
Citation: Alwakid, G.; Gouda, W.;

Humayun, M. Enhancement of

Diabetic Retinopathy Prognostication

Using Deep Learning, CLAHE, and

ESRGAN. Diagnostics 2023, 13, 2375.

https://doi.org/10.3390/diagnostics

13142375

Academic Editor: Muhammad Ikram

Ullah Lali

Received: 13 June 2023

Revised: 7 July 2023

Accepted: 10 July 2023

Published: 14 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Enhancement of Diabetic Retinopathy Prognostication Using
Deep Learning, CLAHE, and ESRGAN
Ghadah Alwakid 1 , Walaa Gouda 2 and Mamoona Humayun 3,*

1 Department of Computer Science, College of Computer and Information Sciences, Jouf University,
Sakakah 72341, Al Jouf, Saudi Arabia; gnalwakid@ju.edu.sa

2 Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University,
Cairo 11672, Egypt; walaa.gouda@feng.bu.edu.eg

3 Department of Information Systems, College of Computer and Information Sciences, Jouf University,
Sakakah 72341, Al Jouf, Saudi Arabia

* Correspondence: mahumayun@ju.edu.sa

Abstract: One of the primary causes of blindness in the diabetic population is diabetic retinopathy
(DR). Many people could have their sight saved if only DR were detected and treated in time.
Numerous Deep Learning (DL)-based methods have been presented to improve human analysis.
Using a DL model with three scenarios, this research classified DR and its severity stages from
fundus images using the “APTOS 2019 Blindness Detection” dataset. Following the adoption of
the DL model, augmentation methods were implemented to generate a balanced dataset with
consistent input parameters across all test scenarios. As a last step in the categorization process,
the DenseNet-121 model was employed. Several methods, including Enhanced Super-resolution
Generative Adversarial Networks (ESRGAN), Histogram Equalization (HIST), and Contrast Limited
Adaptive HIST (CLAHE), have been used to enhance image quality in a variety of contexts. The
suggested model detected the DR across all five APTOS 2019 grading process phases with the
highest test accuracy of 98.36%, top-2 accuracy of 100%, and top-3 accuracy of 100%. Further
evaluation criteria (precision, recall, and F1-score) for gauging the efficacy of the proposed model
were established with the help of APTOS 2019. Furthermore, comparing CLAHE + ESRGAN against
both state-of-the-art technology and other recommended methods, it was found that its use was more
effective in DR classification.

Keywords: blindness; diabetic retinopathy; Deep Learning; APTOS; transfer learning

1. Introduction

Diabetes can lead to several serious complications, including DR, visual loss, cardio-
vascular disease, kidney disease, and strokes. DR occurs when excess glucose levels inflame
and leak into the retinal vessels [1–3]. Lesions show up as blotches of blood and fluids on
the retina. Primarily, a DR diagnostic will involve looking for red, brilliant lesions. The
red lesions involve microaneurysms (MA) and hemorrhage (HM), while the bright lesions
involve soft and hard exudates (EX). The smaller, dark red dots are MA, while the more
prominent spots are HM. Injuries to nerve fibers cause soft EX to look like yellowish-white,
fluffy specks, while nerve damage causes hard EX to appear as definite yellow spots [4,5].
Figure 1 depicts the five distinct stages of DR (no DR, mild DR, moderate DR, severe DR,
and proliferative DR) [6,7]. When DR progresses to its most severe stage, a person’s vision
may be lost totally. Early detection of DR can reduce the likelihood of permanent vision
loss [4,8].

Experts in the field are needed to diagnose DR manually, but even the most seasoned
ophthalmologists struggle with interpersonal and inter-observer inconsistency; however,
early detection of DR is crucial for preventing blindness [9,10]. As a result, numerous
Machine Learning (ML) and Deep Learning (DL) algorithms for automatic DR detection
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have been developed by academics throughout the past decade. Though reliable DR
detection via image analysis via DL has come a long way, there is still much room for
improvement. Several studies on DR detection have utilized single-stage training for the
entire process [11–14].
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To help ophthalmologists with DR assessments, we aimed to create a fast, highly
autonomous, DL-based DR classification. When DR is recognized and treated soon after
the first signs of the condition arise, it can be avoided. We used the freely available APTOS
dataset [15] to train a model with cutting-edge image preprocessing techniques and the
DenseNet-121 [16] model for diagnosis.

Within this section, we focus on the novel aspects of our research.

1. The primary contribution of this study is that it employs the contrast-limited adaptive
HIST (CLAHE) [17] filtering technique, HIST [18], and ESRGAN [19] to produce
superior images for the APTOS collection;

2. The suggested system’s sustainability is assessed through comparative research using
a variety of metrics such as accuracy, precision, confusion matrix, recall, top-n accuracy,
and the F1-score;

3. The APTOS data collection serves as the basis for training the DenseNet-121 pre-
trained model;

4. Using the augmentation method, We ensured an even amount of information in the
APTOS dataset;
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5. Overfitting occurs less frequently, and the suggested method’s underlying trustwor-
thiness is enhanced by using a training technique that accommodates several different
training strategies (e.g., learning rate, batch size, data augmentation, and validation
patience).

This study presents three different scenarios: Scenario I, in which CLAHE and ES-
RGAN are used together to optimize the DR stage enhancement; scenario II, in which
CLAHE is used first and then HIST and ESRGAN, respectively; and scenario III, in which
HIST is used first and then CLAHE and ESRGAN are applied to the images. Furthermore,
we used DenseNet-121 to train the weights for each scenario, utilizing images from the
APTOS dataset to assess the models’ outputs. Oversampling through augmentation meth-
ods is essential because of the class imbalance in the dataset. The rest of the paper will be
written following this outline. Section 2 provides a background on the DR, while Section 3
lays out a plan for performing the study. Section 4 presents and discusses the findings.
Final thoughts and suggestions for further research are presented in Section 5.

2. Related Work

Manually detecting DR in images was fraught with complications. A lack of capability
(qualified ophthalmologists) and expensive examinations present obstacles for many people
in poor nations. Automatic processing methods have been developed to increase access to
precise and prompt assessment and treatment for blindness, as early detection is crucial
in the struggle against the disease. ML models fed images of the retinal fundus have
recently achieved high accuracy in DR categorization [2,20]. While the end result of
using ML algorithms was promising, extracting the features using methods for image
processing takes more work. In computer vision and bioinformatics, DL models have
recently demonstrated increased effectiveness. So, many studies have been developed
using DL models to identify DR in fundus retinal images. Some researchers have adopted
a transfer learning strategy to deal with the limited space available in DR Datasets.

Gundluru et al. [21] created a DL model with PCA for dimensionality reduction
and Harris Hawks optimization for better feature extraction and categorization. Yasin
et al. [22] propose a three-stage procedure. After preprocessing retinal pictures, the hybrid
Inception-ResNet architecture classified the image development stages. Finally, DR severity
is low, moderate, severe, or proliferative. Farag et al. [23] offer an autonomous DL severity
detection approach employing a single-Color Fundus picture (CFP). DenseNet169 embeds
visuals. CBAM enhances discrimination. Finally, cross-entropy loss trains the APTOS
dataset model.

Using transfer learning and pre-trained models (NASNetLarge, EfficientNetB4, Xcep-
tion, EfficientNetB5, and InceptionResNetV2), Liu et al. [24] predicted DR on the EyePACS
dataset. The DR was successfully categorized using an improved cross-entropy loss func-
tion and three hybrid model structures, achieving an accuracy of 86.34%. For DR recognition
in fundus pictures, Sheikh et al. [25] used a combination of four transfer learning algo-
rithms: VGG16, ResNet50, InceptionV3, and DenseNet-121. With 90% sensitivity and 87%
specificity, DenseNet-121 outperformed competing models in predictive accuracy.

On top of a pre-trained InceptionResNetv2, Gangwar and Rav [26] developed a unique
convolutional neural network (CNN) module. Two datasets, Messidor-1 and APTOS 2019,
were used to hone those models. The Messidor-1 dataset earned 72.33 percent accuracy,
while the APTOS 2019 dataset scored 82.18 percent accuracy during testing.

Omneya Attallah [27] proposes a powerful and automated CAD tool built on the
back of GW and a number of other DL models. Saranya et al. [28] used red lesions in
retinal pictures to construct an automated model for early DR detection. Preprocessing
removes noise, improves local contrast, and uses the UNet architecture to semantically
partition red lesions. Medical segmentation requires pixel-level class labeling, which U-Net
supports with Advanced CNN. The model was tested using four publicly available datasets:
IDRiD, DIARETDB1, MESSIDOR, and STARE. Using the IDRID dataset, the suggested
identification system had 99% specificity, 89% sensitivity, and 95.65% accuracy. Using
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the MESSIDOR dataset, the DR severity classification system had 93.8% specificity, 92.3%
sensitivity, and 94% accuracy.

Raiaan et al. [29] established a new dataset by merging images from the APTOS,
Messidor2, and IDRiD datasets. Image preprocessing and geometric, photometric, and
elastic deformation augmentation methods are applied to all images in the dataset. RetNet-
10 is a base model containing three blocks of convolutional layers and maxpool layers and
a categorical cross-entropy loss function to classify DR stages. The RetNet-10 model had a
high testing accuracy of 98.65%.

Xu et al. [30] suggested a DL model that achieved 94.5 percent accuracy in automated
DR classification. They used several different augmentations to deal with the overfitting
issue introduced by the small dataset. By first collecting spatial features from the four TL
and then integrating these features using the Fast Walsh Hadamard Transform, Omneya
Attallah [31] can identify meaningful features. The data they obtained had an accuracy
of 93.2%. A segment-based learning system for DR prediction was reported by Math
et al. [32]. The area under the ROC curve was 0.963 when they utilized a pre-trained
CNN to estimate DR at the segment level and classify all segment levels. On the EyePACS
dataset, Kaushik et al.’s [33] stacked model of 3 CNN models achieved 97.92% binary
classification and 87.45% multi-class classification. They segmented and localized blood
vessels, microaneurysms, hemorrhages, exudates, and other lesions in addition to image-
level grading for DR categorization. Medical DR detection algorithms were investigated by
Khalifa et al. [34], who used deep transfer learning. APTOS 2019 was utilized for numerical
experiments. AlexNet, Res-Net18, SqueezeNet, GoogleNet, VGG16, and VGG19 are used in
this research. DenseNet and Inception-Resnet were chosen as the models of choice because
of their higher layer counts.

Model robustness and overfitting were both improved by the additional data. More-
over, Li et al. [35] created CANet to forecast DR utilizing ML models trained on Messidor
and IDRiD challenge datasets, which predicted 85.10%. Image processing removed blood
vessels, microaneurysms, and exudates by Afrin and Shill [36]. Measured blood vessel
area, microaneurysm count, and exudate area from processed pictures and fed them into
a knowledge-based fuzzy classifier for Classification, achieving 95.63% accuracy. Jena
et al. [37] enhanced images using CLAHE on the green channel, and DR lesions were
identified using a CNN coupled with a support vector machine (SVM).

Based on the study’s outcomes on DR identification and diagnosis approaches, a
significant number of gaps still require investigation. Due to the unavailability of a large
amount of data, there has been little limitation on building and training a custom DL model
entirely from scratch, reasoning from multiple studies that have attained outstanding
trustworthiness values using pre-trained models with transfer learning. Furthermore, most
of these experiments only trained DL models on raw photos, limiting the end classification
network’s scalability. The new study incorporates multiple layers into the structure of pre-
trained models to create a compact DR identification system, which solves these problems.
As a result, the proposed system is more user-friendly and effective.

3. Approaches to Research

As can be seen from Figure 2, a transfer DL approach (DenseNet-121) has been thor-
oughly trained within the image dataset to build racially discriminatory and useful feature
representations for the DR detection system to operate. This section summarizes the
strategy employed while processing the provided data. Next, the preprocessing stage is
laid out in detail, and the implementation details of the proposed system are discussed;
these include the three scenarios employed in this context, the techniques provided for
preprocessing the data, a framework for the approach, and a way for training it.
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3.1. Data Set Description

When adopting a dataset, ensure there are enough high-quality images to operate
on. The APTOS 2019 (Asia Pacific Tele-Ophthalmology Society) Blindness Detection
Dataset [15] is employed for this research, one of many accessible Kaggle datasets, includ-
ing thousands of images. The five stages of DR are represented here with high-resolution
Retinal images, numbered from 0 (no DR) to 4 (proliferate DR), along with labels 1–4.
There are 3662 images of the retina, with 193 in the severe DR group, 370 in the moderate
DR group, 999 in the moderate to severe DR group, and 295 in the proliferate DR group
(Figure 3). In Figure 1, we have seen several samples of the 3216 × 2136 pixel images. It
ought to be expected that, as with any given dataset, there will be some random variation
in both the images and the labels. The given photos may have artifacts, blurriness, poor
brightness, and other problems. The images were taken by various individuals using
various cameras at different clinics over a long period of time, all of which adds to the wide
variety of the set as a whole.
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3.2. Proposed Methodology

This article’s dataset was utilized to create an automatic DR classification model, and
its workflow is presented in Figure 2. It shows three different scenarios: one in which
preprocessing is carried out in two stages (using CLAHE and ESRGAN), the other two
scenarios in which preprocessing is carried out in three stages (using CLAHE, HIST, and
ESRGAN; and HIST, CLAHE, and ESRGAN for the second and third scenarios, respec-
tively). The augmentation phase follows this phase to prevent overfitting. Eventually, the
DenseNet-121model will be used to classify the images.

3.2.1. An ESRGAN and CLAHE-Based Preprocessing

Retinal fundus images are frequently gathered from many sources using various
methods. Consequently, given the considerable luminance variations in the photos used by
the suggested protocol, it was crucial to enhance the quality of DR images and eliminate
several sorts of noise. All photos in all scenarios are resized to a 224 × 224 × 3 resolution
to best fit the inputs of the learning model. Since the brightness of each image’s pixels
can vary widely, the data has been normalized between (−1) and (1) to maintain it within
acceptable bounds and eliminate any noise. Normalizing the weights makes the model less
susceptible to changes and therefore easier to tweak.
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Scenario I

In scenario I, all images undergo an initial preprocessing phase before the augmenta-
tion and training phases. As can be seen in Figure 4b, CLAHE was first used to improve
the DR image’s prominent features, patterns, and poor contrast by redistributing the input
image’s luminance qualities [38]. To achieve this, the image was first segmented into many
non-overlapping portions of about equal size. Therefore, the local luminance of an image is
improved, while sharper edges and arcs are made more apparent by using this technique.
Figure 4c shows the output from Stage 2 being sent into ESRGAN for further processing.
When taking an ESRGAN photo, you can more accurately imitate the crisp edges that
characterize image distortions [39]. Figure 4 shows one such strategy, which improves
accuracy by increasing brightness while making the image’s edges and curves stand out
more clearly.
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Figure 4. Various examples of the image-improvement methods that have been proposed (a) An
unaltered version of the image; (b) a CLAHE version of the same image; and (c) an ESRGAN-enhanced
version of the same image.

Scenario II

Like scenario I, all images in scenario II go through preliminary preprocessing before
the augmentation and training stages. Figure 5b shows that the brightness attributes of the
input image were redistributed using CLAHE to enhance the DR image’s salient features,
patterns, and weak contrast. HIST [17,18] was applied to the output from stage 2, and the
result is shown in Figure 5c. One definition of HIST is the distribution of a single data type.
It is a method for enhancing an image’s contrast and overall visual quality. Equalizing
the Histogram will expand the entire range of pixels from 0 to 255. Good contrast and
discernible detail are hallmarks of a high-quality histogram. Finally, as shown in Figure 5d,
ESRGAN is applied to the results of Stage 3. One such method is depicted in Figure 5; it
enhances precision by brightening the image, bringing attention to its edges and curves.

Scenario III

Like scenario II, all images in scenario III go through preliminary preprocessing before
the augmentation and training stages. Figure 6b shows that the brightness attributes of
the input image were redistributed using HIST to enhance the DR image’s salient features,
patterns, and weak contrast. After that, CLAHE was applied to the output from stage 2,
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and the result is shown in Figure 6c. Finally, as shown in Figure 6d, ESRGAN is applied to
the results of stage 3. One such method is depicted in Figure 6; it enhances precision by
brightening the image, bringing attention to the image’s edges and curves.
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3.2.2. Expansion of Data

In order to introduce DenseNet-121 to a dataset with inconsistencies, researchers
initially employed data augmentation to increase the number of images throughout the
training sample. Once provided with more data to learn from, DL approaches generally
improve their performance. We are able to make use of the special properties of DR imaging
by tailoring our edits to each image. Scaling, inverting horizontally or vertically, and rotat-
ing the image a certain number of degrees do not affect the DNN’s precision. Overfitting is
avoided, and the imbalance in the dataset is corrected by the application of data augmenta-
tions (i.e., translation, rotation, and magnification). Horizontal shift augmentation is one of
the transformations considered for this study; it involves horizontally shifting an image’s
pixels while maintaining the original image’s perspective. The dimension of this transition
is specified by a number ranging from 0 to 1, and the viewing angle of the original image
is preserved. The image can also be rotated, an additional type of transformation, by a
random amount between 0 and 180 degrees. By employing data augmentation methods,
we were able to fix the problem of varying sample sizes and convoluted categorizations.
The APTOS dataset is a good example of an “imbalanced class”, defined as an uneven
distribution of samples across various classes, as shown in Figure 3. Figure 7 illustrates
how the dataset’s classes are evenly distributed throughout all scenarios after applying
augmentation techniques.
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All previous edits to images in the training set are applied to generate new samples
for the network. While the total number of images is the same in all scenarios, Figures 8–10
illustrate the purpose of data augmentation, which is to increase the quantity of data by
providing slightly altered copies of the existing data or newly synthesized data derived
from the existing data using the same parameters in all three scenarios. Here are the three
scenarios that were used to train DenseNet-121:
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Scenario I

In the first scenario, shown in Figure 8, researchers augment the improved images
using CLAHE and ESRGAN.

Scenario II

The second scenario is to apply augmentation techniques to the enhanced images
utilizing CLAHE, HIST, and ESRGAN, respectively, as depicted in Figure 9.

Scenario III

Finally, in the third scenario, augmentation techniques are applied to the enhanced
images utilizing HIST, CLAHE, and ESRGAN, respectively, as depicted in Figure 10.

3.2.3. Learning Model (DenseNet-121)

The Dense Convolutional Network (DCN) is a type of network infrastructure in which
every layer is deeply related to every other layer. Most of the other layers’ feature maps are
viewed as independent input variables for each layer, while their own feature maps are
passed on to all of the layers that come after them [16]. DenseNets are better than other
DCNs because they address the issue of vanishing gradients, improve feature spreading,
motivate feature reuse, and minimize the number of parameters by a large amount. Most of
the time, DenseNets function better than the state-of-the-art while consuming less memory
and computation [16].

4. Experimental Results
4.1. Criteria for Assessment

This part details the methods used to assess the study’s success and its final results.
Classifier Accuracy is a popular metric for gauging classification performance. By dividing
the total number of examples by the percentage of valid identifications, we arrive at the
formula shown in Equation (1). Image categorization performance is typically evaluated
based on metrics like sensitivity and specificity. The accuracy of the specificity formula
presented by Equation (2) improves as more images are correctly labeled. Using Equation
(3), we counted how many images in the dataset exhibited a linear correlation. A higher
F-score indicates that the system is more likely to make correct predictions. The value of a
system cannot be gauged solely by its accuracy and sensitivity. Equation (4) provides the
formula for computing the F-score (Fsc). Fourthly, we looked at how well the model N’s
highest likelihood responses followed the expected softmax distribution (also known as
the “top N accuracy”). The effectiveness of the classification is determined by whether or
not one of the N predictions corresponds to the actual label.

Accuracy =
true_positive + true_negative

true_positive + true_negative + f lase_positive + f lase_negative
(1)

Speci f icity = Precision =
true_negative

true_negative + f lase_positive
(2)

Sensitivity = Recall =
true + positive

true_positive + f lase_negative
(3)

F1-Score = 2 ∗
(

Precision ∗ Recall
Precision + Recall

)
(4)

4.2. Instruction and Setup of DenseNet-121

The APTOS dataset validated the DL system and compared its performance to best
practices. According to the preferred training strategy, 80% was used for training (9360 pho-
tos) and 10% for testing (549 images). Moreover, 549 photos, or 10%, were randomly
selected to serve as a validation set for assessing performance and retaining optimal weight
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combinations. Images were reduced in size during training to a 224 × 224 × 3-pixel resolu-
tion. A Linux PC with an RTX3060 GPU and 8 GB of RAM tested the proposed system’s
TensorFlow Keras application. The suggested system utilizes the Adam optimizer and a
learning rate approach that delays the learning rate.

In contrast, learning has stagnated for a long time and has been pre-trained on the
APTOS dataset (i.e., validation patience). Adam optimized these training hyperparameters:
The simulation runs for 50 epochs with a learning rate between 1 × 103 and 1 × 105, a batch
size between 2 and 64, a 2× increment, 10 patience steps, and 0.90 momentum. To complete
our variety of anti-infective approaches, we apply a “batching” technique for dispersing
diseased species.

4.3. Observations on the DenseNet-121Model’s Efficacy

Figure 11 depicts the results of an evaluation of three different instance sets for the AP-
TOS dataset, where DenseNet-121 was applied to the dataset in three different enhancement
scenarios: (a) CLAHE + ESRGAN, (b) CLAHE + HIST + ESRGAN, and (c) HIST + CLAHE +
ESRGAN. Each data set is split into 80% training, 10% validation, and 10% testing samples.
This division was implemented to reduce the overall duration of the project. The model
is trained for 50 epochs using 2, 4, 8, 32, and 64 as batch sizes and 1 × 103, 1 × 104, and
1 × 105 as learning rates. To ensure the utmost accuracy, DensNet-121 has been fine-tuned
by freezing between 140 and 160 layers. Model ensembles are constructed by repeatedly
executing the same model with the same parameters, and since performance varies from
run to run because of the random weights established for each run, only the best run result
is recorded and supplied. The optimal outcomes for each Scenario, as calculated by the
DenseNet-121 model, are detailed below.
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Scenario I

The first scenario used is depicted in Figure 11. In this scenario, preprocessing is
conducted in two steps (utilizing CLAHE and ESRGAN), and then augmentation is used
to prevent overfitting. The images are ultimately classified using the DensNet-121 model.
Table 1 demonstrates that scenario I yields the highest performance when used, with an
accuracy of 98.36 percent, a top-2 accuracy of 100 percent, a top-3 accuracy of 100 percent, a
precision of 98 percent, a recall of 98 percent, and an F1-score of 98 percent. The APTOS
dataset shows the total number of images tested across all categories in Table 2. As can be
seen from the data, the No DR class has the most instances (270) and the highest Precision,
Recall, and F1-score values (100, 99, and 99, respectively).
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Table 1. Superior accuracy via improvement (CLAHE + ESRGAN).

Acc Top-2 Accuracy Top-3 Accuracy Precision Recall F1-Score

0.9836 1.00 1.00 0.98 0.98 0.98

Table 2. Detailed results for each class using CLAHE + ESRGAN.

Precision Recall F1-Score Total Images

Stage 0 1.00 0.99 0.99 270

Stage 1 1.00 0.97 0.99 150

Stage 2 0.95 1.00 0.97 56

Stage 3 0.90 0.97 0.93 29

Stage 4 0.93 0.98 0.96 44

Average 0.98 0.98 0.98 549

An evaluation of a classification model’s accuracy on a validation set is shown in
Figure 12 through a comparison of the actual and predicted labels. We tested our model
using a single-label classification approach for five classes, and the results are depicted in
Figure 12 below as the confusion matrix. The confusion matrix displays the discrepancy
between the true and predicted labels for each image in the validation set. Components
on the diagonal represent the fraction of instances where the classifier correctly predicted
the label, whereas non-diagonal elements represent instances where the classifier made a
mistake.
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Scenario II

The second scenario is depicted in Figure 13. In this scenario, preprocessing is con-
ducted in three steps (utilizing CLAHE, HIST, and ESRGAN), and then augmentation is
used to prevent overfitting. The images are ultimately classified using the DenseNet-121
model.
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Figure 13. Scenario II-specific workflow depiction of the DR detection system.

Table 3 demonstrates that scenario II yields the highest performance when used, with
an accuracy of 79.96 percent, a top-2 accuracy of 89.62 percent, a top-3 accuracy of 97.09
percent, a precision of 79 percent, a recall of 80 percent, and an F1-score of 79 percent. The
APTOS dataset shows the total number of images tested across all categories in Table 4. As
can be seen from the data, the No DR class has the most instances (270) and the highest
Precision, Recall, and F1-score values (94, 97, and 96, respectively). Figure 14 reveals the
best confusion matrix of DenseNet-121 for scenario II.

Table 3. Superior Accuracy via Improvement (CLAHE +HIST + ESRGAN).

Acc Top-2 Accuracy Top-3 Accuracy Precision Recall F1-Score

0.7996 0.8962 0.9709 0.79 0.80 0.79

Table 4. Detailed results for each class using CLAHE + HIST + ESRGAN.

Precision Recall F1-Score Total Images

Stage 0 0.94 0.97 0.96 270

Stage 1 0.71 0.79 0.75 150

Stage 2 0.55 0.46 0.50 56

Stage 3 0.54 0.24 0.33 29

Stage 4 0.58 0.57 0.57 44

Average 0.79 0.80 0.79 549

Scenario III

The third scenario used is depicted in Figure 15; in this scenario, preprocessing is
conducted in three steps (utilizing HIST, CLAHE, and ESRGAN), and then augmentation
is used to prevent overfitting. The images are ultimately classified using the DenseNet-121
model. Table 5 demonstrates that scenario III yields the highest performance when used,
with an accuracy of 79.23 percent, a top-2 accuracy of 90.35 percent, a top-3 accuracy of
96.72 percent, a precision of 78 percent, a recall of 79 percent, and an F1-score of 79 percent.
The APTOS dataset shows the total number of images tested across all categories in Table 6.
As can be seen from the data, the No DR class has the most instances (270) and the highest
Precision, Recall, and F1-score values (95, 97, and 96, respectively). Figure 16 reveals the
best confusion matrix of DenseNet-121 for scenario III.
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Figure 15. Scenario III-specific workflow depiction of the DR detection system’.

Table 5. Superior Accuracy via Improvement (HIST + CLAHE + ESRGAN).

Acc Top-2 Accuracy Top-3 Accuracy Precision Recall F1-Score

0.7923 0.9035 0.9672 0.78 0.79 0.79

Table 6. Detailed results for each class using HIST + CLAHE + ESRGAN.

Precision Recall F1-Score Total Images

Stage 0 0.95 0.97 0.96 270

Stage 1 0.70 0.77 0.74 150

Stage 2 0.61 0.50 0.55 56

Stage 3 0.33 0.24 0.28 29

Stage 4 0.56 0.52 0.54 44

Average 0.78 0.79 0.79 549
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4.4. Contrast and Comparison of the Various Methodologies

According to the assessment measures used, scenario I with CLAHE and ESRGAN
yields the best result compared to the other offered scenarios, as depicted in Figure 17.
Diagnostic efficacy was determined by calculating the area under the receiver operating
characteristic (ROC) curve, which depicts a given model’s true positive and false positive
rates. The area under the ROC curve (AUC) can be calculated by adding the areas of
the individual trapezoidal pieces. Figure 18 displays the AUC assessments for the three
scenarios using the proposed technique. The AUC is likewise comparable across all figures,
as shown in Figure 18. With an AUC of 0.98, the first scenario provided performs marginally
better than the others.
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4.5. Evaluating Several Alternative Approaches

As seen in Table 7, our approach is superior to other methods in terms of both efficacy
and performance. Its efficacy is weighed against that of similar approaches. Compared to
the top existing approaches, the proposed inception model exhibits an efficiency rating of
96.36% regarding scenario I.

Table 7. Comparison of system performance to previous research using the APTOS dataset.

Reference Technique Accuracy

[2] MSA-Net 84.6%

[40] EfficientNet-B6 86.03%

[41] SVM 94.5%

[42] SVM classifier and MobileNet_V2 for feature extraction 88.80%

[43] Densenet-121, Xception, Inception-v3, Resnet-50 85.28%

[26] Inception-ResNet-v2 72.33%

[44] MobileNet_V2 93.09%

[45] EfficientNet and DenseNet 96.32%

[46] VGG16 96.86%

[47] CNN 95.3%

[48] Hybrid Residual U-Net 94%

[49] Inception-ResNet-v2 97.0%

[50] VGG-16 74.58%

[51]
VGG16 73.26%

DenseNet121 96.11%

[52] LBCNN 97.41%

[53] Inception-v3 88.1%

[54] DenseNet201 93.85%

Proposed Methodology

DenseNet-121(using CLAHE + ESRGAN) scenario I 98.36%

DenseNet-121(using CLAHE + HIST + ESRGAN) scenario II 79.96%

DenseNet-121(using HIST + CLAHE + ESRGAN) scenario III 79.23%

4.6. Discussion

The authors developed a new classification system for DR incorporating CLAHE, HIST,
and ESRGAN aspects. The created model was tested on the DR photos from the APTOS
2019 dataset. Thus, the APTOS dataset is employed in three different scenarios: Scenario
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I, which involves CLAHE and ESRGAN; scenario II, which involves CLAHE + HIST and
ESRGAN; and scenario III, which involves HIST + CLAHE and ESRGAN. The model
achieved a 98.36 percent accuracy across five classes in scenario I of the 80:20 hold-out
validation and a 79.96% and 79.23% accuracy across scenarios II and III, respectively. For
classification in all cases where the proposed method was used, a pre-trained DenseNet-121
architecture has been used.

Our experiments show that the DenseNet architecture offers several substantial ben-
efits over the alternatives. At the outset, the authors boast that their design outperforms
the competition in ImageNet. Our Near-Identical Image analysis confirms this, showing
that the DenseNet architecture yields the most accurate depiction of pictures. Second, the
authors state that their technique makes it simpler to train the network due to increased
parameter efficiency. This is true when compared to other similarly sized network configu-
rations. Our argument is that the training time is comparable to that of some lower-layer
networks. The benefits of the additional training time are undeniable.

In light of the promising results obtained by our previous work “DL-Based Prediction
of DRUsing CLAHE and ESRGAN for Enhancement” on the same dataset (APTOS) using a
different DL model (Inception-V3), additional work has been performed using Histogram
equalization to test its effect in consequence with CLAHE and ESRGAN.

Throughout model development, we compared the categorization performances of
three distinct scenarios and found that scenario III’s enhancement strategy yielded the best
overall results achieved through the use of augmentation methods employed in Scenario
I (Figure 17). As can be seen in Table 7, the outcomes of Scenarios II and III are weaker
than those of scenario I but are still competitive with other studies ([46,49,50] utilizing
the VGG-16 model). We provide empirical proof that the general resolution increase of
CLAHE + ESRGAN is the key contributor to our methodology’s significant accuracy gains.
The relatively small size of the sample and the requirement that all images in the dataset
have approximately the same resolution are the study’s main limitations. In order to draw
reliable findings from a study, it is vital to have a significant sample size. The larger the
sample, the more accurate the results; hence, more samples are required to improve the
testing result.

Table 8 shows the proposed model’s performance under various enhancement sit-
uations; the results demonstrate that the model learns well without overfitting, as the
difference between the three sets of predictions is small.

Table 8. Examination of the accuracy of the model throughout training, validation, and testing.

Scenario Enhancement Technique Training Accuracy Validation Accuracy Testing Accuracy

I CLAHE + ESRGAN 0.9858 0.9709 0.9836

II CLAHE + HIST + ESRGAN 0.8216 0.7978 0.7996

III HIST + CLAHE + ESRGAN 0.8362 0.8069 0.7923

Figure 19 illustrates a sample of photographs belonging to the same class, demonstrat-
ing that applying the suggested improvement strategy to the EyePACS dataset provided
poor results due to the wide variety of the acquired images and their poor quality. Despite
the best improvement approach proposed (CLAHE + ESRGAN), the image quality still
fluctuates from one image to the next depending on the nature and resolution of the original
image.
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The histogram of images from the moderate DR class before and after CLAHE +
ESRGAN processing is shown in Figure 20. The image is first converted to grayscale, then
the intensity of each pixel is normalized throughout the full Histogram using CLAHE, and
finally the image is sharpened using ESRGAN.
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Figure 21 shows that the testing accuracy is increased by 70.32 percent when CLAHE
+ ESRGAN is employed as a preprocessing step on images from the EyePACS dataset.
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EyePacs has undergone further testing, with positive results (76.55%) achieved through
retraining the taught model with APTOS, as shown in Figure 22.

Diagnostics 2023, 13, x FOR PEER REVIEW 20 of 24 
 

 

 

Figure 20. Original and Enhanced Images + Histogram. 

Figure 21 shows that the testing accuracy is increased by 70.32 percent when CLAHE 

+ ESRGAN is employed as a preprocessing step on images from the EyePACS dataset. 

EyePacs has undergone further testing, with positive results (76.55%) achieved through 

retraining the taught model with APTOS, as shown in Figure 22.  

 

Figure 21. Superior Confusion Matrix for the EyePACS dataset.

Diagnostics 2023, 13, x FOR PEER REVIEW 21 of 24 
 

 

Figure 21. Superior Confusion Matrix for the EyePACS dataset. 

 

Figure 22. Superior Confusion Matrix for the retrained APTOS model using the EyePACS dataset. 

When all images in a dataset have roughly the same resolution, we discovered that 

the high accuracy improvements achieved by our technique are primarily attributable to 

the overall resolution enhancement provided by CLAHE + ESRGAN. When compared to 

alternative scenarios, the time required is drastically reduced when CLAHE + ESRGAN is 

used as the improvement step. The study’s findings back up these anecdotes. 

5. Conclusions 

The APTOS collection contains retinal images, and researchers have developed a 

method for rapidly and precisely evaluating five different types of cancer. Three scenarios 

are used in the suggested method: Scenario I utilizes CLAHE and ESRGAN, scenario II 

utilizes CLAHE, HIST, and ESRGAN; and scenario III utilizes HIST, CLAHE, and 

ESRGAN. DenseNet-121 is trained on the leading edge of preprocessed medical imaging, 

employing augmentation approaches to avoid overfitting and enhance the suggested 

methodology’s overall capabilities. The approach claims that when using DenseNet-121, 

the conception model has a prediction performance comparable to that of trained oph-

thalmologists: 98.36%, 79.96%, and 79.23% for scenarios I, II, and III, respectively. In ad-

dition to applying different augmentation methods, each with its own set of parameters, 

to generate a wide range of visually distinct samples, the research’s novelty and relevance 

stem from the use of CLAHE and ESRGAN in the preprocessing phase, which differs from 

our previous work by expanding the results by applying more scenarios (CLAHE + HIST 

+ ESRGAN and HIST + CLAHE + ESRGAN). The study uses the APTOS dataset to demon-

strate that the suggested strategy outperforms state-of-the-art methods. Testing on a huge 

and complicated dataset, including plenty of future DR instances, must be conducted to 

prove the recommended technique’s effectiveness. Future analyses of fresh datasets could 

use augmentation techniques like AlexNet, EfficientNet, or Inception-ResNet. Addition-

ally, new enhancement methods could improve the image’s quality. 

Figure 22. Superior Confusion Matrix for the retrained APTOS model using the EyePACS dataset.

When all images in a dataset have roughly the same resolution, we discovered that
the high accuracy improvements achieved by our technique are primarily attributable to
the overall resolution enhancement provided by CLAHE + ESRGAN. When compared to
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alternative scenarios, the time required is drastically reduced when CLAHE + ESRGAN is
used as the improvement step. The study’s findings back up these anecdotes.

5. Conclusions

The APTOS collection contains retinal images, and researchers have developed a
method for rapidly and precisely evaluating five different types of cancer. Three scenarios
are used in the suggested method: Scenario I utilizes CLAHE and ESRGAN, scenario II
utilizes CLAHE, HIST, and ESRGAN; and scenario III utilizes HIST, CLAHE, and ESRGAN.
DenseNet-121 is trained on the leading edge of preprocessed medical imaging, employing
augmentation approaches to avoid overfitting and enhance the suggested methodology’s
overall capabilities. The approach claims that when using DenseNet-121, the concep-
tion model has a prediction performance comparable to that of trained ophthalmologists:
98.36%, 79.96%, and 79.23% for scenarios I, II, and III, respectively. In addition to applying
different augmentation methods, each with its own set of parameters, to generate a wide
range of visually distinct samples, the research’s novelty and relevance stem from the use of
CLAHE and ESRGAN in the preprocessing phase, which differs from our previous work by
expanding the results by applying more scenarios (CLAHE + HIST + ESRGAN and HIST +
CLAHE + ESRGAN). The study uses the APTOS dataset to demonstrate that the suggested
strategy outperforms state-of-the-art methods. Testing on a huge and complicated dataset,
including plenty of future DR instances, must be conducted to prove the recommended
technique’s effectiveness. Future analyses of fresh datasets could use augmentation tech-
niques like AlexNet, EfficientNet, or Inception-ResNet. Additionally, new enhancement
methods could improve the image’s quality.
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