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Abstract: Multimodal medical image fusion (MMIF) is the process of merging different modalities of
medical images into a single output image (fused image) with a significant quantity of information
to improve clinical applicability. It enables a better diagnosis and makes the diagnostic process
easier. In medical image fusion (MIF), an intuitionistic fuzzy set (IFS) plays a role in enhancing
the quality of the image, which is useful for medical diagnosis. In this article, a new approach
to intuitionistic fuzzy set-based MMIF has been proposed. Initially, the input medical images are
fuzzified and then create intuitionistic fuzzy images (IFIs). Intuitionistic fuzzy entropy plays a major
role in calculating the optimal value for three degrees, namely, membership, non-membership, and
hesitation. After that, the IFIs are decomposed into small blocks and then perform the fusion rule.
Finally, the enhanced fused image can be obtained by the defuzzification process. The proposed
method is tested on various medical image datasets in terms of subjective and objective analysis.
The proposed algorithm provides a better-quality fused image and is superior to other existing
methods such as PCA, DWTPCA, contourlet transform (CONT), DWT with fuzzy logic, Sugeno’s
intuitionistic fuzzy set, Chaira’s intuitionistic fuzzy set, and PC-NSCT. The assessment of the fused
image is evaluated with various performance metrics such as average pixel intensity (API), standard
deviation (SD), average gradient (AG), spatial frequency (SF), modified spatial frequency (MSF),
cross-correlation (CC), mutual information (MI), and fusion symmetry (FS).

Keywords: medical imaging; image fusion; disease diagnosis; intuitionistic fuzzy set; intuitionistic
fuzzy image; subjective and objective analysis

1. Introduction

In past decades, image fusion has matured significantly in the application fields such
as medical [1], military [2,3], and remote sensing [4]. Image fusion is a prominent appli-
cation in the medical field for better analysis of human organs and tissues. In general,
the medical image data is available from various imaging techniques such as magnetic
resonance imaging (MRI), magnetic resonance angiography (MRA), computed tomogra-
phy (CT), T1-weighted MR, T2-weighted MR, positron emission tomography (PET), and
single-photon emission computed tomography (SPECT) [5]. Each technique has differ-
ent characteristics.

Multimodal medical images are widely characterized into two types: anatomical
and functional modalities, respectively. Anatomical modalities are, namely, MRI, MRA,
T1-weighted MR, T2-weighted MR, and CT. CT images represent a clear bone structure
with lower distortion but do not distinguish physical changes, while MRI images provide
delicate tissue information with high spatial resolution. CT imaging is used to diagnose
diseases such as muscle disease, vascular conditions, bone fractures and tumors etc. MRI
imaging is used to diagnose various issues in medial regions such as brain tumors, multiple
sclerosis, lung cancer and treatment, brain hemorrhage, and dementia etc. Magnetic
resonance angiography, or MRA, is a subset of MRI that utilizes magnetic fields and radio
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waves, which create images of the body’s arteries, helping clinicians to detect blood flow
abnormalities. The weighted MR-T1 images reveal fat, while weighted MR-T2 images
provide water content.

Functional modalities are PET, and SPECT. PET imaging gives functionality of human
organs with high sensitivity. The PET imaging technology is used to diagnosis different
diseases such as Alzheimer’s disease, Parkinson’s disease, cerebrovascular accident, and
hematoma. The other application areas of PET imaging are lung and breast cancer diagnosis,
and cancer treatment.

SPECT imaging provides blood flow information with minimal spatial resolution, and
is used for different diagnoses, namely, brain and bone disorders, and heart problems. The
application areas in SPECT imaging are pelvis irradiation detection and treatment, vulvar
cancer, breast cancer assessment, and head and neck cancer diagnosis [6,7]. However, single
medical image data cannot provide the required information for diagnosis. To overcome
this, multimodal medical image fusion is necessary.

Multimodal medical image fusion is the process of merging different modalities of
medical images into a single output image. Its advantages include decreased uncertainty,
resilient system performance, and higher reliability, all of which contribute to more accurate
diagnosis, thus improving treatment. From the literature, authors have reported various
multimodality combinations. Fusion of T1- and T2-weighted MR images produce a fused
image, and is used to identify tumor regions [8]. The soft and hard tissue information from
MRI and CT images, respectively, are combined into a single resultant image by fusion
resulting in better image analysis [9]. The T1-weighted MR and MRA [10] combination
provides perfect lesion locations with delicate tissues. The MRI–PET [11] combination
and MRI–SPECT [12] combinations provide anatomical and functional information in a
single image, which is used to better diagnosis disease and medical-related problems.
The objective of this research article is to examine the relevance and advancement of
information fusion approaches in medical imaging for investigation of clinical aspects and
better treatment.

In any fusion strategy, two important requirements should be satisfied: it should not
add any artifacts or blocking effects to the resultant image; and no information should be
lost throughout the fusion process.

Image fusion techniques are broadly classified into three levels [13], namely, pixel-
level, feature-level, and decision-level. In pixel-level fusion, image pixel values are directly
merged. In feature level fusion, various salient features are involved in the fusion process
such as texture and shape. In decision-level fusion, the input images are fused based on
multiple algorithms with decision rules.

2. Related Works

The preeminent research issue in medical image processing is to obtain maximum con-
tent of information by combining various modalities of medical images. Various existing
techniques are included in this literature such as the simple average (Avg), maximum, and
minimum methods. The average method provides a fused image with low contrast, while
the maximum and minimum methods provide the less enhanced fused images. The Brovey
method [14] gives color distortions. Hybrid fusion methods such as the intensity-hue
saturation (IHS) and principal component analysis (PCA) [15] combination provides a
degraded fused image with spatial distortions. However, the pyramid decomposition-
based method [16] shows better spectral information, but the required edge information
is not sufficient. Discrete cosine transform (DCT) [17] and singular value decomposition
(SVD) [18] methods give a fused image, which has a more complementary nature but does
not show clear boundaries of the tumor region. The multi-resolution techniques, such as
discrete wavelet transform (DWT) [19], provides better localization in time and frequency
domains, but cannot give the shift-invariance due to down-sampling. To overcome this the
redundant wavelet transform (RWT) [20] was employed. However, the above technique is
highly complex and cannot provide sufficient edge information. The contourlet transform
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(CONT) technique [21] provides more edge information in a fused image but does not
provide the shift invariance. Shift invariance is the most desirable property and is applied
in various applications of image processing. These are: image watermarking [22], image
enhancement [23], image fusion [24], and image deblurring [25]. The above mentioned
drawbacks are addressed by the non-subsampled contourlet transform (NSCT) [26] and
non-subsampled Shearlet transform (NSST) [27,28]. Hybrid combinations of fusion tech-
niques such as DWT and fuzzy logic [29] provide a fused image with low contrast because
of the higher uncertainties and vagueness, which is present in a fused image.

In general, medical images have poor illumination which means low contrast and
poor visibility in some parts, which indicates uncertainties and vagueness. Visibility
and enhancement are the required criteria in the medical field to diagnose the disease
accurately. In the literature, various image enhancement techniques are reported, namely,
gray-level transformation [30] and histogram-based methods [31]. Yet, these methods are
not properly improving the quality of medical images. Zadeh [32] proposed a mathematical
approach, namely, a fuzzy set in 1965. This fuzzy set approach has played a significant
role by removing the vagueness present in the image. However, it did not eliminate the
uncertainties. A fuzzy set does not provide reasonable results regarding more uncertainties
because it considers only one uncertainty. This uncertainty is in the form of membership
function, that lies between the range 0 to 1, where zero indicates the false membership
function, and one indicates the true membership function. In the year 1986 Atanassov [33]
proposed a generalized version of the fuzzy set i.e., intuitionistic fuzzy set (IFS), which
handles more uncertainties in the form of three degrees. These degrees are membership,
non-membership, and hesitation degrees. The IFS technique is highly precise, and flexible
in order to handle uncertainties and ambiguity problems.

In this literature review, the research gaps and drawbacks of various medical image
fusion techniques are discussed and listed in Table 1:

Table 1. Comparison of the existing fusion methods.

Fusion Methods Modalities Merits Demerits

IHS and PCA MRI-PET Good spatial features and better color
visualization in a fused image. Low contrast and distorted boundaries.

Pyramid MRI-CT Preserves better outlines in the
fused image.

Due to a lack of spatial orientation
selectivity, the unwanted edges and
blocking effects exist in the fused image.

SVD MRI-CT Provides better quality fused image. Fails to show the clear boundaries of the
tumor region.

DWT MRI-CT, MRI-PET Provides good localization in both time
and frequency.

Has more complexity and lack of edges
information.

CONT MRI-CT Fused image has better edges and is
superior to DWT and Curvelet transform.

Does not provide the shift invariance,
may cause blocking effects

NSCT MRI-CT Superior to traditional transform
techniques in terms of directionality. Complexity is high.

NSST MRI-CT Fusion process is superior to NSCT with
lower complexity.

Low brightness and contrast due to
uncertainties, and high
computational time.

The main contribution of this research article is described as follows:

• A novel intuitionistic fuzzy set is used for the fusion process, which can enhance the
fused image quality and complete the fusion process successfully.

• The intuitionistic fuzzy images are created by using the optimum value, α, which can
be obtained from intuitionistic fuzzy entropy.
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• The Intuitionistic cross-correlation function is employed to measure the correlation be-
tween intuitionistic fuzzy images and then produce a fused image without uncertainty
and vagueness.

• The proposed fusion algorithm proves that the fused image has good contrast and en-
hanced edges and is superior to other existing methods both visually and quantitatively.

3. Materials and Methods

Intuitionistic fuzzy set (IFS) is used to solve the image processing tasks with member-
ship and non-membership functions [34]. The implementation of IFS is briefly explained,
starting from a fuzzy set.

Let us consider, a finite set P is

P = {p1, p2, p3, . . . . . . . . . , pn} (1)

A fuzzy set F in a finite set P is numerically represented as:

F = {(p, µF(p))|p ∈ P} (2)

where µF(p) indicates the membership function of p in P, which lies between [0–1], and
the non-membership function can be represented as vF(p) and will be equal to 1− µF(p).
The IFS was introduced by Atanassov [33] in 1986, which considers both µF(p) and vF(p)
functions, holding µF(p)→ [0, 1] and vF(p)→ [0, 1] . The representation of intuitionistic
fuzzy set (IFS) F in P in a mathematical form, is written as:

F = {(p, µF(p), vF(p))|p ∈ P} (3)

Which holds the condition 0 ≤ µF(p)+ vF(p) ≤ 1. However, due to lack of knowledge
while characterizing the membership degree, a novel parameter was introduced, called
hesitation degree πF(p), by Szmidt and Kacpryzyk [35], for each element p in F. This can
be written as:

πF(p) = 1− µF(p)− vF(p) (4)

where 0 ≤ πF(p) ≤ 1.
Finally, based on the hesitation function, the IFS can be represented as

F = {(p, µF(p), vF(p), πF(p))|p ∈ P} (5)

This article proposed a new intuitionistic fuzzy set-based medical image fusion that
is superior for better diagnosis. Initially, the input images are fuzzified and then create
intuitionistic fuzzy images with the help of the optimal value, α, which can be generated
by intuitionistic fuzzy entropy (IFE) [36]. After that, the two intuitionistic fuzzy images
are split into several blocks and then apply the intuitionistic fuzzy cross-correlation fusion
rule [37]. Finally, the enhanced fused image can be obtained without uncertainty by
rearrangement of blocks and accompanied by a defuzzification process.

3.1. Intuitionistic Fuzzy Generator

A function φ(p) : [0, 1] is called an intuitionistic fuzzy generator (IFG) [38]
if φ(p) ≤ 1 − p, ∀p ∈ [0, 1] and φ(0) ≤ 1, φ(1) ≤ 0, which is a decreasing, continu-
ous, and increasing function, and these are used for the construction of IFS. The fuzzy
complements are calculated from the complement function, which is described as:

N(µF(p)) = g−1(g(1)− g(µF(p))) (6)

where g(.) is an increasing function with g(0) = 0. Some of the authors suggested different
intuitionistic fuzzy generators using an increasing function, such as Sugeno’s [39], Roy
Chowdhury and Wang [40].
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3.2. Proposed Fuzzy Complement and Intuitionistic Fuzzy Generator

In this article, a novel fuzzy complement is created using an increasing function, which
is described as:

g(µF(p)) =
1
α

log
(
1 + α

(
1 + e−α

)
µF(p)

)
(7)

With g(0) = 1
α log(1) = 0, and g(1) = 1

α log(1 + α(1 + e−α)).
With the inverse function of g(µF(p)) is

g−1(µF(p)) =
eαµF(p) − 1
α(1 + e−α)

(8)

Substituting the value of g(µF(p)) in Equation (6), we get

N(µF(p)) = g−1
(

1
α log(1 + α(1 + e−α)× 1)− 1

α log(1 + α(1 + e−α)µF(p))
)

N(µF(p)) = g−1
(

1
α log

(
1+α(1+e−α)

1+α(1+e−α)µF(p)

)) (9)

By the induction method, the Equation (8) becomes

g−1
(

1
α

log
(

1 + α(1 + e−α)

1 + α(1 + e−α)µF(p)

))
=

e
α( 1

α log( 1+α(1+e−α)

1+α(1+e−α)µF(p)
))
− 1

α(1 + e−α)
(10)

N(µF(p)) =
(1− µF(p))

(1 + α(1 + e−α)µF(p))
, α > 0 (11)

Equation (11) is a fuzzy negation and it satisfies the following axioms:

(i) P1: Boundary conditions:

µF(p) = 1 then N(1) = 1−1
1+α(1+e−α)×1 = 0

µF(p) = 0 then N(0) = 1−0
1+α(1+e−α)×0 = 1

(ii) P2: Monotonicity

If µF(p) < µF(q), then N(µF(p)) > N(µF(q)).

(iii) P3: Involution

N(µF(p)) is involutive that indicates N(N(µF(p))) = µF(p).

Proof:

N(N(µF(p))) =
1− N(µF(p))

(1 + α(1 + e−α)N(µF(p)))
=

1− (1−µF(p))
(1+α(1+e−α)µF(p))(

1 + α(1 + e−α)
(1−µF(p))

(1+α(1+e−α)µF(p))

) = µF(p)

It can be noticed that if α = 0, then N(µF(p)) = (1− µF(p)); this is equivalent to
standard Zadeh’s fuzzy complement. �

The intuitionistic fuzzy generator cannot be represented by all of the fuzzy com-
plements. If the fuzzy complement satisfies the conditions, it will be referred to as an
intuitionistic fuzzy generator:

N(µF(p)) = (1− µF(p)) for all µF(p) ∈ [0, 1], with N(0) = 1 and N(1) = 0.
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The proposed fuzzy complement is the intuitionistic fuzzy generator and it satisfies
the conditions. From the Equation (11), non-membership degree values are computed by
using a new intuitionistic fuzzy generator, and new IFS (NIFS) becomes:

FNIFS
α =

{
p, µF(p), vF(p) =

(1− µF(p))
(1 + α(1 + e−α)µF(p))

|p ∈ P
}

(12)

and the hesitation degree can be represented as:

πF(p) = 1− µF(p)− vF(p) (13)

Equation (11), a new intuitionistic fuzzy generator, is used to expand and enhance the
intensity levels over a range because some of the multimodal medical images are primarily
dark. Varying the α value indicates a change in the intensity values not only in grayscale
images but also a change in the ratio of components in the color images.

In image processing, entropy plays a significant role and is used to distinguish the
texture of the image. The fuzzy entropy estimates ambiguity and fuzziness in a fuzzy set
and was introduced by Zadeh. De Luca and S. Termini [41] introduced the first skeleton of
non-parabolic entropy in 1972. Many researchers [42,43] have proposed various structures
of entropy methods employing the IFS theory. In this article, a novel IFE function is
presented, that can be determined as in [36], and it has been utilized to develop the
proposed technique, which is described as:

IFE(F; α) =
1
n

n

∑
i=1

πF(pi) exp(πF(pi)) (14)

where πF(pi) = 1− µF(pi)− vF(pi), µF(pi), and vF(pi) are the hesitation, membership,
and non-membership degrees, respectively. Entropy (IFE) function is computed by using
Equation (14) for the α values between [0.1–1.0], thus, it is optimized by calculating the
highest entropy value using Equation (15), i.e.,

αopt = max
α

(IFE(F; α)) (15)

With the known value of α, the membership values of the new intuitionistic
fuzzy set (NIFS) are calculated, and finally, the new intuitionistic fuzzy image (NIFI) is
represented below:

FNIFI = {p, µF(p; α), vF(p; α), πF(p; α)|p ∈ P} (16)

3.3. Intuitionistic Fuzzy Cross-Correlation (IFCC)

The cross-correlation of IFS [37] is a significant measure in IFS theory and has extraor-
dinary fundamental potential in various areas, such as medical diagnosis, decision-making,
recognition, etc. The IFCC function is used to measure the correlation between two intu-
itionistic fuzzy images (IFIs). Let C1, C2 ∈ IFS(P) and P = {p1, p2, . . . . . . , pn} be a finite
universe of discourse, then the correlation coefficient is described as, follows:

ρ∗(C1, C2) =
1

2×n

n
∑

g=1

[
αg
(
1−∆µg

)
+ βg

(
1−∆vg

)]
where αg =

c−∆µg−∆µmax
c−∆µmin−∆µmax

, βg =
c−∆vg−∆vmax

c−∆vmin−∆vmax
, g = {1, 2, . . . . . . , n}

∆µg =
∣∣µC1

(
pg
)
− µC2

(
pg
)∣∣, ∆vg =

∣∣vC1

(
pg
)
− vC2

(
pg
)∣∣,

∆µmax = max
g

{∣∣µC1

(
pg
)
− µC2

(
pg
)∣∣}, ∆µmin = min

g

{∣∣µC1

(
pg
)
− µC2

(
pg
)∣∣},

∆vmin = min
g

{∣∣vC1

(
pg
)
− vC2

(
pg
)∣∣}, ∆vmax = max

g

{∣∣vC1

(
pg
)
− vC2

(
pg
)∣∣}

(17)

Here, the αg and βg and IFCC values range from [0–1], which depends on the constant
value ‘c’.
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4. Proposed Fusion Method

In this section, we present a new approach to IFS-based multimodality medical image
fusion with the IFCC fusion rule. Here, various combinations of medical images are
involved in the fusion process such as T1–T2 weighted MR images, T1-weighted MR–MRA
images, MRI–CT images, MRI–PET images, and MR-T2–SPECT images. This proposed
method can be implemented in both grayscale and color images. This fusion algorithm is
arranged sequentially as shown in Figures 1 and 2.
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4.1. Grayscale Image Fusion Algorithm

1. Read the registered input images I1 and I2.
2. Initially, the first input image I1 is fuzzified by using Equation (18):

µI1

(
Igh1

)
=

Igh1 − Imin

Imax − Imin
(18)

where Igh1 is the gray pixel of the first input image. Imax and Imin represent the highest and
least gray level pixel values of the first input image, respectively.

3. Compute the optimum value,
(
αopt1

)
for first input image by using IFE, which is

given in Equations (14) and (15).
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4. With the help of the optimized value,
(
αopt1

)
, calculate the fuzzified new IFI (NIFI) for

the first input image by using Equations (19)–(22), which can be represented as IIF1.

The membership degree of the NIFI is created as:

µNIFS
I1

(
Igh1; αopt1

)
=

(
1 + αopt1

(
1 + e−αopt1

))
µI1

(
Igh1

)
1 + αopt1

(
1 + e−αopt1

)
µI1

(
Igh1

) (19)

Non-membership function is created as:

νNIFS
I1

(
Igh1; αopt1

)
=

(
1−µNIFS

I1
(Igh1;αopt1)

)
(

1+αopt1

(
1+e−αopt1

)
µNIFS

I1
(Igh1;αopt1)

)
=

1−µI1(Igh1)

1+2αopt1µI1(Igh1)
(

1+e−αopt1
)
+µI1(Igh1)

[
αopt1

(
1+e−αopt1

)]2

(20)

and finally, the hesitation degree is obtained as:

πNIFS
I1

(
Igh1; αopt1

)
= 1− µNIFS

I1

(
Igh1; αopt1

)
− vNIFS

I1

(
Igh1; αopt1

)
(21)

IIF1 =
{

Igh1, µNIFS
I1

(
Igh1; αopt1

)
, vNIFS

I1

(
Igh1; αopt1

)
, πNIFS

I1

(
Igh1; αopt1

)}
(22)

5. Similarly, for the second input image, repeat from step 2 to step 4 to obtain the
optimum value, αopt2, used to calculate NIFI (IIF2):

IIF2 =
{

Igh2, µNIFS
I2

(
Igh2; αopt2

)
, vNIFS

I2

(
Igh2; αopt2

)
, πNIFS

I2

(
Igh2; αopt2

)}
(23)

6. Decompose the two NIFI images (IIF1 and IIF2) into small i × j blocks and the kth

block of two decomposed images are represented as IIF1k and IIF2k, respectively.
7. Compute the intuitionistic fuzzy cross-correlation fusion rule between two windows

of images (IIF1k and IIF2k) and the kth block of the fused IIFk image is obtained by
using minimum, average, and maximum operations:

IIFk =


min{IIF1k, IIF2k} i f ρ∗(IIF1k, IIF2k) ≤ 0

IIF1k+IIF2k
2 i f ρ∗(IIF1k, IIF2k) = 1

max{IIF1k, IIF2k} . otherwise
(24)

8. Reconstruct the fused IFI image by the combined small blocks.
9. Finally, the fused image can be obtained in the crisp domain by using the defuzzifica-

tion process, which is obtained by the inverse function of Equation (18).

Fc(i, j) = ((Imax − Imin) ∗ IIFk + Imin) (25)

4.2. Color Image Fusion Algorithm

The complete fusion algorithm for the combination of gray (MRI) and color images
(PET/SPECT) is arranged sequentially as shown in Figure 2.

1. Consider MRI and PET/SPECT as input images. The PET/SPECT image is converted
into an HSV color model, such as hue (H), saturation (S), and value (V).

2. For the fusion process, take the MRI image and V component image, and then perform
a grayscale image fusion algorithm from step 2 to step 9 as shown in Section 4.1, to
get the fused component (V1).

3. Finally, the colored fused image can be obtained by considering the brightness image
(V1) and unchanged hue (H) and saturation (S) parts and then converting into the
RGB color model.
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5. Experimental Results and Discussion

This section represents a brief explanation of the effectiveness of the proposed method
and a detailed comparison of various existing algorithms with the help of performance
metrics. In this paper, all input medical images are assumed to be perfectly registered, and
experiments are performed with two different modalities of medical images, where the
data is collected and downloaded from metapix and whole brain atlas [44,45]. The fusion
of these two modalities of the medical image will provide a composite image, which will
be more useful for diagnosing diseases, tumors, lesion locations, etc.

In this article, we have performed a new intuitionistic fuzzy set-based image fusion
over various modalities of medical image datasets of dimensions 256× 256 using the IFCC
fusion rule. The proposed fusion algorithm is used to expand and enhance the intensity
levels over a range because some of the medical images are primarily dark. Varying the
α value indicates a change not only in the intensity values but also changes in the ratio of
components in the color image. These enhanced medical images are fused to obtain a single
image with more complementary information and better quality. Hence, we conclude that
a single medical image cannot provide the required information regarding the disease.
As a result, MIF is required to obtain all relevant and complete information in a single
resultant image.

The evaluation of the fused image can be completed with the help of subjective (visual)
and objective (quantitative) analysis, respectively. The subjective analysis is performed
with the visual appearance, and the objective analysis is finished with a set of performance
metrics. In this paper, eight metrics are used: API [46], SD [46], AG [47], SF [48], MSF [49],
CC [50], MI [51], and FS [48].

The input images are I1(g, h) and I2(g, h) and the fused image is Fused(g, h) with
G× H dimensionality.

â API: API is used to quantify the average intensity values of the fused image i.e.,
brightness, which can be defined as:

API =
1

G× H

G

∑
g=1

H

∑
h=1

[Fused(g, h)] (26)

â SD: SD is used to represent the amounts of intensity variations—contrast—in an
image. It is described as

SD =

√√√√ 1
G× H

G

∑
g=1

H

∑
h=1

[Fused(g, h)− µ]2 (27)

â AG: This metric is used to measure the sharpness degree and clarity, which is repre-
sented as:

AG =
1

(G− 1)(H− 1)

G−1

∑
g=1

H−1

∑
h=1

√
[Fused(g, h)− Fused(g + 1, h)]2 + [Fused(g, h)− Fused(g, h + 1)]2

√
2

(28)

â SF: SF reflects the rate of change in the gray level of the image and also measures the
quality of the image. For better performance, the SF value should be high. It can be
calculated as follows:

SF =

√
(RF)2 + (CF)2 (29)
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where

RF =

√
1

G×H

G
∑

g=1

H
∑

h=2
[Fused(g, h)− Fused(g, h− 1)]2

CF =

√
1

G×H

G
∑

g=2

H
∑

h=1
[Fused(g, h)− Fused(g− 1, h)]2

â MSF: This metric is used to measure the overall active levels present in the fused
image. It can be employed as follows:

MSF =

√
(RFF)

2 + (CFF)
2 + (DFF)

2, DFF = A + B (30)

where

RFF =

√
1

G×(H−1)

G
∑

g=1

H
∑

h=2
[Fused(g, h)− Fused(g, h− 1)]2

CFF =

√
1

(G−1)×H

G
∑

g=2

H
∑

h=1
[Fused(g, h)− Fused(g− 1, h)]2

A =

√
1

(G−1)×(H−1)

G
∑

g=2

H
∑

h=2
[Fused(g, h)− Fused(g− 1, h− 1)]2

B =

√
1

(G−1)×(H−1)

G
∑

g=2

H
∑

h=2
[Fused(g− 1, h)− Fused(g, h− 1)]2

â CC: This metric represents the similarity between the source and fused images. The
range of CC is [0–1]. For high similarity, the CC value is 1 and it decreases as the
dissimilarity increases. It is represented as follows:

CC =
CCI1,Fused + CCI2,Fused

2
(31)

where

CCI1,Fused =
∑G

g=1 ∑H
h=1

(
I1gh−µI1gh

)
(Fusedgh−µFused)√(

∑G
g=1 ∑H

h=1

(
I1gh−µI1gh

)2
)(

∑G
g=1 ∑H

h=1(Fusedgh−µFused)
2) ,

CCI2,Fused =
∑G

g=1 ∑H
h=1

(
I2gh−µI2gh

)
(Fusedgh−µFused)√(

∑G
g=1 ∑H

h=1

(
I2gh−µI2gh

)2
)(

∑G
g=1 ∑H

h=1(Fusedgh−µFused)
2)

â MI: The MI parameter is used to calculate the total information that is transferred to
the fused image from input images.

MIT = MII1,Fused + MII2,Fused (32)

where MII1,Fused = ∑
g
g=1 ∑h

h=1 hI1,Fused(g, h)log2

[
hI1,Fused(g,h)

hI1 (g,h)hFused(g,h)

]
is the MI of input I1(g, h)

and fused images, and

MII2,Fused = ∑
g
g=1 ∑h

h=1 hI2,Fused(g, h)log2

[
hI2,Fused(g,h)

hI2 (g,h)hFused(g,h)

]
is the MI of input I2(g, h)

and fused images, respectively. For better performance, the MI value should be high.

â FS: FS is introduced to measure the symmetry of the fused image with respect to the
source images. If the value of FS is close to 2, this indicates both input images equally
contribute to the fused image. Therefore, the fused image quality will be better.

FS = 2−
∣∣∣∣(MII1,Fused

MI
− 0.5

)∣∣∣∣ (33)
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5.1. Subjective-Type Evaluation

The subjective evolution is carried out on various input datasets as shown in Figure 3.
In this paper, five groups of datasets have been used. The group 1 input images are MR-
T1–MR-T2 datasets as shown in Figure 3((p1–p4) and (q1–q4)). Group 2 input images are
MR-T1 and MRA as shown in Figure 3((p5) and (q5)). Group 3 input images are MRI and
CT in Figure 3((p6–p7) and (q6–q7)), and group 4 input data set images are MRI and PET
in Figure 3((p8–p11) and (q8–q11)). Finally, group 5 input images are MR-T2 and SPECT
datasets as shown in Figure 3((p12–p16) and (q12–q16)). In this article, the performance of
the proposed fusion scheme is compared with various existing algorithms, namely, the PCA
method, Naidu’s [52] method, Sanjay’s [29] method, contourlet transform (CONT) method,
Chaira’s IFS [53] method, Bala’s IFS [54] method, Sugeno’s IFS [55] method, and Zhu’s [56]
method are in Figure 4. The fusion results of the PCA method-based fusion images are
shown in the first column in Figure 4(a1–a16), DWTPCA method-based fusion images are
displayed in the second column in Figure 4(b1–b16), DWT with fuzzy method-based fusion
images are shown in the third column in Figure 4(c1–c16), CONT method based fusion
images are displayed in the fourth column in Figure 4(d1–d16), Chaira’s IFS-method based
fusion images are shown in the fifth column in Figure 4(e1–e16), Bala’s IFS method based
fusion images are displayed in the sixth column in Figure 4(f1–f16), Sugeno’s IFS-method
based fusion images in the seventh column in Figure 4(g1–g16), PC- NSCT method based
fusion images are in the eighth column in Figure 4(h1–h16). Finally, the proposed fusion
images are exhibited in the last column in Figure 4(i1–i16). Subjective analysis is related to
human perception, and the proposed fusion method proves, the fused image has greater
contrast, luminance, and better edge information than other existing methods, and clear
tumor regions are shown in Figure 4((i4), (i8), (i12), (i13), and (i16)).
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mation. Fusion of these images (MR-T1 and MRA) shows the complementary infor-
mation with detailed lesion locations in the fused image.  

The third group dataset consists of MRI and CT images, which are taken from ref-
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Therefore, objective evaluation is preferable for better analysis of fused images using 
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Figure 4. Fused images using: (a) PCA method, (b) DWTPCA [52] method, (c) DWT + fuzzy
method [29], (d) Contourlet transform (CONT) based method, (e) Chaira’s IFS [53], (f) Bala’s IFS [54],
(g) Sugeno’s IFS [55], (h) PC-NSCT method [56], and (i) Proposed method.

The proposed fusion results show that the quality of the fused image is better than
other existing fusion methods. Among all the groups of medical image datasets, the first
group of medical image datasets are T1–T2 weighted MR images. Fusing these two images
shows soft tissue and an enhanced tumor region. The second group of medical image
datasets are MR-T1and MRA images. MR-T1 images produce delicate tissue data but
do not detect the abnormalities in the image, while the MRA image easily detects the
abnormalities but due to low spatial resolution, is unable to produce the tissue information.
Fusion of these images (MR-T1 and MRA) shows the complementary information with
detailed lesion locations in the fused image.

The third group dataset consists of MRI and CT images, which are taken from ref-
erence [44]. MRI imaging produces delicate tissue data, while CT imaging gives bone
information. The combination of these two images produces a quality fused image, which
will be more useful for the diagnosis of disease. The fourth and fifth medical image datasets
are MRI–PET and MR-T2–SPECT images. The fusion of these combinations to get more
complementary information is achieved in a fused image and highlights the tumor regions,
which will be helpful for medical-related problems.

5.2. Objective Evaluation

The fused image quality cannot be completely judged by subjective analysis. Therefore,
objective evaluation is preferable for better analysis of fused images using various quality
metrics. The proposed method and other existing methods’ results are listed in Tables 2–9.
The values of the average pixel intensity (API) are tabulated in Table 2. It can be observed
that the proposed fusion method provides the highest API values, which indicates that the
fused image has good quality. The graphical representations of API values are shown in
Figure 5a. The standard deviation quantity values are tabulated in Table 3. It can be shown
that the proposed method’s SD values are greater than the other existing techniques, which
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indicates the output fused image has better texture details and is graphically presented in
Figure 5b.

The average gradient (AG) values are shown in Table 4. It can be seen that the proposed
method gives the highest AG values, which reveals that more complementary information
is presented in a fused image, and this is presented graphically in Figure 5c.

The SF values are listed in Table 5. It can be seen that the SF of the proposed method
gives superior values to the other methods, which indicates texture changes and detailed
differences are reflected in a fused image, and this is shown graphically in Figure 6. The
MSF values are listed in Table 6. It can be seen that the MSF values of the proposed method
provides greater values than the other methods, which indicates that a fused image has
more detailed information, and this is observed graphically in Figure 7a.

Table 2. Performance evaluation of the fusion methods using the API measure.

Medical Image
Modality

Fusion Techniques

Data Sets PCA DWTPCA DWT +
Fuzzy CONT Chaira’s

IFS
Bala’s

IFS
Sugeno’s

IFS PC-NSCT Proposed
Method

MR T1–MR T2

1 48.53 48.55 47.66 61.52 55.65 56.62 67.11 52.92 70.9
2 40.94 40.79 43.4 49.59 44.69 45.4 54.38 43.77 57.77
3 49.77 48.83 54.58 64.85 61.23 62.3 71.51 56.63 75.53
4 56.54 35.73 42.57 57.2 53.15 54.23 63.11 48.66 67.15

MR-T1–MRA 5 35.5 45.87 66.38 67.85 58.82 59.34 69.92 66.38 75.38

MRI–CT
6 52.74 32.67 55.24 60.79 55.99 56.23 70.58 55.77 76.85
7 49.54 39.47 21.87 60.33 59.92 60.36 67.93 58.52 72.23

MRI–PET

8 17.86 9.01 17.92 18.16 27.29 27.96 25.85 17.89 27.17
9 25.81 13.01 25.92 26.04 37.31 37.45 39.41 25.88 41.21

10 32.24 16.21 32.33 32.49 31.85 32.21 37.54 32.33 39.09
11 62.82 31.56 62.98 63.22 57.32 58.07 76.55 62.96 79.4

MR-T2–SPECT

12 36.24 18.22 36.34 36.42 40.9 41.47 49.69 36.28 53.57
13 34.87 17.54 34.96 35.11 41.7 42.18 49.21 34.95 52.07
14 35.12 17.71 35.25 35.37 47.41 48.07 63.28 35.14 66.98
15 41.89 21.06 42 42.15 39.6 40.24 51.23 42.01 54.05
16 48.85 24.44 48.87 49.11 46.44 46.95 56.3 48.78 60.14

Average Value 41.83 28.79 41.77 47.51 47.45 48.07 57.10 44.93 60.59

Table 3. Performance evaluation of the fusion methods using SD measures.

Medical Image
Modality

Fusion Techniques

Data Sets PCA DWTPCA DWT +
Fuzzy CONT Chaira’s

IFS
Bala’s

IFS
Sugeno’s

IFS PC-NSCT Proposed
Method

MR T1–MR T2

1 58.73 58.71 64.74 78.34 70.36 71.75 80.51 69.79 83.83
2 55.21 55.02 60.17 67.04 61.2 62.32 74.36 61.79 78.16
3 59.25 57.86 69.74 77.06 73.98 75.53 80.43 73.08 83.45
4 57.79 46.16 57.5 72.55 69.02 70.84 76.46 68.38 79.83

MR-T1–MRA 5 46.19 45.49 68.52 68.86 62.11 62.45 72.01 69.22 74.73

MRI–CT
6 54.1 34.95 56.9 61.73 60.37 60.89 68.77 60.03 69.87
7 61.41 47.21 32.58 73.7 73.22 73.88 75.45 73.42 78.27

MRI–PET

8 41.83 21.04 40.47 41.61 54.01 55.71 57.6 41.98 59.54
9 44.92 22.61 44.84 44.89 68.6 68.87 72.23 45.46 74.12

10 60.57 30.43 59.91 60.4 63.04 64.05 73.13 60.74 74.9
11 75.98 38.16 75.01 75.93 76.97 78.37 85.24 76.18 86.72

MR-T2–SPECT

12 47.11 23.67 46.61 47.13 50.84 51.69 57.39 47.24 60.38
13 53.72 26.98 53.33 53.75 58.7 59.33 64.67 53.85 67.1
14 43.1 21.7 42.8 43.16 53.66 54.18 63.68 43.30 66.03
15 58.44 29.36 58.03 58.49 55.09 56.19 66.97 58.60 69.4
16 65.31 32.68 64.74 65.15 61.47 62.38 71.09 65.39 74.78

Average Value - 55.23 37.00 55.99 61.85 63.29 64.28 71.25 60.53 73.82
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Table 4. Performance evaluation of the fusion methods using the AG measure.

Medical Image
Modality

Fusion Techniques

Data Sets PCA DWTPCA DWT +
Fuzzy CONT Chaira’s

IFS
Bala’s

IFS
Sugeno’s

IFS PC-NSCT Proposed
Method

MR T1–MR T2

1 5.79 5.8 7.35 8.31 5.96 8.21 8.51 8.62 8.6
2 4.29 4.25 5.7 6.42 4.37 5.09 6.48 6.4 6.59
3 8.32 8.15 10.6 11.25 8.38 11.73 12.1 12.05 12.1
4 7.68 7.36 9.59 10.69 7.35 9.65 9.8 10.81 10.81

MR-T1–MRA 5 7.4 6.43 9.11 9.78 7.37 9.38 11.03 10.18 11.33

MRI–CT
6 5.4 3.9 6.43 7.39 6.15 6.92 7.99 7.39 8.12
7 6.77 5.4 6.33 8.12 6.63 8.6 8.64 8.54 8.94

MRI–PET

8 5.78 3.45 5.42 5.10 4.04 5.24 5.37 5.73 5.80
9 4.79 2.41 4.47 4.91 5.31 5.83 6.84 4.8 7.01

10 7.86 3.96 7.24 8.04 6.22 7.37 8.5 7.92 8.58
11 14.55 7.3 12.88 14.81 10.49 13.2 15.53 14.59 15.66

MR-T2–SPECT

12 8.15 4.09 7.03 8.17 5.85 7.59 9.59 8.18 10.09
13 6.47 3.24 5.8 6.54 5.06 5.85 6.52 6.49 6.69
14 6.93 3.48 5.79 7 4.97 6.65 7.55 6.97 7.88
15 7.79 3.91 6.7 7.87 5.02 6.51 8.06 7.82 8.34
16 7.41 3.71 6.52 7.37 5.58 7.23 8.43 7.42 8.57

Average Value - 6.75 4.57 6.90 7.78 5.82 7.36 8.28 7.91 8.53

Table 5. Performance evaluation of the fusion methods using the SF measure.

Medical Image
Modality

Fusion Techniques

Data Sets PCA DWTPCA DWT +
Fuzzy CONT Chaira’s

IFS
Bala’s

IFS
Sugeno’s

IFS PC-NSCT Proposed
Method

MR T1–MR T2

1 20.18 20.28 22.27 26.25 22.99 27.81 29.42 26.01 30.04
2 14.23 14.02 18.64 19.99 15.95 19 21.55 20.23 22.05
3 24.04 23.18 29.62 32.96 27.17 32.05 33 32.79 34.3
4 20.82 23.36 28.76 31.37 26.98 33.25 34.05 30.9 34.6

MR-T1–MRA 5 23.41 16.43 24.23 24.88 24.48 25.36 25.94 25.92 25.98

MRI–CT
6 13.69 10.25 16.91 18.65 16.9 17.69 19.3 18.67 19.3
7 17.16 13.07 15.31 21.45 18.68 21.55 22.19 20.66 22.27

MRI–PET

8 21.22 14.16 22.49 24.9 16.85 23.23 23.91 24.31 24.92
9 16.2 8.14 15.88 16.17 20.71 22.03 25.71 16.26 26.54

10 26.32 13.2 24.85 26.28 23.63 26.48 29.53 26.4 30.13
11 37.92 19.02 34.77 37.93 31.99 37.49 41.97 38.01 42.6

MR-T2–SPECT

12 19.57 9.82 17.85 19.56 15.64 18.84 22.93 19.62 24.02
13 19.04 9.55 17.76 18.97 16.41 18.28 20.2 19.08 21.84
14 16.17 8.12 14.47 16.15 13.97 16.94 17.12 16.23 19.96
15 21.52 10.79 19.43 21.44 15.54 18.97 23.24 21.57 24.16
16 24.96 12.49 22.91 24.76 20.87 24.02 29.35 24.96 30.41

Average Value - 21.03 14.12 21.63 23.86 20.55 23.94 26.21 23.85 27.07
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Table 6. Performance evaluation of the fusion methods using the MSF measure.

Medical Image
Modality

Fusion Techniques

Data Sets PCA DWTPCA DWT +
Fuzzy CONT Chaira’s

IFS
Bala’s

IFS
Sugeno’s

IFS PC-NSCT Proposed
Method

MR T1–MR T2

1 43.01 43.22 47.43 56.27 48.63 58.86 62.39 55.86 63.79
2 30.58 30.14 40.21 42.72 34.21 40.66 46.16 43.29 47.23
3 50.81 49.05 63.05 69.36 57.43 69.59 71.51 69.04 72.04
4 44.77 48.87 60.89 66.10 56.75 69.33 70.96 65.35 71.08

MR-T1–MRA 5 48.95 35.35 52.49 53.99 52.28 55.25 55.36 55.12 55.45

MRI–CT
6 30.36 22.62 37.41 41.13 37.16 38.95 41.47 41.24 42.30
7 3.07 28.13 32.61 46.26 40.21 46.34 47.59 44.64 47.75

MRI–PET

8 47.80 29.00 47.31 51.09 35.36 49.67 51.49 50.98 51.53
9 35.28 17.73 34.62 35.28 44.21 47.49 56.00 35.42 57.81

10 56.70 28.44 53.89 56.69 50.47 56.82 63.72 56.86 64.95
11 80.76 40.51 74.61 80.86 67.51 79.53 89.72 80.97 82.04

MR-T2–SPECT

12 41.64 20.88 38.28 41.61 33.35 40.10 48.75 41.75 50.99
13 41.02 20.57 38.50 40.85 35.26 39.29 43.38 41.12 44.71
14 34.14 17.14 30.96 34.10 29.82 35.80 40.35 34.26 42.02
15 45.80 22.97 41.75 45.61 33.14 40.25 49.54 45.92 51.48
16 52.94 26.48 48.95 52.46 44.21 50.98 62.13 52.94 64.32

Average Value - 42.98 30.07 46.44 50.90 43.75 51.18 56.28 50.92 56.84

Table 7. Performance evaluation of the fusion methods using the CC measure.

Medical Image
Modality

Fusion Techniques

Data Sets PCA DWTPCA DWT +
Fuzzy CONT Chaira’s

IFS
Bala’s

IFS
Sugeno’s

IFS PC-NSCT Proposed
Method

MR T1–MR T2

1 0.92 0.9201 0.8523 0.8647 0.8905 0.8932 0.9093 0.8838 0.9089
2 0.9428 0.9433 0.9117 0.9214 0.9392 0.9381 0.9433 0.9323 0.9421
3 0.9007 0.9064 0.8286 0.8725 0.8844 0.889 0.8892 0.8715 0.8849
4 0.7583 0.7587 0.6296 0.6721 0.7572 0.7659 0.7585 0.7444 0.7553

MR-T1–MRA 5 0.9012 0.9078 0.8457 0.9021 0.9152 0.9134 0.9129 0.9133 0.9157

MRI–CT
6 0.5444 0.6413 0.5305 0.6412 0.6439 0.6472 0.635 0.6348 0.6481
7 0.8007 0.445 0.7548 0.7951 0.8055 0.8127 0.8102 0.8043 0.8111

MRI–PET

8 0.8132 0.8106 0.8116 0.7985 0.794 0.7951 0.7951 0.8034 0.8088
9 0.6912 0.6954 0.6795 0.6715 0.688 0.6901 0.5878 0.6936 0.5694

10 0.691 0.6912 0.6724 0.6457 0.585 0.6609 0.6907 0.6911 0.6886
11 0.574 0.5755 0.5494 0.6736 0.5662 0.6709 0.6695 0.5736 0.6907

MR-T2–SPECT

12 0.5279 0.5296 0.4755 0.5137 0.5285 0.5228 0.5288 0.5236 0.5226
13 0.6283 0.6313 0.6858 0.6783 0.6906 0.6067 0.6567 0.6925 0.6966
14 0.6476 0.6513 0.5901 0.6238 0.6112 0.6167 0.6137 0.6456 0.6165
15 0.681 0.6819 0.6618 0.6736 0.6778 0.677 0.6819 0.6932 0.6867
16 0.6541 0.6574 0.6495 0.6219 0.6567 0.6595 0.6595 0.662 0.6693

Average Value - 0.7298 0.7154 0.6956 0.7231 0.7271 0.735 0.7339 0.7352 0.7385



Diagnostics 2023, 13, 2330 17 of 23

Table 8. Performance evaluation of the fusion methods using the MI measure.

Medical Image
Modality

Fusion Techniques

Data Sets PCA DWTPCA DWT +
Fuzzy CONT Chaira’s

IFS
Bala’s

IFS
Sugeno’s

IFS PC-NSCT Proposed
Method

MR-T1–MR-T2

1 3.5405 3.2795 3.4464 2.3495 3.6865 4.8538 4.2121 3.8146 3.7825
2 3.2935 2.9621 3.7514 3.2415 3.4637 4.292 3.6564 2.9574 3.4782
3 3.837 3.3622 3.9574 3.4521 3.5411 5.2866 4.2527 3.1686 3.9925
4 4.0495 3.2325 3.7457 3.6848 3.4302 4.2621 4.2265 4.0854 4.3005

MR-T1–MRA 5 5.0121 5.9402 5.2496 4.7354 5.6626 5.9854 5.2456 4.791 5.9928

MRI–CT
6 6.3918 5.2744 5.2314 6.2198 5.1325 6.5985 6.3305 4.3827 6.7901
7 4.2013 3.851 4.9572 4.947 4.3207 5.2971 6.1245 5.6228 6.165

MRI–PET

8 3.0026 3.0452 2.2536 2.9358 3.0057 3.5067 3.2504 3.4873 3.5689
9 2.9769 3.0468 1.9956 2.785 2.3185 3.0095 3.1047 2.3645 2.9308

10 2.8845 2.9636 1.9311 2.6831 2.2413 2.6624 2.7858 2.9416 2.9711
11 4.3382 4.51 2.4966 3.8536 2.8213 4.8101 5.0956 4.6593 4.4321

MR-T2–SPECT

12 5.0262 5.0045 3.1563 4.9574 3.9424 5.4231 7.0542 4.9962 7.1046
13 3.9957 3.8844 2.76 3.8614 3.9952 4.7176 5.027 4.9831 5.1158
14 4.9323 4.9244 3.1878 4.7164 4.3146 5.5147 6.4363 6.6907 6.2446
15 4.934 5.0671 3.2207 5.6416 4.3017 5.4551 6.0178 4.9347 6.0238
16 3.2219 4.3176 2.2222 4.9135 4.2378 3.8704 4.394 3.8471 5.416

Average Value - 4.1024 4.0416 3.3477 4.0611 3.776 4.7216 4.8259 4.2329 4.8943

Table 9. Performance evaluation of the fusion methods using the FS measure.

Medical Image
Modality

Fusion Techniques

Data Sets PCA DWTPCA DWT +
Fuzzy CONT Chaira’s

IFS
Bala’s

IFS
Sugeno’s

IFS PC-NSCT Proposed
Method

MR T1–MR T2

1 1.9552 1.9624 1.9516 1.9254 1.9515 1.9537 1.9597 1.9524 1.9655
2 1.9719 1.9719 1.9722 1.9837 1.9529 1.9259 1.771 1.991 1.647
3 1.979 1.9854 1.8712 1.9165 1.9849 1.9641 1.928 1.9421 1.9238
4 1.8551 1.8492 1.7968 1.8379 1.8432 1.8322 1.8483 1.8325 1.8573

MR-T1–MRA 5 1.828 1.7857 1.8276 1.7975 1.8266 1.8319 1.815 1.7928 1.8358

MRI–CT
6 1.5796 1.5913 1.6012 1.6135 1.6028 1.6103 1.6156 1.6035 1.6172
7 1.7205 1.7257 1.7554 1.7635 1.7334 1.7877 1.7891 1.7765 1.7898

MRI–PET

8 1.8301 1.469 1.8652 1.7963 1.8568 1.8373 1.8703 1.8407 1.8658
9 1.746 1.7579 1.7582 1.8274 1.9076 1.8856 1.9068 1.9349 1.8943

10 1.7074 1.7367 1.7477 1.7852 1.8616 1.8304 1.8514 1.8564 1.8659
11 1.6882 1.7435 1.7382 1.8276 1.9103 1.8464 1.883 1.8975 1.8897

MR-T2–SPECT

12 1.7056 1.7132 1.382 1.8724 1.8928 1.8931 1.9341 1.713 1.9416
13 1.866 1.8576 1.4825 1.7948 1.8062 1.8309 1.8924 1.8869 1.8973
14 1.814 1.8224 1.8123 1.8375 1.9058 1.8569 1.8891 1.8612 1.8924
15 1.3545 1.7703 1.8891 1.8627 1.809 1.8819 1.8735 1.7543 1.935
16 1.5295 1.6545 1.5409 1.6273 1.5826 1.6414 1.6217 1.6147 1.6559

Average Value - 1.7582 1.7748 1.7495 1.8168 1.8393 1.8381 1.8406 1.8282 1.8421

The CC, MI, and FS values of all datasets and existing fusion methods are listed in
Tables 7–9. In the proposed fusion method, the average values of CC, MI, and FS values are
better, and some datasets are moderate, which shows that the proposed fused image has
more information and symmetry. The graphical representation of CC, MI, and FS is shown
in Figure 7b–d.



Diagnostics 2023, 13, 2330 18 of 23

Diagnostics 2023, 13, x FOR PEER REVIEW 15 of 23 
 

 

other existing techniques, which indicates the output fused image has better texture de-
tails and is graphically presented in Figure 5b. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Graphical representation of (a) API, (b) SD, (c) AG measures of proposed and other ex-
isting methods. 

The average gradient (AG) values are shown in Table 4. It can be seen that the pro-
posed method gives the highest AG values, which reveals that more complementary in-
formation is presented in a fused image, and this is presented graphically in Figure 5c. 

The SF values are listed in Table 5. It can be seen that the SF of the proposed method 
gives superior values to the other methods, which indicates texture changes and detailed 
differences are reflected in a fused image, and this is shown graphically in Figure 6. The 
MSF values are listed in Table 6. It can be seen that the MSF values of the proposed 
method provides greater values than the other methods, which indicates that a fused 
image has more detailed information, and this is observed graphically in Figure 7a. 

  

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PCA

DWTPCA

DWT+Fuzzy

CONT

Chaira's IFS

Bala's IFS

Sugeno's IFS

PC-NSCT

Proposed Method

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PCA
DWTPCA
DWT+Fuzzy
CONT
Chaira's IFS
Bala's IFS
Sugeno's IFS
PC-NSCT
Proposed Method

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PCA
DWTPCA
DWT+Fuzzy
CONT
Chaira's IFS
Bala's IFS
Sugeno's IFS
PC-NSCT
Proposed Method

Figure 5. Graphical representation of (a) API, (b) SD, (c) AG measures of proposed and other
existing methods.

Diagnostics 2023, 13, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 6. Graphical representation of SF measures of proposed and existing methods. 

Table 6. Performance evaluation of the fusion methods using the MSF measure. 

Medical Image Modality 

 Fusion Techniques 
Data 
Sets 

PCA DWTPCA DWT + Fuzzy CONT Chaira’s IFS Bala’s IFS Sugeno’s IFS 
PC-NSC

T 
Proposed 
Method 

MR T1–MR T2 

1 43.01 43.22 47.43 56.27 48.63 58.86 62.39 55.86 63.79 
2 30.58 30.14 40.21 42.72 34.21 40.66 46.16 43.29 47.23 
3 50.81 49.05 63.05 69.36 57.43 69.59 71.51 69.04 72.04 
4 44.77 48.87 60.89 66.10 56.75 69.33 70.96 65.35 71.08 

MR-T1–MRA 5 48.95 35.35 52.49 53.99 52.28 55.25 55.36 55.12 55.45 

MRI–CT 
6 30.36 22.62 37.41 41.13 37.16 38.95 41.47 41.24 42.30 
7 3.07 28.13 32.61 46.26 40.21 46.34 47.59 44.64 47.75 

MRI–PET 

8 47.80 29.00 47.31 51.09 35.36 49.67 51.49 50.98 51.53 
9 35.28 17.73 34.62 35.28 44.21 47.49 56.00 35.42 57.81 
10 56.70 28.44 53.89 56.69 50.47 56.82 63.72 56.86 64.95 
11 80.76 40.51 74.61 80.86 67.51 79.53 89.72 80.97 82.04 

MR-T2–SPECT 

12 41.64 20.88 38.28 41.61 33.35 40.10 48.75 41.75 50.99 
13 41.02 20.57 38.50 40.85 35.26 39.29 43.38 41.12 44.71 
14 34.14 17.14 30.96 34.10 29.82 35.80 40.35 34.26 42.02 
15 45.80 22.97 41.75 45.61 33.14 40.25 49.54 45.92 51.48 
16 52.94 26.48 48.95 52.46 44.21 50.98 62.13 52.94 64.32 

Average Value - 42.98 30.07 46.44 50.90 43.75 51.18 56.28 50.92 56.84 
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Medical Image 
Modality 

Data Sets 

Fusion Techniques 
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MR-T1–MRA 5 0.9012 0.9078 0.8457 0.9021 0.9152 0.9134 0.9129 0.9133 0.9157 

MRI–CT 
6 0.5444 0.6413 0.5305 0.6412 0.6439 0.6472 0.635 0.6348 0.6481 
7 0.8007 0.445 0.7548 0.7951 0.8055 0.8127 0.8102 0.8043 0.8111 

MRI–PET 

8 0.8132 0.8106 0.8116 0.7985 0.794 0.7951 0.7951 0.8034 0.8088 
9 0.6912 0.6954 0.6795 0.6715 0.688 0.6901 0.5878 0.6936 0.5694 
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MR-T2–SPECT 
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14 0.6476 0.6513 0.5901 0.6238 0.6112 0.6167 0.6137 0.6456 0.6165 
15 0.681 0.6819 0.6618 0.6736 0.6778 0.677 0.6819 0.6932 0.6867 
16 0.6541 0.6574 0.6495 0.6219 0.6567 0.6595 0.6595 0.662 0.6693 
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Figure 6. Graphical representation of SF measures of proposed and existing methods.
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Figure 7. Graphical representation of (a) MSF, (b) CC, (c) MI, and (d) FS measures of proposed and
existing methods.

5.3. Ranking Analysis

In this article, the proposed intuitionistic fuzzy set based multimodal medical image
fusion algorithm provides better results than other methods using various quality metrics.
Objective evaluation was used in Section 5.2. This showed the ranking analysis of each
method based on the average value of each quality metric, as shown in Table 10. The best
performance of the fusion method was ranked 1, and the worst performance of the fusion
method was ranked 9.
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Table 10. Performance evaluation of the fusion methods in the ranking strategy.

Fusion Techniques

Performance
Measures PCA DWTPCA DWT + Fuzzy CONT Chaira’s

IFS
Bala’s

IFS
Sugeno’s

IFS PC-NSCT Proposed
Method

API 6 9 7 4 5 3 2 8 1
SD 8 9 7 5 4 3 2 6 1
AG 7 9 6 4 8 5 2 3 1
SF 7 9 6 5 8 4 2 3 1

MSF 8 9 6 5 7 4 2 3 1
CC 5 8 9 7 6 3 4 2 1
MI 5 7 9 6 8 3 2 4 1
FS 8 7 9 6 3 4 2 5 1

5.4. Running Time

The computational efficiency of the proposed and existing medical image fusion
methods such as PCA, DWT, Contourlet, DWT + fuzzy, Chaira’s IFS, Bala’s IFS, Sugeno’s
IFS, and PC-NSCT are shown in Table 11. Compared with all methods, the DWTPCA
method takes the least execution time of 0.60 s because the image pixels are directly
selected. Hence, it is found that the DWTPCA fusion method performance is poor in
terms of subjectivity and objectivity. The highest execution time of the fusion method was
PC-NSCT, which was 36.72 s due to decomposition levels and fusion rules. The second
highest execution time of the Contourlet transforms method was 17.29 s. The third-highest
execution time of the DWT + fuzzy method was 1.48 s. The average running time of the
proposed method was 1.19. However, the proposed method provides better performance
with relatively low execution times and less complexity than the other methods.

Table 11. Average running time (seconds) of the proposed method with different existing methods.

Medical Image
Modality

Fusion Techniques

PCA DWTPCA DWT +
Fuzzy CONT Chaira’s

IFS
Bala’s

IFS
Sugeno’s

IFS PC-NSCT Proposed
Method

Average Value 0.80 0.60 1.48 17.69 0.87 0.65 0.50 36.72 1.19

6. Conclusions

In this article, a novel IFS-based medical image fusion process was proposed, which
included four steps. Firstly, the registered input images were fuzzified. Secondly, intu-
itionistic fuzzy images were created by the optimum value, α using IFE. Thirdly, a fused
IFI image was obtained using the IFCC fusion rule with block processing. Fourthly, the
defuzzification operation was performed for the final enhanced fused image. This method
is an extension of the various existing methods, such as PCA, DWTPCA, DWT + Fuzzy,
CONT, Chaira’s IFS, Bala’s IFS, Sugeno’s IFS, and PC-NSCT. These existing algorithms
do not provide a quality fused image, and include various drawbacks, such as block-
ing artifacts, poor visibility of tumor regions, invisible blood vessels, low contrast, and
vague boundaries. This proposed method overcomes the difficulties present in the existing
methods and provides a better enhanced fused image without uncertainties.

The experimental result shows that the proposed fusion method gives a better fusion
performance in terms of subjective and objective analysis, respectively. In Figure 4(i4), the
soft tissue and tumor regions are clearly enhanced and the obtained SD (79.83) and SF (34.60)
values are large in Tables 3 and 5, respectively. In Figure 4(i5), the soft tissue and lesion
structure information are reflected exactly in a fused image, and the obtained quantitative
value is 75.38, as shown in Table 2. In Figure 4(i8), the anatomy and functional information
are visible with high quality in a fused image, and the quantitative values attained show
that SD, AG, SF, MSF, MI, and FS are higher (59.54, 5.80, 24.92, 51.53, 3.5689, 1.8658) in
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Tables 3–9. In Figure 4(i16), the tumor region was clearly enhanced, and attained high
performance metric values compared to the other existing fusion methods. As previously
discussed, the heart of this proposed fusion algorithm is to calculate the intuitionistic fuzzy
membership function, which is obtained by the optimum value, α using IFE. For better
diagnosis and superior outcomes, the proposed fusion method can be extended to fuse
different medical datasets based on the advanced fuzzy sets, such as the neutrosophic fuzzy
set, pythagorean fuzzy set and fusion rules.
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