymph node metastasis in BCa with images obtained
from 103 BCa individuals, with training and validation sets (69, 34, respectively). Features
were obtained from T2w images, and the signature was employed using the least absolute
shrinkage and selection operator (LASSO) algorithm and resulting in the ability to predict
lymph node metastasis with good AUCs and the build nomogram (radiomics signature and
lymph node status) pointed a good performance of calibration and discrimination in the
training and validation sets (AUC of 0.9118 and of 0.8902, respectively). Zheng et al. [66]
reported a radiomics and clinical nomogram aimed at pre-operative discrimination of
muscle invasiveness of BCa 2602 radiomics features extracted using T2w MRI images.
LASSO algorithm was used to build a radiomics signature for the training set, and a
combined radiomics and clinical nomogram was developed and yielded good results (AUC
of 0.913 for training and 0.874 for validation) and also demonstrated clinical usefulness.
Kozikowski et al. [67] performed a systematic review and meta-analysis to identify the
role of radiomics in the staging of BCa and predict its invasiveness in the muscle wall.
The AUC of HSROC has been identified as 0.88, and the specificity and sensitivity in
predicting invasiveness were 81% and 82%, respectively. Taguchi et al. [68] aimed to
validate in a prospective multicenter study the vesical imaging and reporting data system
(VI-RADS) using the latest MRI technology and DL reconstruction. This has been studied
in 68 BCa patients and found that the accuracy of diagnosing muscle invasion using a
cutoff of VI-RADS ≥ 4 was 94% (AUC 0.92) and DL reconstruction identified four further
patients, initially misdiagnosed by VI-RADS score 3, and proper diagnosed was set by
T2w imaging + denoising DL reconstruction. Sarkar et al. [69] used a hybrid ML and DL
model to automatically detect and stage BCa and discovered that their LDA classifier on the
XceptionNet platform had the best performance (accuracy = 86.07%, sensitivity = 96.75%,
specificity = 69.65%, precision = 83.07% and F1-score = 89.39%) for detecting normal lesions
from BCa. For detecting invasiveness, the same hybrid approach achieved medium results
(accuracy = 79.72%, sensitivity = 66.62%, specificity = 87.39%, precision = 75.58%, and
F1-score = 70.81%).

3.2.6. Bladder Cancer Grading and Artificial Intelligence

Zhang et al. [70] aimed to describe texture features from MRI images to discriminate
between low grade in 32 patients and high grade in 29 patients with BCa. The SVM classifier
had the best performance in BCa grading (AUC, accuracy, sensitivity, and specificity of
0.861, 82.9%, 78.4%, and 87.1%, respectively). Wang et al. [71] developed and validated with
the use of radiomics MRI a possibility of pre-operative grading of BCa in 31 high-grade
and 39 low-grade patients. Radiomics features were extracted from T2w, DWI, and ADC
images and analyzed by the LASSO algorithm. Multimodality models performed better
(AUCs—max-out 0.9233, 95% CI 0.9001–0.9466; concatenation 0.9233, 95% CI 0.9001–0.9466)
than single modality models (T2w, DWI and ADC) similar to the validation cohort. Jansen
et al. [72] developed a fully automated grading DL system (U-Net segmentation network
trained to detect bladder urothelium) that was able to grade 76% of the low-grade cancers
and 71% of the high-grade cancers in accordance with the expert consensus.
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3.2.7. Bladder Cancer and Histopathology

Smith et al. [73], since 2011, aimed to construct a gene expression model for lymph
node status prediction after cystectomy, utilizing a weighted nearest neighbor (WNN)
classification algorithm rooted in Bayesian decision. They have identified in multivariate
logistic regression that the model had a calculated AUC of 0.67 and was an independent
predictor for lymph node involvement.

Seiler et al. [74] used a K-nearest neighbor classifier 51 (KNN51) classifier to predict
pathological lymph node metastases in 199 cystectomy patients. Whole transcriptome ex-
pression profiles have been developed, and two cancer signature genes were used for com-
parison. The KNN51 classifier performed better than the comparison genes (AUC = 0.82,
compared to 0.62 for 15-gene cancer recurrence signature (RF15) and 0.46 for 20-gene lymph
node signature (LN20)) and has significant odds of predicting metastases in the lymph
nodes compared to RF15 and LN20 (p < 0.001).

Wu et al. [75] reported the results of a nomogram combining genomic, clinical, and
pathological data to predict lymph node status in 325 BCa patients using mRNAs from the
TCGA database. They identified five mRNAs related to lymph node status and incorporated
them into the nomogram, allowing a good discriminatory and lymph node status prediction
ability with a logistic regression algorithm (AUC = 0.89).

Zhang et al. [76] proposed an automated way to diagnose on whole slide digital
imagining of pathology results with the aid of AI. They automated analyzed 913 whole
slide data images of BCa patients, and the CNN algorithm obtained similar results as the
expert pathologists (AUC = 0.97). Velmahos et al. [77] extracted imaging biomarkers using
histopathology slides to predict fibroblast growth factor receptor (FGFR) alterations in
418 BCa patients employing a CNN to identify tumor-infiltrating lymphocytes percentage
for the prediction. The best model was achieved only on FGFR2/FGFR3 mutation, with a
sensitivity of 82%, a specificity of 85%, and an AUC of 0.86.

3.2.8. Bladder Cancer Staging and Artificial Intelligence

Garapati et al. [78] studied the feasibility of an automatic ML technique to screen
84 bladder cancer tumors assessed by CT urography, grouping lesions above or equal to
T2 or below T2. Morphological and texture features alone or combined achieved com-
parable performance. Xu et al. [79] aimed to pre-operative stage BCa into non-muscle
invasive or muscle invasive. Therefore, they used multiparametric MRI 1104 radiomics
features from 54 patients to differentiate between the two entities. SVM-RFE and synthetic
minority oversampling technique (SMOTE) have been employed to develop the model.
A total of 19 features were analyzed from T2w and DWI sequences and performed better
in muscle invasion discrimination AUC (0.9857). The model SVM-RFE+SMOTE classifier
outperformed the experts in diagnostic accuracy (96.30%). Yin et al. [80] tried to differ-
entiate Ta from T1 BCa on hematoxylin and eosin stain images from 1177 BCa tissues
using an ML-CNN model imaging processing software Image J and Cell Profiler and had
accuracies between 91% and 96%. Yang et al. [81] used a DL-CNN model to differentiate
non-muscle from muscle-invasive BCa from 1200 CT images belonging to 369 patients.
The best-performing model had an AUC of 0.997 and a sensitivity and specificity of 88.9%
and 98.9%. Li et al. [82] aimed to assess the accuracy of radiomics, single-task DL, and
multi-task DL on T2w MRI images to stage muscle invasiveness of BCa from 121 BCa
lesions. AUCs were obtained for radiomics, single-task, and multi-task DL algorithms
(0.920, 0.933, and 0.932, respectively). Li et al. [83] compared a DL-CNN model based on
T2w with VI-RADS to predict muscle invasiveness of BCa and found that were higher
AUCs for the DL model compared to two expert radiologists (AUC = 0.963, 0.843, and
0.852, respectively) and the accuracy was higher as the experts for VI-RADS 2 or 3 scores
(p = 0.006). Xu et al. [84] developed a DL algorithm to detect and stage BCa on CT images of
60 patients having the disease. These images have been processed by the DL DCNN based
on the You Only Look Once (YOLO) algorithm, and in the clinical staging, the coincidence
rates with pathological results were found to be excellent (T1 stage = 50.01%, T2a = 91.65%,
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T2b, T3 and T4 stage = 100.00%) and not different from the clinical staging of pathological
diagnosis (p > 0.05). Zou et al. [85] aimed to differentiate muscle from non-muscle invasive
BCa and used T2w images with the Inception V3 platform to extract features and build
a model (Multi-task BCa Muscular Invasion Prediction) and achieved the best results in
the prospective data group (accuracy = 92.3%, sensitivity = 100%, and specificity = 88.5%).
The summary of the studies has been embedded in Table 2.

Table 2. Summary of artificial intelligence used in studies for the advanced diagnosis of bladder cancer.

Authors/Year INPUT/
N of Patients

AI Algorithm/
Models OUTPUT Summary Performance

Smith et al.,
2001 [73]

Gene expression
Training: 156 pt

Validation: 185 pt
WNN Histopathology:

pN stage

Using WNN to develop a
gene expression model to

predict pathological
node status

AUC = 0.67

Seiler et al.,
2016 [74]

Gene expression
Training: 133 pt
Validation: 66 pt

k-NN Histopathology:
pN stage

Using k-NN to develop a
gene classifier to predict
pathological lymph node

metastasis in MIBC

AUC = 0.82

Cha et al.,
2016 [53]

CT Urography
Training: 81 pt

Validation: 92 pt
CNN Segmentation Using CNN to segment

bladder and ROIs JSC: 0.76

Xu et al.,
2017 [64]

T2w MRI images
62 cancer lesions,

62 controls
SVM Histopathology:

Presence of Cancer

Extracting Radiomics
feature to differentiate

cancer and
non-cancer areas

AUC: 0.94

Shao et al.,
2017 [50]

Urine metabolomes
87 BCa pt, 65 control DT Histopathology:

Presence of Cancer
Evaluate urine metabolite

associated with BCa AUC: 0.77

Zhang et al.,
2017 [70]

MRI radiomics
features

61 pt
SVM Histopathology:

Grading

Using SVM to
discriminate low grade
and high grade bladder

Ca on MRI

AUC: 0.86

Garapati
et al.,

2017 [78]

CT images texture
analysis

76 pt

LDA
CNN
SVM
RF

Histopathology:
Staging

Comparing 4 AI
algorithms to discriminate
bladder Ca < T2 and ≥T2

AUC: 0.89–0.97

Vaickus et al.,
2018 [45]

Urine cytology
51 negative,
60 atypical,

52 suspicious, and
54 positive cases

CNN
(AlexNet/ResNet)

Citology:
Detection

A hybrid deep-learning
and morphometric

algorithm to automate the
PARIS system

ACC: >95%

Eminaga
et al., 2018

[33]
Cystoscopy images CNN Cistoscopy:

Detection

Detect cancerous features
from cystoscopy images

using CNN models
ACC: 0.99

Khosravi
et al., 2018

[47]
IHC digital slides CNN Histopathology:

Detection
differentiate 4 biomarkers

of BCa on IHC ACC: 0.99

Sokolov et al.,
2018 [48]

High resolutions
images using atomic

force microscopy.
25 cancer lesions,

43 control

ML Histopathology:
Detection

Non-invasive detection of
BCa ACC: 0.94
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Table 2. Cont.

Authors/Year INPUT/
N of Patients

AI Algorithm/
Models OUTPUT Summary Performance

Wu et al.,
2018 [65]

T2w MRI images
Training: 69 pt

Validation: 34 pt
LASSO, LR Histopathology:

pN stage

Building a nomogram
with mpMRI radiomic

features
AUC: 0.84

Wu et al.,
2018 [75]

Gene expression
Training: 178 pt

Validation: 246 pt
LR Histopathology:

pN stage

Utilizing LR to develop a
genomic clinicopathologic
nomogram for predicting

LN
metastasis

AUC: 0.89

Dolz et al.,
2018 [54]

MRI images
Training: 60 pt CNN Segmentation

Inner, outer wall, and
tumor region
segmentation

DSC: 0.69

Shkolyar
et al.,

2019 [39]

Cystoscopy images
Training: 95 pt CNN Cistoscopy:

Detection

Using “Cystonet” a CNN
to discriminate malignant

from benign images

SENS: 91%
SPEC: 99%

Zheng et al.,
2019 [66]

T2w MRI images
Training: 130 pt
Validation: 69 pt

LASSO, LR Histopathology:
pT stage

Building a nomogram
with mpMRI radiomic

features
AUC: 0.88

Wang et al.,
2019 [71]

T2w MRI images
Training: 70 pt

Validation: 30 pt
LR Histopathology:

Grading

Utilizing MRI radiomics
features to discriminate
low and high-grade BCa

AUC: 88.2

Zhang et al.,
2019 [76]

Histopathology digital
images

Training: 620
Validation: 193

CNN Histopathology:
pT stage

Utilizing CNN to analyze
bladder

Ca WSI compared to
expert

histopathologists

AUC: 0.97

Sanghvi et al.,
2019 [46]

Urine cytology
Training: 2405 urine

sample
Prospective Validation

CNN Cistoscopy:
Detection

Artificial Intelligence
Algorithm for Reporting

Urine Cytopathology
AUC: 0.88

Kouznetsova
et al., 2019

[51]
Urine metabolomes ANN, LR Histopathology:

pT stage

Recognition of Early and
Late Stages of Bladder

Cancer Using Metabolites
and Machine Learning

ACC: 0.82

Ma et al.,
2019 [57]

CT Urography
Training: 81 pt

Validation: 92 pt
U-net DCNN Segmentation

Deep Learning Bladder
Segmentation in CT

Urography
JSC: 0.85

Xu et al., 2019
[79]

T2w and DWI MRI
images

Training: 54 pt
SVM Histopathology:

pT stage
BCa staging with MRI

Radiomics Analysis AUC:0.97

Ikeda et al.,
2020 [36]

2102 Cystoscopy
images CNN Cistoscopy:

Detection

Development of a Support
System for Cystoscopic

Diagnosis of BCa
AUC: 0.98

Lorencin
et al., 2020

[34]

2983 Cystoscopy
images ANN Cistoscopy:

Detection

Development of a Support
System for Cystoscopic

Diagnosis of BCa
AUC: 0.99

Li et al., 2020
[55]

MRI
1092 pt U-net Segmentation

Deep Learning Bladder
Segmentation in MRI

images
DSC: 0.85
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Table 2. Cont.

Authors/Year INPUT/
N of Patients

AI Algorithm/
Models OUTPUT Summary Performance

Niazi et al.,
2020 [56]

Histopathology digital
images of pT1 pt U-net Segmentation

Deep Learning for bladder
layers identification on

Pathology images
ACC: 0.90

Yin et al.,
2020 [80]

Histopathology digital
images of pTa and

pT1 pt

SVM, LR, RF,
ANN

Histopathology:
pT stage

Histopathological staging
of BCa using different ML

Approaches
ACC: 0.96

Jansen et al.,
2020 [72]

Histopathology digital
images U-net Histopathology:

Grading
Detection and grading of

BCa ACC: 0.76

Lorencin
et al., 2021

[35]

2983 Cystoscopy
images CNN Cystoscopy:

Detection

Development of a Support
System for Cystoscopic

Diagnosis of BCa
AUC:0.99

Nojima et al.,
2021 [43] Urine cytology

16-layer Visual
Geometry

Group CNN

Detection and
Grading

DL diagnosis and grading
of BCa using urine

Cytology

AUC: 0.98,
F1 score: 0.90

(Presence/
Absence)

AUC: 0.86,
F1 score: 0.82

(Invasive/non
invasive)

AUC: 0.86,
F1 score: 0.82
(low-grade/
high-grade

Yang et al.,
2021 [37] Cystoscopy images CNN Cystoscopy:

Detection

Comparisons of a Support
Systems for Cystoscopic

Diagnosis of BCa
ACC: 0.97

Awan et al.,
2021 [44] Urine cytology CNN Detection Identification of

atypic cells AUC: 0.99

Yang et al.
(2021b) [81]

CT Images,
1200 images from

369 pt
CNN Histopathology:

pT stage

DL to differentiate
Muscle-Invasive BCa

with CT
AUC: 0.99

Lilli et al.,
2021 [49] Urine cytology CNN Detection Identification of

Cancer cells ACC: 89.90%

Du et al.,
2021 [38]

Cystoscopy images
1736 pt

CNN
EasyDL

Caffe DL

Cystoscopy:
Detection

Comparisons of a Support
Systems for Cystoscopic

Diagnosis of BCa

ACC = 82.9%
(Caffe DL)

ACC = 96.9%
(EasyDL)

Taguchi et al.,
2021 [68]

MRI images
68 pt CNN Detection VI-RADS score and DL for

BCa detection AUC: 0.92

Velmahos
et al., 2021

[77]

Histopathology digital
images CNN

Histopathology:
FGFR alterations

and
tumor-infiltrating

lymphocytes

Deep Learning to Identify
Bladder Cancers with

FGFR-Activating
Mutations

AUC: 0.86
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Table 2. Cont.

Authors/Year INPUT/
N of Patients

AI Algorithm/
Models OUTPUT Summary Performance

Ali et al.,
2021 [41]

Blue light cystoscopy
images CNN

Cystoscopy:
Detection

Histopathology:
Staging

Blue-light cystoscopy and
CNN algorithm to detect,

grade, and stage BCa

Detect-
SENS = 95.77%
SPEC = 87.84%

Staging-
SENS = 88%

SPEC = 96.56%

Yoo et al.,
2022 [42] Cystoscopy images SVM Cystoscopy:

Detection

Cystoscopic Diagnosis of
BCa using a

red-green-blue method.

SENS = 95.0%
SPEC = 93.7%
DSC = 74.7%

Wu et al.,
2022 [40] Cystoscopy images CNN

(ResNet)
Cystoscopy:

Detection

Support Systems for
Cystoscopic Diagnosis of

BCa

ACC = 93.9%,
SENS = 95.4%

Xu et al. [84]
2022

CT images
60 pt

CNN
YOLO

Histopathology:
pT stage

Predicting pT stage at
pre-operative CT scan

CR:
T1 stage = 50.01%

T2a = 91.65%,
T2b, T3 and

T4 stage = 100.00%

Zou et al.,
2022 [85]

T2w MRI images
Prospective cohort

CNN
Inception V3

Histopathology:
pT stage

CNN to extract features
and build a model
predicting pT stage

ACC = 92.3%
SENS = 100%
SPEC = 88.5%

Zhang et al.,
2023 [58] Cystoscopy images U-Net Segmentation

Deep Learning Tumor
Segmentation during

cystoscopy

Dice = 82.7%
MioU = 69%

Li et al., 2023
[82] T2w MRI images

CNN
LASSO

SVM

Histopathology:
pT stage

Accuracy of radiomics,
single- and multi-task DL
on T2w MRI images for

staging

Radiomics-
AUC = 0.920
Singletask =
AUC = 0.933
Multitask =

AUC = 0.932

Sarkar et al.,
2023 [69] CT Hybrid ML

and DL

Histopathology:
Detection
Staging

Hybrid ML and DL model
to automatically detect

and stage BCa

Detection:
ACC = 86.07%

Staging:
ACC = 79.72%

Li et al., 2023
[83] T2w MRI images CNN

VI-RADS Staging
DL-CNN model based on
T2w vs. VI-RADS in BCa

staging

(CNN)
AUC = 0.963

(VIRADS)
AUC = 0.84

BCa = Bladder Cancer; pt = patients; WNN = weighted nearest neighbor; AUC =area under the curve; ACC = Accu-
racy; k-NN = K-nearest neighbor; LR = Logistic Regression; CNN = Convolutional Neural Network, ROI = Region
of interest JSC = Jaccard’s coefficient of similarity; SVM = support vector machine classifier; DT = decision tree;
LDA = linear discriminant analysis, NN = neural network, RAF = random forest classifier; IHC = immuno-
histochemistry; LASSO = least absolute shrinkage and selection operator; DSC = dice similarity coefficient;
VI-RADS = vesical imaging and reporting data system; SENS = sensitivity; SPEC = specificity; YOLO = You Only
Look Once algorithm; (mIoU) mean Intersection over Union.

4. Discussion

AI technology through ML and DL methods could have the potential to achieve
improved outcomes for BCa patients. Several AI approaches in the different steps of BCa
diagnostic work-up have been recently evaluated with the aim to improve oncologic and
QoL outcomes of BCa patients, as well as to lower the financial burden related to BCa,
which is the most expensive neoplasm to treat over the patients’ lifetime [86].
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Our search retrieved 48 studies that are from all clinical tasks with an impact on BCa
diagnosis, focusing, in particular, on the most recent evidence available in the current
literature, therefore placing our work among the most comprehensive review dealing with
AI and BCa. Specifically, in previous sections, we reviewed studies on ML- and DL-based
tools applied to different diagnostics in BCa patients with regard to cystoscopy, urine
cytology, urine metabolomes, bladder segmentation, imaging, grading, histopathology,
and staging.

The retrieved studies were mostly focused on the use of AI methods applied to cys-
toscopy images for BCa detection [33–42]. Indeed, endoscopy plays a pivotal role in the
initial diagnosis of BCa, since it allows direct visualization of bladder tumors and/or suspi-
cious areas which deserve histopathological characterization. Although the combination of
AI with cystoscopy is a relatively novel concept, AI methods bear the potential to mitigate
human errors related to image interpretation (which is up to 20% for BCa detection). Due to
their inherent design and nature, AI methods are immune to many errors clinicians have to
face (e.g., fatigue, stress, burn-out, etc.) so that they can act as physician assistant tools for
improved diagnostic performance during cystoscopy. To this purpose, several ML and DL
models have been assessed, and in almost all cases, they outperformed conventional diag-
nostics, achieving the best AUCs. However, the studies retrieved to date were retrospective
in design and mainly focused on methods applied to static frames taken during cystoscopy,
which limits their clinical applicability since endoscopic diagnosis is a dynamic process (i.e.,
not depending only on images alone). Real-time AI-based tools and/or systems applied
to endoscopic videos could solve this issue. Although full automation of endoscopic pro-
cedures is unlikely to occur anytime soon, advances in endoscopy for other malignancies
(e.g., colonoscopy and esophagus-gastro-duodenoscopy) have achieved accurate automatic
real-time detection of tumors, proving that the implementation of AI to traditional devices
could add diagnostic value also for BCa detection. However, to the best of our knowledge,
no study has prospectively reported on the real-time performance of AI approaches for
BCa diagnosis during cystoscopy so far.

Although cystoscopy is the key to BCa diagnosis, it is an invasive procedure with
significant implications in terms of healthcare costs for both patients and society and non-
neglectable mental and physical discomfort for the patients. As a consequence, in recent
years, there have been increasing efforts to train AI-based tools for urine sample analysis.

Urine cytology is a non-invasive test, yet on the other hand, it exhibits low sensitivity
(up to 54%) for BCa diagnosis. Specifically, urine cytology has higher sensitivity in high-
grade (79%) but low in low-grade tumors (79% and 16%, respectively) [42,87,88]. Thus,
a negative cytology cannot rule out the presence of BCa. Moreover, urine cytology is
user-dependent, and the evaluation can be hampered by low cellular yield, as well as
urinary tract infections and/or stones; however, in experienced hands, specificity exceeds
90%. ML and DL methods have been used to automatically identify atypical and BCa
cells and to improve the diagnostic accuracy of urine cytology, especially for low-grade
cancers [43–49]. In this contest, two studies have also evaluated the use of AI-based tools
for the assessment of urine metabolomes in identifying biomarkers potentially related to
BCa [50,51]. However, it should be noted that AI algorithms applied to cystoscopy data
generally showed higher accuracy for BCa diagnosis than those applied to urine samples.

Due to the previously mentioned pivotal role of endoscopy for the detection of BCa,
the investigation of AI methods applied to imaging modalities such as CT and MRI scans
for BCa initial diagnosis is still limited compared to other urological malignancies (e.g.,
prostate and kidney cancers) [64–69]. Although several studies combined radiomics and
AI-based tools to improve detection, bladder segmentation, staging, and grading for BCa,
data to date do not allow for generalizability.

Bladder segmentation (i.e., differentiating the bladder wall from surrounding tissues)
is a crucial step in the BCa diagnostic work-up in the AI and CAD era. The bladder is
a “shifting” organ in relation to its volume content, pressure, and physiology. Moreover,
boundaries between the bladder wall and the surrounding soft tissues exhibit low contrast
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in images. Proper bladder segmentation encloses avoiding that some BCa can be excluded
from the area of ROI (i.e., false negative cases), while non-bladder related images can
be detected as BCa (i.e., false positive cases). Currently, manual delineation executed
by radiologists is challenging, as it still takes a long time and places a great financial
burden [52]. To overcome these issues, designing automated capabilities to segment the
bladder in line with results obtained by the involvement of experts is pivotal to improving
BCa management. Several studies evaluated the performance of different DL methods
applied to CT-urography, MRI, hematoxylin-eosin stained, and cystoscopy images for
proper bladder segmentation, and found positive results [53–57], yet still far for application
into clinical practice.

Grading is a main aspect of BCa management for clinical decision-making since up to
30% of non-muscle invasive cases consist of high-grade BCa that can progress to muscle
invasion as well as develop metastases [89–94]. Only a few studies evaluated the potential
of applying AI technologies to MRI for BCa grading purposes [70,71]. Although the
radiomics models outperformed the conventional modalities, the sample size was rather
small, and the results need to be validated further. Moreover, to overcome potential grading
errors occurring during the assessment of grade on transurethral resection of bladder tumor
(TURBt) slides by pathologists—mainly due to inter- and intra-observer variability—a fully
automated grading DL system was designed, which correctly graded more than 70% of
low- and high-grade BCa cases [72].

AI has also been used for histopathological analysis of BCa with the aim of automating
the process and achieving better reproducibility and efficiency. Specifically, an automated
method to diagnose on whole slide digital imagining of pathology results with the aid of
an AI algorithm obtained similar results as the expert pathologists [76]. Moreover, a few
studies reported on the use of AI applied to pathology for the assessment of lymph node
status after cystectomy, showing good results [73–75].

Proper staging is essential for therapeutic decision-making in patients with BCa, yet
current tools are still hindered by the sub-optimal ability to correctly stage BCa. Histopatho-
logical analysis of specimens obtained by TURBt is the cornerstone of BCa diagnosis and
staging; however, TURBt still retains inaccuracy in determining the status of muscle layer
infiltration (up to 50% with T1 disease on TURBt have a muscle-invasive BCa). Image
modalities, such as CT and MRI, can provide further staging information, yet they show
sub-optimal performance in evaluating microscopic invasion (T1 versus T2 disease). Thus,
to date, their main use is to assess locally advanced disease (≥T3b disease). Some studies
addressed BCa staging and AI methods applied to CT and MRI imaging [78–85]. However,
even if the AUCs were higher for the proposed new models than traditional approaches in
almost all studies, there was a large amount of variability, and results need to be validated
further to enhance their robustness and reproducibility.

Although AI has emerged as a powerful tool in the field of BCa management, po-
tentially revolutionizing the current and future panorama in terms of early and accurate
diagnosis as well as personalized treatment, there are still several shortcomings to consider.

One of the main limitations of AI in BCa is the availability and quality of data, al-
gorithm bias, and interpretability of AI-generated results. AI algorithms require large
and well-annotated datasets for training and validation; skewed or poorly representative
datasets will lead to biases that could also be difficult to detect owing to the complex
computations of AI tools. Efforts should be made to collect and curate high-quality datasets
that represent the heterogeneity of bladder cancer, ensuring the robustness and gener-
alizability of AI models. In the case of BCa, comprehensive datasets with good image
quality are available on digital pathology and radiological imaging; conversely, cystoscopy
images are scarce. Some preliminary studies utilizing DL algorithms, like CNNs, revealed
potentially good results. The limitation to clinical integration is due to the dynamic of
cystoscopy in obtaining images, and this cannot be easily standardized (like, e.g., radiology
or histopathology) [34,36]. On the other hand, AI and BCa imaging is yet limited, and the
role of cystoscopy is still predominant in initial diagnosis. As presented in previous specific
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paragraphs, promising results were achieved by AI applied to CT and MRI scans for BCa
staging, grading, and bladder segmentation. However, to date, research in this field has
not reached sufficient maturity for a tangible clinical benefit.

With specific regards to research methodology, performance analyses in the retrieved
studies have been carried out mainly using sensitivity, specificity, accuracy, and AUC as
performance metrics to assess the effectiveness of AI-based tools compared to traditional
methods for BCa management (Table 2). However, to date, there is still substantial hetero-
geneity in study design, as well as algorithms design and definition of evaluated outcomes
that makes meaningful comparison of quantitative analyses difficult to assess. Moreover,
most AI technologies were trained, validated, and tested on the same dataset of cases;
this has frequently led to a statistical phenomenon—namely “overfitting”- for which an
algorithm works at its best on its own dataset, yet worst on novel ones.

Another intrinsic limitation is the interpretability and explainability of AI algorithms.
Often, AI models function as black boxes, making it challenging to understand the reason-
ing behind their predictions. This lack of interpretability hinders trust and acceptance by
clinicians who require transparent methods.

Ethical considerations are also of pivotal importance when implementing AI in BCa
diagnosis and treatment. Indeed, analysis of confidential patient electronic health records
raises legal and governance issues related to an individual’s right to privacy versus the
potential benefit of research. Patient privacy, the need for informed consent, data security,
algorithm bias, and the responsibility of healthcare professionals in validating and inter-
preting AI-generated results are among the main ethical concerns that should be considered
and faced before the widespread implementation of AI in the healthcare system. Moreover,
efforts should be made to identify and mitigate potential biases in AI algorithms that
could disproportionately affect certain populations, ensuring equitable and unbiased BCa
diagnosis and treatment.

Adoption challenges should be considered prior to the incorporation of AI-based
diagnostic tools into the clinical workflow. This aspect could be a substantial barrier—
especially in developing countries—due to logistical considerations mainly related to
the massive computational power that is required to run complex ML algorithms and
devices, balanced against the cost that the health care system can afford. Furthermore,
practical issues over the integration with existing systems, as well as training requirements
for healthcare professionals, are other obstacles that should be faced for proper real-life
implementation.

Finally, scalability is crucial to achieving the clinical applicability of AI algorithms,
data, and models in the BCa field. The ability of AI-based diagnostic tools to operate
at the size, speed, and complexity required for BCa assessment is still suboptimal, so it
represents a major obstacle to widespread clinical implementation. To date, difficulties in
implementing these technologies in large-scale healthcare systems still exist, and robust
infrastructures to support their widespread adoption are needed.

Despite these limitations, advances in technology and research can significantly im-
prove the diagnosis and treatment of BCa.

First, AI will enhance diagnostic accuracy for the detection and classification of blad-
der cancer from various imaging modalities. AI has a transversal nature that makes these
new intelligent technologies applicable to multiple disciplines (e.g., urology, radiology,
pathology, and medical oncology). Indeed, in the era of increasing emphasis on precision
medicine and patient-tailored management of diseases, AI bears an appealing potential
for optimized risk stratification and personalized treatment planning in BCa patients.
Specifically, the capability to integrate patient factors with clinical and multi-omics data,
such as genomics, proteomics, and transcriptomics, to identify molecular signatures and
biomarkers will help to predict responses to specific therapies allowing for personalized
treatment selection and improving patient outcomes. Additionally, AI may be used as
clinical decision support to analyze patient-specific data and provide tailored recommen-
dations for treatment strategies, surveillance schedules, and follow-up plans. Finally, AI
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technologies, combined with telemedicine platforms, can enable remote monitoring of
bladder cancer patients, real-time evaluation of symptoms, treatment response, and disease
progression, and ultimately reduce healthcare costs, allowing timely interventions when
required. In addition to the previously reported characteristics, generative models of deep
learning are adaptable and could be used together in a hybrid approach, i.e., utilizing
multiple deep basic learning models and integrations using generative and discrimina-
tive learning, permitting to potentially outperform the limitations of a single generative
model [95]. Furthermore, the possibility to utilize and integrate AI algorithms with tra-
ditional imaging analysis has been proposed and starting to be used in different medical
fields [96–98]. The evidence at this time, highlighted in this paper, points out that AI-based
tools represent a catching and emerging research field in BCa diagnosis, which could lead to
advanced diagnosis when applied to different steps (i.e., cystoscopy, urine samples analysis,
bladder segmentation, imaging, and histopathology). However, when transposed into
clinical settings, there are several limitations to their use and application (e.g., variability in
study design, algorithms utilized, and training methods), which call for further research,
including prospective, large data sets, as well as external validation of results. Additionally,
the use of AI and ML models in common clinical practice is still limited by regulatory
considerations as the pending FDA and CE approval as not all AI/ML-based medical
devices have been approved, and the numerous and growing use of this technology further
delays this process [99,100]. A further issue is linked to ML interpretability, which suffers
from the lack of mature definitions and formality of methods and models, creating a sort of
black box approach to AI in which the way of operation and process production are not
known. This ambiguity and lack of transparency in the results obtained have therefore
limited the adoption and extensive use of ML systems in sensitive domains [101]. Lastly,
another potential limitation is related to the approach and the perspectives of patients
toward AI, with controversial results in terms of support, understanding, and use of this
technology in common clinical practice [102,103].

5. Conclusions

Artificial intelligence, together with its subsets, i.e., machine learning, deep learning,
and artificial neural networks, has emerged as a powerful tool in the field of bladder
cancer research and treatment, revolutionizing the current and future panorama in terms
of early detection, accurate diagnosis, and personalized treatment. The large amount of
data that could be analyzed via this technology could further improve the outcomes and
the understanding of the disease, aiding patients and clinicians in common clinical practice.
Additionally, the potentialities related to the use of machine learning and deep learning
algorithms in developing novel biomarkers, drugs, and treatment protocols represent
another pivotal point in the next future. Nevertheless, several challenges are still to be
overcome, such as data quality, general applicability, and lastly, ethical considerations.
Future studies are required in order to provide more consistent data regarding the role of
this promising technology in the diagnostic and therapeutic pathway of bladder cancer.
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