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Abstract: Diffuse lung disorders (DLDs) and interstitial lung diseases (ILDs) are pathological condi-
tions affecting the lung parenchyma and interstitial network. There are approximately 200 different
entities within this category. Radiologists play an increasingly important role in diagnosing and
monitoring ILDs, as they can provide non-invasive, rapid, and repeatable assessments using high-
resolution computed tomography (HRCT). HRCT offers a detailed view of the lung parenchyma,
resembling a low-magnification anatomical preparation from a histological perspective. The intrinsic
contrast provided by air in HRCT enables the identification of even the subtlest morphological
changes in the lung tissue. By interpreting the findings observed on HRCT, radiologists can make a
differential diagnosis and provide a pattern diagnosis in collaboration with the clinical and functional
data. The use of quantitative software and artificial intelligence (AI) further enhances the analysis of
ILDs, providing an objective and comprehensive evaluation. The integration of “meta-data” such as
demographics, laboratory, genomic, metabolomic, and proteomic data through AI could lead to a
more comprehensive clinical and instrumental profiling beyond the human eye’s capabilities.

Keywords: HRCT (high-resolution computed tomography); ILDs (interstitial lung diseases); AI
(artificial intelligence)

1. Introduction

Diffuse lung disorders (DLDs) and interstitial lung diseases (ILDs) represent a cate-
gory of pathological conditions that manifest with widespread involvement of the lung
parenchyma and interstitial network. From a purely classificatory point of view, they
encompass a heterogeneous group of conditions that amount to approximately 200 distinct
entities in the literature [1–6]. Radiology is increasingly integrated into the multidisciplinary
diagnosis (MDD) and follow-up process of ILDs management thanks to high-resolution
computed tomography (HRCT) of the chest, a rapid, repeatable, and essentially safe tech-
nique capable of providing highly accurate diagnostic information. It enables a refined
detection of pulmonary abnormalities, allows for the evaluation of longitudinal changes
during follow-up and resembles a low-magnification anatomical preparation from a histo-
logical point of view [7].
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HRCT of the chest is a crucial tool for identifying distinctive patterns in DLDs and
ILDs, playing a pivotal role in achieving an accurate diagnosis. Additionally, it provides
valuable insights into alternative diagnostic possibilities and aids in characterizing mixed
phenotypes, including the presence of small airway disease, comorbidities, and other factors
contributing to progressive fibrotic patterns. The accurate interpretation of basic semiotic
alterations observed during HRCT examination facilitates a comprehensive differential
diagnosis in which the radiologist is called to express their judgment until a pattern
diagnosis. This process requires high “skills” and, in agreement with the clinical and
functional data, allows the multidisciplinary team (MDT) to often arrive at a confident
diagnosis of pattern and finally of disease. In cases where the pattern-based diagnosis is
not confident enough to reach a definitive diagnosis, such as an “indeterminate pattern”
for usual interstitial pneumonia (UIP) according to idiopathic pulmonary fibrosis (IPF)
guidelines or an “unclassifiable pattern” at the time of the initial diagnostic evaluation, the
use of MDT is recommended. This is crucial for discussing atypical or extremely complex
cases in order to achieve, at least in the early diagnostic phase, a “working diagnosis”, a
procedure that, according to recent literature studies, can attain high levels of diagnostic
confidence. MDT plays a pivotal role in the management of ILDs, serving as the gold
standard for diagnosing various ILDs beyond IPF. This encompasses a broad spectrum of
conditions, ranging from ILDs with autoimmune features (IPAFs: interstitial pneumonia
autoimmune features) to fibrotic hypersensitivity pneumonia (f-HP) and non-specific
interstitial pneumonia (NSIP). Nevertheless, the absence of definitive classification and
standardized diagnostic criteria for certain entities poses a diagnostic challenge, particularly
since a substantial number of inflammation-mediated ILD disorders may progress to
fibrosis [5,8].

In the last decade, pulmonary fibrotic diseases have received a significant increase in
attention, especially IPF, also due to the change in the diagnostic–therapeutic paradigm
linked to the new guidelines for the management of fibrosing diseases, predominantly
the progressive fibrotic phenotypes, and this focus has resulted in an ongoing search for
a better profiling of fibrotic damage [9]. Currently, scientific societies are placing greater
emphasis on understanding the evolutionary aspects of fibrotic diseases rather than solely
focusing on strict diagnostic definitions. This shift is driven by the recognition that various
forms of secondary ILDs, such as those associated with connective tissue diseases, exhibit
progressive fibrotic damage that can significantly impact a patient’s prognosis, such as
idiopathic forms. As a result, there is a pressing need for tools that can accurately and
quantitatively assess changes in fibrotic damage, particularly in relation to therapeutic
strategies and the use of antifibrotic drugs, which can effectively slow down functional
decline. This approach holds significant relevance in clinical practice. The evolving dimen-
sions of diagnostic evaluation align with the emerging ethical guidelines associated with
personalized and precision medicine, which aim to provide tailored approaches for each
patient. Within a comprehensive multidisciplinary framework, these refined aspects should
encompass every clinical, laboratory, functional, and morphological facet. By integrating
these elements, qualitative and quantitative insights can be obtained, enabling the adoption
of targeted therapeutic strategies that optimize patient outcomes. The escalating utilization
of quantitative software, including the integration of artificial intelligence (AI), presents a
more objective and comprehensive approach to analyzing ILDs. This advanced analysis
incorporates “meta-data” and holds the potential to extend beyond the limits of “human
radiological vision”. The translational integration of multi-level data, encompassing demo-
graphics, laboratory findings, genomics, metabolomics, and proteomics, can further enrich
the patient’s clinical and instrumental profiling [10–16]. The complexity of ILDs stems from
the variable and occasionally unpredictable behavior of certain forms, particularly those
characterized by a fibrosing pattern that may exhibit rapid disease progression. Therefore,
the utilization of in vivo biomarkers, coupled with the increasing application of “liquid
biopsy” techniques (such as blood and urine analysis), for genetic and molecular evalua-
tions, represents an immensely intriguing field of study that holds significant potential for
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enhancing patient management [17–19]. In the realm of clinical and functional laboratory
domains, morphological assessment through HRCT examination stands out for its practi-
cality and reliability. However, limitations arise from inter-observer variability, diverse CT
multidetector machines with varying protocols, and critical patient-related factors. These
factors can significantly impact the accuracy of diagnostic judgments. The integration of
objective analysis tools, such as quantitative CT (qCT) and AI, offers a unique opportunity
to standardize the interpretation of anatomical data and mitigate inter-observer variability
among human observers. These tools enable an objective analysis of lung abnormalities,
including their extent, precise pattern identification, and evaluation of patients during
follow-up. Ultimately, the goal is to obtain additional quantitative data that enhance the
precision and objectivity of diagnostic assessments [20–22]. Quantitative imaging and AI
are used to provide prognostic information for patients by comparing HRCTs and offering
quantitative results on the progression of interstitial damage. These advanced diagnostic
tools assist clinicians in assessing the potential response to treatment with anti-fibrotic
drugs by correlating it with clinical and functional data [23,24]. Additionally, they em-
power radiologists to overcome the limitations of relying solely on subjective and visual
evaluations. By utilizing quantitative analysis and AI algorithms, radiologists can extract
precise and objective information from imaging studies, enabling them to identify subtle
patterns, quantify disease progression, and assess treatment response accurately.

2. From the Realm of Semi-Quantitative Visual Analysis to the Realm of Pulmonary
Quantification: A Groundbreaking Technological Metamorphosis

In previous studies, significant attention has been given to the analysis of pulmonary
function in obstructive lung diseases, with a particular focus on quantifying damage from
pulmonary emphysema and bronchial remodeling. However, the investigation of restrictive
pathologies, such as fibrosing diseases, came later. Despite extensive research efforts to
develop qualitative and semi-quantitative visual scoring systems to assess the extent of
these diseases, the results have only partially met the initial expectations. Challenges such
as inconsistent interpretations among different readers, both within and across individuals,
as well as limited reproducibility, have impeded progress. Nonetheless, visual scores have
remained a subject of evaluation alongside functional assessments, particularly in the study
of primary or secondary forms of fibrotic conditions, capturing the scientific community’s
attention for more than a decade since their introduction [25–27]. In order to overcome these
limitations and improve objectivity, sensitivity, and reproducibility in the detection of ILDs,
a range of computer-based quantification methods have been proposed. One approach to
quantifying lung fibrosis involves measuring parameters such as mean lung attenuation
(MLA), which represents the average attenuation value of lung parenchyma. Skewness,
indicating the extent of histogram asymmetry, and kurtosis, reflecting the sharpness of the
histogram peak, have also been utilized. The analysis of density histograms has shown
promising results in studying patients with ILDs such as IPF and systemic sclerosis (SSc)-
related ILD. These methods exhibit an enhanced sensitivity and reproducibility compared
to visual evaluation, even when employing a low radiation dosage, thereby demonstrating
an excellent performance [28–32].

The initial analyses primarily relied on two-dimensional evaluation methods con-
ducted on a single slice or sequential CT imaging of the lung. The introduction of multide-
tector machines facilitated volumetric analysis. Extensive literature on these techniques has
demonstrated a strong correlation, often in conjunction with the patient’s functional data.
Consequently, the approach of “tissue density analysis” continues to hold significant value
in both research and clinical settings, particularly for obstructive lung diseases such as em-
physema and small airway evaluation. However, over time, its utilization has significantly
expanded in the study of fibrotic diseases. This straightforward approach involves assess-
ing the density of individual pixels or voxels in the CT scan (picture/volume elements)
and generating a histogram that represents their distribution. Mathematical parameters
derived from the density histogram, involving first-order statistical analysis, enable a quan-
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titative characterization of pathological deviations from the “normal” lung parenchyma.
These parameters capture variations in lung tissue density, whether in terms of a reduction
or increase compared to the air component [33–35]. Undoubtedly, quantitative scoring
required slightly more time compared to visual analysis. However, the software could be
mastered in just 10–15 min for a complete evaluation of a patient, making it user-friendly.
The key steps in the learning curve, in the past, involved uploading the CT scan and setting
the region of interest (ROI). The ROI played a crucial role in recognizing the inherent
densitometry of lung tissue, enabling the software algorithm to discern density variations
for histogram calculations. Overall, this implied that effective software management is
somewhat reliant on the operator’s expertise, but modern quantitative tools manage to
segment the lungs almost perfectly without requiring additional help or correction from
the operator; for example, two open-source tools such as image J (Image J, Java developed
by the National Institutes of Health of the United States) and Slicer 3 D [36]. One notable
strength of this approach is that lung density histograms can be easily performed using
these open-source tools (Figures 1 and 2).
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Figure 1. (A,B) (image J, Java open source): In (A), a control normal lung is depicted by a sharply
shifted Gaussian curve with a narrow and tall peak. In (B), a representative slice of the right lung from
a patient with advanced idiopathic pulmonary fibrosis, obtained through thin-section volumetric CT,
is shown and illustrates the density histogram of the fibrotic lung, which exhibits a less pronounced
peak and skewness compared to panel A. The segmented area of interest is highlighted in yellow. On
the right side, the results of the digital processing analysis for this specific slice are presented. Once
the sampling of the entire lung was completed, the software automatically generated averaged data
from the analysis of all slices of both lungs.

Advanced lung densitometric analysis tools have undergone significant advance-
ments, encompassing a wide range of additional functionalities that effectively address
various requirements. These tools now incorporate features such as improved segmentation
techniques, comprehensive lung analysis capabilities, a precise assessment of lung lesions,
computer-aided detection (CAD) analysis, accurate airway examination, and volumetric 3D
reconstruction for pre-surgical planning purposes. While densitometric analyses provide
valuable assistance in objectively quantifying fibrosing lung damage in both primary and
secondary forms of ILDs, their limitation lies in the simplification of the method, which
may overlook subtle intrinsic density variations associated with subtle alterations. Instead,
it relies on an overall assessment, resulting in a “cumulative densitometric vision” where
the HRCT’s ability to provide precise and detailed anatomical evaluation is diminished.
For instance, different ILDs with a distinct etiology, pathogenesis, and distribution of
elementary lesions may exhibit similar density histogram values, and this resemblance
is particularly evident in decreased kurtosis and increased asymmetry, which are asso-
ciated with fibrosing damage. The conclusive result determines a significant limitation
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in the differential diagnosis of diseases with a similar fibrotic matrix but with different
evolutionary behaviors.
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Figure 2. (Slicer3D): UIP/IPF: Color-coded map differentiated for lung areas. Histogram analysis
provides an accurate description, both globally and regionally, of mean lung density (MLD), skewness,
and kurtosis parameters, with increased potential to stratify fibrotic damage.

3. Unlocking the Potential: Artificial Intelligence Revolutionizes Interstitial Lung
Disease Diagnosis with Quantitative Imaging and Advanced Data Analysis

AI is a novel term used to describe computer systems able to solve specific tasks that
commonly require human intelligence. AI is revolutionizing the field of ILD diagnosis
through the integration of quantitative imaging and advanced data analysis techniques. By
leveraging AI algorithms, researchers and clinicians can unlock the full potential of medical
imaging data, enabling a more precise and accurate detection, classification, and prognosis
of ILDs. This cutting-edge approach combines machine learning, deep learning, neural
networks, and radiomics, empowering healthcare professionals with powerful tools to
enhance diagnostic accuracy and optimize treatment strategies for ILD patients. Machine
learning, an integral part of AI, revolves around the concept of computer systems adapting
and learning from data samples to execute specific tasks. Unlike traditional programming
methods with explicit rules and instructions, machine learning algorithms are designed
to be trained or fitted using specific datasets. Among the AI techniques, supervised and
unsupervised learning stand as powerful tools, each offering a unique perspective in
unraveling the mysteries of ILDs. “Supervised Learning”: by utilizing labeled training
data, this approach enables AI models to learn patterns and associations, ultimately aiding
in disease classification and prediction. Through a process of meticulous training and
validation, supervised learning algorithms acquire the ability to accurately identify specific
ILD subtypes, such as IPF or HP, based on defined features and characteristics. This en-
ables clinicians to make informed decisions regarding treatment strategies and prognostic
evaluations, elevating patient care to unprecedented levels of precision. “Unsupervised
Learning”: on the other hand, this approach serves as a beacon in unveiling the hidden
patterns within ILDs. Without the need for predefined labels, unsupervised AI models
excel at discovering intrinsic structures and relationships within complex ILD datasets.
By applying advanced clustering and dimensionality reduction techniques, these models
can unravel novel disease subtypes and identify intricate patterns that may elude human
observation. Unsupervised learning empowers researchers to explore the vast landscape
of ILDs, potentially uncovering new insights, biomarkers, and novel avenues for targeted
therapies. While supervised and unsupervised learning differ in their methodologies, they
are not mutually exclusive. In fact, their synergy holds the key to unlocking a deeper
understanding of ILDs. By combining the strengths of both approaches, AI models can
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leverage the meticulous classification capabilities of supervised learning while simultane-
ously exploring the uncharted territories of unsupervised learning; this holistic approach
not only enhances diagnostic accuracy but also opens doors to personalized treatment
strategies, early detection, and improved patient outcomes. Achieving precise and clinically
valuable algorithms in machine learning necessitates the utilization of suitable AI compu-
tational analysis and the incorporation of pertinent outcomes or ground truth. Powerful
computing processors and machine learning methods were introduced by researchers, able
to analyze volumetric data and to extract by CT scans image features and other informatics
information on the densitometric variations on tiny pulmonary areas in order to evaluate
diffuse lung disorders with the possibility of obtaining, also with colorimetric regional
lung variations, a subtle difference between the HRCT areas (for example, normal lung,
emphysema, GGO, consolidations, reticulations, honeycombing). These computational
analyses, also called adaptative multiple-feature methods in a lung texture analysis, can
provide “intelligent” maps of pulmonary morphological and densitometric variations,
associated with an almost perfect computerized analysis of lung damage, to obtain distinct
features for classifying different regional areas in a CT image. Machine learning models can
also assist in ILD prognosis by analyzing a multitude of clinical and imaging variables to
predict disease progression, survival outcomes, and treatment response. These models can
integrate diverse datasets, including longitudinal imaging data, pulmonary function tests,
genetic markers, and clinical features, to generate personalized prognostic assessments
for ILD patients. Such prognostic tools can aid in treatment decision making and facili-
tate the development of tailored management plans. In the context of ILD management,
machine learning algorithms can also contribute to the development of computer-aided
systems for the automated detection and segmentation of ILD-related abnormalities on
radiographic images. By automating the identification of specific lung patterns and lesions,
these algorithms can improve efficiency, reduce inter-observer variability, and provide
quantitative measurements of disease extent and progression. Therefore, the subsequent
evolution of advanced pulmonary analysis techniques after “the lung tissue density analy-
sis” has involved the introduction of “texture analysis”, which refers to a set of methods
and algorithms for the extraction of information regarding the structural characteristics
of an image and is also capable of extrapolating and evaluating different groups of ra-
diomics parameters. This analysis can involve various approaches, including traditional
feature engineering methods such as Gabor filters or texture co-occurrence matrices, as
well as more advanced techniques such as machine learning or deep learning. One of the
most well-known, effective, and widely used software applications for texture analysis is
Computer-Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER) [37].
This software, an example of machine learning trained by thoracic radiologists, utilizes
a combination of volumetric histograms signature mapping features and automatically
assigns each pixel to one of seven specific parenchymal patterns: normal, ground-glass
opacity (GGO), reticular pattern, honeycombing, and low-density areas (mild, moderate,
or severe); furthermore, it allows for the identification of additional and previously un-
detected “in vivo” biomarkers for improved and more effective patient phenotyping and
profiling. In recent literature, an increasing body of evidence has demonstrated a robust
correlation between CALIPER’s findings and functional tests, overall survival, and decline
in lung function among patients diagnosed with IPF and other fibrotic ILDs, surpassing
the performance of visual scoring methods. The application of textural analysis in ILD
and other pulmonary conditions has shed light on the significance of quantifying vascular
texture and perivascular abnormalities. The intricate network of pulmonary blood vessels
undergoes dynamic changes during the progression of ILD. Tracking and segmenting
lung vessels have proven to be relatively straightforward compared to other components
such as airways and airspaces, particularly in healthy lungs. It is important to note that
pulmonary diseases often involve abnormalities affecting multiple lung components, in-
cluding airways, airspaces, interstitium, and vessels. Therefore, investigating the vascular
component offers valuable insights into the impact of ILD on pulmonary structures, even
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during the early stages. Computer-based analysis of vascular structures has surpassed
the limitations of visual interpretation, enabling the quantification of vascular complexity
through a comprehensive assessment of anatomical representation. Furthermore, studying
the intricate interaction between vessels and pulmonary tissue provides additional insights
into disease behavior and treatment response. Consequently, the development of predictive
models utilizing machine learning techniques for specific “textures” appears to be highly
promising soon [38–40].

4. Unleashing the Potential of AI: Unraveling ILDs Mysteries through Deep Learning,
CNN, Radiomics, and Lung Shrinkage
4.1. Deep Learning

Deep learning, a subfield of machine learning, has gained significant attention in
recent years due to its remarkable ability to learn hierarchical representations from com-
plex data. In the context of ILDs, deep learning techniques have shown great potential
in several applications, revolutionizing the field of ILD research and management [41,42].
One of the primary applications of deep learning in ILDs is in the automated analysis and
interpretation of medical images, particularly HRCT scans. Deep learning models, such
as convolutional neural networks (CNNs), can be trained on large datasets of annotated
HRCT images to automatically detect and classify various ILD patterns and abnormalities.
Numerous studies have investigated the utilization of advanced imaging techniques and
AI for the prediction and diagnosis of histopathologic conditions such as UIP. For example,
a study introduced a CNN that utilized virtual wedges of the peripheral lung on HRCT
to predict UIP [43]. CNN demonstrated moderate agreement with expert radiologists. In
a more recent study, a DL model trained on a dataset of pathologically proven ILD was
employed. The findings showed that the DL model outperformed visual CT analysis in
predicting the histopathologic diagnosis of UIP and exhibited a higher reproducibility
compared to expert radiologists. Specifically, when classifying cases as probable UIP based
on a guideline, the DL model achieved a higher specificity compared to expert radiolo-
gists [43–45]. These models can learn to identify subtle radiological features indicative of
specific ILD subtypes, including honeycombing, ground-glass opacities, reticulation, and
traction bronchiectasis [12,13,46]. DL-based automated lung CT volumetry and fibrosis
scoring have been shown to correlate with functional data and provide insights into the
prognosis of IPF. DL algorithms have demonstrated a superior performance compared
to thoracic radiologists in ILD classification and predicting survival outcomes. DL mod-
els have also outperformed experts in predicting histopathologic diagnoses and shown
a better reproducibility. Additionally, the DL quantification of ILD patterns and extent
has improved disease characterization and correlated well with functional data [12]. The
deep texture analysis (DTA) provided by deep learning algorithms can aid radiologists
in accurate and efficient ILD diagnosis and classification and in the prediction of disease
progression and treatment response with HRCT; it is trained to distinguish fibrosis by
utilizing image regions identified by radiologists as exhibiting normal lung parenchyma
and typical patterns of fibrotic features. Representative regions labeled as reticulation,
honeycombing, or traction bronchiectasis are employed to define the fibrosis category. In a
sliding window manner, the algorithm classifies local regions within axial sections as either
normal lung or fibrosis, which are identified through a separate segmentation process
applied to the lung fields. The DTA fibrosis score is computed as the percentage of the total
number of window regions classified as fibrosis (Figure 3A,B).
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Figure 3. High-resolution computed tomography (HRCT) images and regions classified as fibrosis
by data-driven texture analysis of a 53-year-old man former smoker: (A) the baseline of fibrosis
score was 11.2%; baseline FVC % pred was 73%, DLCO % pred was 69.0%. (B) HRCT images in the
same subject at a nominal 78-week follow-up. Regions classified as fibrosis by DTA are shown in
orange. The DTA fibrosis score increased by 12.6% percentage points at follow-up. FVC declined
10.5% (relative to baseline), DLCO declined 13.0% (relative to baseline).

Deep learning models can integrate longitudinal imaging data, clinical variables,
and other relevant biomarkers to generate predictive models; by capturing complex re-
lationships and temporal dynamics within the data, these models can provide valuable
prognostic information for ILD patients [14,47,48]. Additionally, deep learning models
can help to identify patients who are likely to respond positively to specific treatments,
facilitating personalized therapeutic strategies and being valuable for ILD risk stratification
and early detection. By utilizing extensive datasets including health records, genetics, and
environmental factors, deep learning models can identify individuals at a higher risk of ILD
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development. Early detection is crucial for timely intervention and improved outcomes.
These models could also help in identifying high-risk individuals and facilitating targeted
screening. However, challenges exist in applying deep learning to ILDs: large and diverse
datasets are needed for training, which may be limited for rare or specific subtypes. It is im-
portant to note that AI in general and deep learning specifically in this context are designed
to assist radiologists rather than replace them. The primary objective of the software is to
streamline the interpretation process, alleviate the workload, and enhance the accuracy and
consistency of ILD diagnoses. Radiologists, in collaboration with clinicians, can leverage
the insights and recommendations provided by the AI tool to make well-informed clinical
decisions. As with any AI tool, the performance of deep learning algorithms relies on the
quality and diversity of the training data that they have been exposed to and, for these
reasons, the continuous validation and refinement of these algorithms are critical to ensure
their effectiveness and generalizability across different patient populations. In conclusion,
AI software utilizing deep learning techniques serves as a valuable aid to radiologists
in the study of ILDs. By functioning as a pattern classifier, it assists in the analysis and
interpretation of HRCT scans, providing automated annotations, disease quantification,
and diagnostic suggestions. However, it is essential to recognize that human expertise and
judgment remain integral to the diagnosis and management of ILDs [49].

4.2. Convolutional Neural Network, Radiomics, and Lung Shrinkage

The introduction of CNNs has ushered in a new era of diagnostic precision in ILDs.
Leveraging their ability to extract complex features from medical images, CNNs have
redefined the landscape of ILD diagnostics. Concurrently, radiomics has empowered
clinicians to delve deeper into the quantitative analysis of ILD radiographs, enabling a
comprehensive characterization and classification of these complex diseases. Integrated
algorithms incorporating clinical assessment, functional tests, and CT imaging, along with
radiomics-based features, have shown promise in evaluating and predicting prognosis in
patients with fibrotic ILDs. By extracting 26 radiomic features from routine chest CT scans,
these algorithms provide valuable information for predicting progression-free survival in
individuals with SSc-ILD. The integration of radiomics enhances prognostic evaluation
and enables more informed treatment decisions for improved patient care [50].

CNNs in the field of thoracic imaging have proven to be a powerful tool for automated
image analysis in ILDs. By leveraging their capacity to capture subtle patterns and textures
within high-resolution radiographic data, CNNs surpass human visual perception, enabling
a superior detection and classification of ILD subtypes [16,51]. From distinguishing IPF
from other ILDs to predicting disease progression, CNNs offer a multifaceted approach
that aids in both diagnosis and prognosis. Furthermore, the integration of transfer learning
improves the CNN performance, underscoring their versatility in ILD research. Radiomics,
an emerging field within medical imaging, complements CNNs by extracting an extensive
array of quantitative imaging features from radiological images. These features encompass
a wide range of morphological, textural, and statistical descriptors, providing a holistic
representation of disease characteristics [52]. Leveraging advanced machine learning
algorithms, radiomics models can stratify ILDs, differentiate between disease stages, and
even predict treatment response [53]. By unraveling hidden imaging biomarkers, radiomics
demonstrates its potential as a non-invasive and objective tool for ILD assessment. The
integration of CNNs and radiomics represents a paradigm shift in the management of ILDs
for both primary and secondary forms, such as connective tissue diseases [50,54]. Together,
they offer a comprehensive and detailed understanding of ILDs, facilitating accurate
diagnosis and personalized treatment plans. CNNs excel at extracting complex visual
features from radiological or medical nuclear data, while radiomics enables a quantitative
assessment of disease characteristics. The synergy between these two approaches empowers
radiologists and clinicians to uncover previously unrecognized patterns and correlations,
leading to an improved diagnostic accuracy and prognostic capabilities. As CNNs and
radiomics continue to evolve, their impact on ILD diagnosis and management is expected
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to grow exponentially. The development of large-scale, curated datasets will further
enhance the performance and generalizability of CNN models. Moreover, the integration
of multi-modal imaging data, such as computed tomography (CT) and positron emission
tomography (PET), holds great promise in unraveling the complexities of ILDs [55,56].

Lastly, new additional methods of lung evaluation using advanced AI techniques have
emerged as additional tools for integrating clinical and pulmonary functional data. One
of these methods is the assessment of the so-called “lung shrinkage”, a key component
of worsening lung fibrosis in ILD, which could be effectively assessed using advanced
imaging techniques such as CT. The regional distribution of lung shrinkage in ILD typically
starts in the lower peripheral regions of the lungs, gradually ascending to the upper apical
regions. This pattern may be attributed to mechanical stress on the alveolar epithelium
and the fibroproliferative response. For this reason, the measurement of lung shrinkage
using elastic registration and deep learning classifiers provides spatial information about
the deformation process, enhancing our understanding of disease progression. It may also
assist in the early detection and monitoring of ILD. However, it is important to consider lung
shrinkage in conjunction with other markers, such as changes in lung function parameters
such as forced vital capacity (FVC) and the diffusing capacity of carbon monoxide (DLCO),
to obtain a comprehensive assessment of disease severity and treatment response. By
combining these approaches, including advanced imaging techniques, quantitative analysis,
and the evaluation of lung function, a more holistic understanding of lung shrinkage in
ILD can be achieved, enabling an improved monitoring and management of this complex
condition [15].

5. Conclusions

The application of AI techniques in the field of ILDs has revolutionized thoracic
radiology, opening new possibilities. The transition from quantitative imaging to machine
learning, deep learning, neural networks, radiomics, and lung shrinkage has introduced
promising tools for enhancing the diagnosis, characterization, and prognosis of ILDs.
Machine learning algorithms, with their ability to analyze extensive datasets and identify
intricate patterns, have demonstrated potential in automating classification and prediction
tasks for ILDs. Through training on annotated datasets, these algorithms can learn to
recognize disease-specific features and assist in distinguishing between different ILD
subtypes. Deep learning, a subset of machine learning, has emerged as a powerful technique
in ILD analysis. CNNs, a type of deep learning architecture, have shown remarkable
performance in automated image segmentation, allowing for the precise delineation of
lung abnormalities and accurate quantification of disease burden. Furthermore, deep
learning models can extract high-level features from medical images, capturing subtle
nuances that may be imperceptible to the human eye. Radiomics, another exciting field,
involves extracting numerous quantitative features from medical images, enabling the
creation of comprehensive imaging biomarkers. By leveraging radiomics, researchers have
identified imaging signatures associated with specific ILDs, leading to an improved disease
characterization and potentially facilitating treatment selection and prognosis assessment.
Lung shrinkage, a technique involving lung deflation to eliminate confounding factors
such as blood vessels, has been combined with AI methods to enhance the accuracy of ILD
analysis. By reducing anatomical distortions and improving the alignment of corresponding
image features, lung shrinkage can enhance the performance of automated algorithms,
resulting in more reliable and reproducible results. Despite the immense potential of these
advanced techniques, it is crucial to acknowledge their limitations. Challenges such as
dataset heterogeneity, a lack of standardization in imaging protocols and annotations,
the interpretability of AI models, and the need for rigorous clinical validation must be
addressed.

The current landscape of AI in ILDs primarily focuses on lung lesion detection sys-
tems, particularly in the context of the COVID-19 pandemic. However, the application
of AI in ILDs remains relatively limited. Research efforts have predominantly concen-
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trated on the pattern detection, quantification, diagnosis, and prognosis of ILDs using
imaging techniques. Nonetheless, there are several challenges hindering the development
of AI algorithms for ILDs. These challenges include the rarity of ILDs, the wide range
of entities causing pulmonary involvement, the scarcity of structured data, data gover-
nance issues, limited access to clinical information, and a shortage of annotated datasets.
Features such as FVC have been used for predictions, and prognosis inference remains
challenging for both physicians and AI systems. Utilizing longitudinal data from HRCT
scans and pulmonary function tests shows promise but requires further research. Although
radiomic features have shown success in diagnostic tools and the prognosis of SSc-ILD,
research in the prognosis of IPF using radiomics is limited. Efforts have been made to
address these challenges by creating open-access databases to facilitate data access for
researchers. However, the accessibility of the required data remains a potential hurdle
for future research in AI-driven chest radiology [57]. Additionally, ethical considerations
including patient privacy and data security, as well as the importance of close collaboration
between radiologists, pulmonologists, and data scientists, must be emphasized to ensure
the responsible and effective implementation of AI in routine clinical practice. In summary,
the integration of AI techniques with radiological expertise holds significant potential in
advancing ILD management. By harnessing the power of machine learning, deep learning,
neural networks, radiomics, and lung shrinkage, we can deepen our understanding of ILDs,
enable earlier and more accurate diagnoses, and ultimately improve patient outcomes.
However, it is essential to carefully address the challenges and limitations associated with
these techniques while maintaining a patient-centric and ethically responsible approach.
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