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Abstract: Lower extremity diabetic foot ulcers (DFUs) are a severe consequence of diabetes mellitus
(DM). It has been estimated that people with diabetes have a 15% to 25% lifetime risk of acquiring
DFUs which leads to the risk of lower limb amputations up to 85% due to poor diagnosis and
treatment. Diabetic foot develops planter ulcers where thermography is used to detect the changes in
the planter temperature. In this study, publicly available thermographic image data including both
control group and diabetic group patients are used. Thermograms at image level as well as patch level
are utilized for DFU detection. For DFU recognition, several machine-learning-based classification
approaches are employed with hand-crafted features. Moreover, a couple of convolutional neural
network models including ResNet50 and DenseNet121 are evaluated for DFU recognition. Finally, a
CNN-based custom-developed model is proposed for the recognition task. The results are produced
using image-level data, patch-level data, and image–patch combination data. The proposed CNN-
based model outperformed the utilized models as well as the state-of-the-art models in terms of
the AUC and accuracy. Moreover, the recognition accuracy for both the machine-learning and
deep-learning approaches was higher for the image-level thermogram data in comparison to the
patch-level or combination of image–patch thermograms.

Keywords: diabetes mellitus; diabetic foot ulcer; thermograms; deep learning; machine learning

1. Introduction

Insulin insufficiency in the body causes diabetes mellitus (DM), which results in high
blood glucose (hyperglycemia) for an extended period. Uncontrolled diabetes for a long
period of time can lead to complications such as nephropathy, retinopathy, Charcot foot
development, amputation, or even death [1]. Uncontrolled DM damages the nerves; if the
nerves in the legs or feet are damaged, it causes a lack of feeling called sensory diabetic
neuropathy. When a patient does not feel a sore or cut in his foot due to neuropathy, that
cut causes infection and worsens the foot condition. The other situation is the low flow of
blood. Peripheral vascular disease causes low blood flow in the arms and legs. If the cut is
not healing due to low blood flow, there is a risk of developing ulcers. DFU (diabetic foot
ulcer) is most common in diabetic patients; more than 15% of patients face this problem [2].
An illustration of DFU is shown in Figure 1.

Diabetic foot issues are expensive and have a negative impact on one’s quality of
life. This may be prevented or considerably delayed in many situations by undertaking
a risk assessment and inspection of diabetes patients’ foot health at an early stage. For
that purpose, temperature may have an impact. Diabetics’ plantar foot temperature may
fluctuate due to neuropathy, ischemia, or infection. Temperature differences of more
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than 2.2 ◦C (4 ◦F) between the right and left foot are considered abnormal, where the
normal difference is typically less than 1◦C [3–5]. With the use of a thermal-imaging
camera, problems may be identified early, saving time and money in the long run. Infrared
thermography may be utilized to produce a clear image of the thermal energy released
by the site being monitored in real time if the temperature is above absolute zero [6–8].
Thermography is a non-invasive, non-contact, cost-effective, rapid, and painless means of
screening the patient’s skin temperature. This imaging technique can detect temperature
changes on human skin.
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Figure 1. An illustration of foot ulcers.

To detect the ulcer, the thermogram needs to be assessed by a professional expert. The
availability of such experts is a challenge, particularly in remote areas. Therefore, several
research studies have targeted the provision of an automatic DFU recognition system.
Few among them utilized foot thermograms [9,10] while many considered visible-band
(RGB camera) images [11–18]. In this study, the thermogram images of diabetic foot are
considered for DFU detection. For the recognition of DFU, the experiments are carried
out at three levels of thermogram data: image-level, patch-level, and a combination of
image–patch thermogram data. To detect the DFU foot, pre-trained deep-learning models
are employed using transfer learning. Moreover, a problem-oriented, custom, CNN-based,
computationally light model is developed to compare with the state-of-the-art results.
For a comprehensive and comparative analysis, classical feature-based recognition using
machine-learning techniques is also carried out. The details of the rest of the paper are as
follows: Section 2 presents the background work and related studies; Section 3 includes the
dataset and augmentation details. The methodology is discussed in Section 4. The results
and discussions are presented in Section 5. The conclusion is added in Section 6.

2. Background

Machine-learning and deep-learning techniques have gained a lot of interest in re-
cent years for diabetic foot ulcer monitoring and diagnosis in patients with neuropathic
diabetes. Much research has been carried out recently for DFU recognition and classifi-
cation [12,13,15,16,18,19]. However, those studies considered the visible-band images of
diabetic feet. Most of these studies employed deep-learning approaches for DFU diagno-
sis. In contrast, fewer studies judged the thermographic image data. Since this study is
focused on the thermographic image data, the literature related to DFU classification in
thermograms is discussed.

In the study [9], the researchers compared different machine-learning and deep-
learning models. Automatic segmentation and ROI with feature extraction were repre-
sented by a fuzzy entropy set with a histogram-based segmentation method for optimiza-
tion. After augmentation, the data were trained and tested. The SVM produced the lowest
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AUC (area under the curve), sensitivity, and accuracy. The proposed network model DFT-
Net and the common ANN had the best performances, using AUC values of 0.8533 and
0.8333%, respectively. In a study by [20], the quantity of pixels with a temperature exceed-
ing 2.2 ◦C was measured to compute the region of interest. The produced segmentation
masks were 99.25% accurate in detecting the absence of a foot sole, 98.83% accurate in
constructing a bounding box, and 94.95% accurate in detecting the presence of a foot sole.
In another study [14], the authors collected the IRT (infrared thermograph) images and
made a dataset with 39 ischemic DFU patients, of which 14 had active ischemic wounds
and the remainder had healing wounds. The image ROI abstract was classified by ANN,
kNN (k-nearest neighbor), and SVM (support vector machines), while the image was
decomposed using DST (discrete wavelength transform) and HOS (higher-order spectra).
The best achieved accuracy reported was 98.39% using the SVM classifier. Researchers in
study [21] took thermograms in controlled environments with a homogeneous background
and used k-means clustering, and a further approach on every foot for foot segmentation.
The identification of ulceration on the image was different pixel to pixel and a threshold-
ing technique was used. They successfully differentiated between ulcer and non-ulcer
wounds with the help of a classifier and segmented based on a machine-learning model
with 91.8% sensitivity, 98.4% specificity, and 91.1% accuracy. In another study [22], the
authors used a controlled environment with a room temperature of 20 ◦C for thermogram
images and foot segmentation. A temperature threshold matrix was created, as well as an
additional method established to label each foot. A pattern spectrum with thresholding
techniques was used to identify the ulceration in the image. They claimed results between
the risk and non-risk zones with the help of a classifier and performed segmentation based
on a machine-learning model with a sensitivity of 97.33% and specificity of 91.33%. In
another study [23], analysis of DFU thermograms with machine learning was performed
where the researcher used controlled environments at a room temperature of 20 ◦C and
humidity of 55% for thermogram and foot segmentation. The health-care expert identified
the ulceration in the image. The SVM classifier and wavelet characteristics vector were
used. They produced results between DF and non-DF with the help of a classifier with
an accuracy of 89.39%, sensitivity of 81.81%, and specificity of 96.97%. The detection of
DFU thermograms with machine learning has been presented in [24], in an uncontrolled
environment with respect to room temperature, illumination, and close-ups for the image
of the thermogram. With the temperature filter, the average temperature and threshold
were used for diagnostic purposes with the help of a machine-learning-based classifier.
They claimed results between DF and non-DF based on a machine-learning model with a
non-risk class sensitivity of 91.32% and specificity of 91.84% and ulcer class sensitivity of
90.29%, accuracy of 90.28, and specificity of 90.28%. The authors in study [10] used infrared
imaging to detect abnormalities in foot segmentation and registration. They concluded that
the ACWE (active contour without edges) method produced quite good results. Automatic
pre-symptomatic ulcer detection was performed to determine the clinically relevant differ-
ence in temperature between the feet, which was 2.2 ◦C. The researchers in [7] used infrared
imaging and for image decomposition, they examined the ROI of complete feet and mean
temperatures. In individuals with localized difficulties, the ipsilateral and contralateral foot
and mean temperatures are the same. When compared to a similar area in the contralateral
foot and the mean of the entire ipsilateral foot, the ROI temperature was greater than 2 ◦C.
The average temperature difference between both ipsilateral and contralateral feet was
greater than 3 ◦C in patients with widespread problems. In study [25], infrared imaging
and clinical foot assessments were presented. For image decomposition, they examined the
ROC curve. With a 76% sensitivity and 40% specificity, the contralateral locations had a
difference of 2.2 ◦C between each other, which showed the best cut-off value for diagnosing
diabetic foot. The variation of 3.5 ◦C between the mean temperature of the right and left
foot was shown to be the best cut-off value for determining the urgency for treatment,
with an 89% sensitivity. In this study [26], the authors employed infrared imaging to
detect anomalies, followed by grayscale characterization and temperature pattern foot
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segmentation. Then, to pattern the spectrum, mathematical morphology was used as well
as a multi-layer perceptron with k-fold validation. The subjects had a butterfly pattern,
and the pattern spectrum was like that of ovals and rounds. Quadrant 4 had the greatest
mean percentage of pixels for the control group, at 88.05%. Due to the different patterns,
the pattern spectrum was abnormal. In quadrant 3, the mean proportion of pixels for
the diabetic group was 28.87%, while the authors achieved an average classification rate
of 94.33 percent. In this paper [27], they examined a database of dynamic IRT plantar
diagnostic images with 39 current diabetic foot ulcer patients. The mean temperature of
the region of interest, which corresponds to the important change places of diabetic foot
ulcer, was assessed and the images were examined by assessing the mean temperature
of the region of interest, which relates to some of the important change places of diabetic
foot ulcer. The statistics found no evidence of a significant difference between the thermal
asymmetry values and thermal recovery differences in any region of interest, except the
one at the medial forefoot. The regions of interest were assessed on both feet, with the
value of the thermal asymmetry factored into each one. A decision support system was
constructed using the database and analytical results to classify the data and examine the
accurate identification of the DFU using machine-learning methods such as ANN, kNN,
and SVM. The best overall results were achieved with a kNN of 5 neighbors.

3. Data and Augmentation

A public dataset of thermograms is used in this study [3]. These data comprise
334 plantar thermograms obtained from 122 individuals diagnosed with diabetes mellitus
(DM) and 45 individuals not diagnosed with diabetes (control group). In the DM group,
there were 16 female and 29 male subjects aged between 20 and 35 years. Moreover, there
were 89 females and 33 males with their age ranging from 45–65 years in the control group.
The subjects were recruited as volunteers from the city of Puebla, Mexico, and thermogram
acquisition was carried out over a period of three years (2012–2014). A sample pair of feet
from each group is shown in Figure 2.
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Each thermogram includes four more images representing plantar angiosomes. Those
are considered as patches in this study. A sample of full images and corresponding patch
images (plantar angiosomes) from both categories are shown in Figure 3. For infrared
(IR) image acquisition, the subject was laid on a bed with an IR camera at a distance of
one meter from the feet [3]. To avoid sensing the temperature from the rest of the body,
an IR obstructive material was placed. Two IR camera FLIR E60 and FLIR E6 were used
at a room temperature of 20 ± 1 C [3]. Since the database includes the segmented foot
and patch RGB images, those are used as they are without any pre-processing. However,
data augmentation is utilized to increase the dataset size as well as to balance the classes.
Augmentation is carried out by rotating the images at 90◦, 180◦, and 270◦, as well as by
horizontal flip, vertical flip, and both horizontal and vertical flip simultaneously. Image-
level augmentation is performed by making 500 samples for each class and patch-level
augmentation is performed to prepare 1500 samples per class. The class-wise detail of the
thermograms is summarized in Table 1.
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Figure 3. A sample of thermograms from diabetic and control group and corresponding patch images
(plantar angiosomes). MPA: medial plantar artery, LPA: lateral plantar artery, MCA: medial calcaneal
artery, LCA: lateral calcaneal artery.

Table 1. Thermogram image data detail: original and after augmentation.

Category Diabetic Group Control Group Total

No. of cases 122 45 167
Original full images 244 90 334

Images after augmentation 500 500 1000
Original patches 976 360 1336

Patches after augmentation 1500 1500 3000

4. Methodology

Computer-aided diagnostic techniques assist medical practitioners in being able to
diagnose with a higher confidence. Machine-learning and deep-learning techniques have
been of interest for utilization as a decision support system.
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4.1. Machine-Learning Approaches

Traditional machine-learning techniques have been considered for the classification of
thermograms in the literature. Based on their proven performance in the literature, includ-
ing medical diagnosis, several of them were considered for this study for comprehensive
comparative analysis including SVM, random forest (RF), multi-layer perceptron (MLP),
naive Bayes, kNN, XGBoost, AdaBoost, and bagging.

Support Vector Machines: Support vector machine may be utilized both for regression
and classification problems [28]. For classification, it is a classifier with a goal to locate a
hyperplane separating the two classes with a large margin.
Random Forest: It is a classifier with several decision trees on various subsets of the pro-
vided dataset that takes the average to enhance the predicted accuracy of that dataset [29].
To anticipate the ultimate output, the random forest collects guesses from all of its trees
and combines them into a single prediction. Overfitting can be avoided by having a larger
number of trees to choose from when making a model.
kNN: k-nearest neighbor algorithm assigns the class to the test sample based on the nearest
neighbors with the largest majority [30]. Being nearest depends on the distance metric
which is normally the Euclidean distance or absolute distance.
Naive Bayes: To categorize the data, a naive Bayes classifier applies concepts from probabil-
ity theory [31]. The theorem developed by Bayes is utilized by the naive Bayes classification
algorithms. The most important takeaway from Bayes’ theorem is that the probability of an
event can be recalculated whenever new evidence is added to the mix.
XGBoost: Extreme gradient boosting is built on supervised machine learning, decision
trees, ensemble learning, and gradient boosting [32].
AdaBoost: As part of an ensemble method in machine learning, adaptive boosting is a
technique known as AdaBoost [33]. AdaBoost’s most frequent algorithm is a decision tree
with only one split, known as a decision tree with only one level. Decision stumps are
another name for these trees. This algorithm creates a model and equally weighs all the
input data points in that model.
Bagging: An ensemble meta-estimator, bagging classifiers fit base classifiers on random
subsets of the original dataset and then aggregate their individual predictions (either by
voting or average) to generate a final forecast [34].

4.2. Feature Extraction

The machine-learning classifiers discussed above require feature extraction. There
are many features in the literature that have been used for computer vision and pattern
recognition tasks; a few of the popular ones among them are used in this study including
local binary pattern, gray level cooccurrence matrix, histogram of oriented gradients, and
Gabor features to be used with machine-learning classifiers.

Local Binary Patterns (LBP): Each pixel in a picture is labelled using the local binary
patterns operator by thresholding a 3x3 neighborhood surrounding each pixel with the
center value [35]. These classes are used to label pixels. Each result is assigned a binary
value, which is either a 1 or a 0, depending on whether the surrounding pixels are equal or
greater than the center pixels.
Histogram of Oriented Gradients (HOG): The purpose of HOG is to detect the presence of
a particular object oriented at a specified direction [36]. The magnitude of pixel orientation
data is weighted to establish the criteria for characterizing an item in these attributes.
Gabor Filters: They are linear Gabor filters that detect if an image has a certain frequency
content within a given region of interest for texture research [37]. Many current vision
experts believe that the frequency and orientation representations of Gabor filters are like
those perceived in the human eye.
Gray Level Cooccurrence Matrix (GLCM): A GLCM is a matrix representing the frequency
of cooccurrence of a pair of pixel intensities at a specified distance and angle [38]. The
GLCM is computed to extract the texture features from images. Cluster prominence, cluster
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shade, dissimilarity, energy, entropy, homogeneity, and maximum probability are the
GLCM features used in this study.

4.3. Deep-Learning Approaches

Currently, deep-learning approaches, particularly convolutional neural networks,
have been extensively employed in computer-aided medical diagnostics. In this study,
two deep-learning models are employed via transfer learning including ResNet50 and
DenseNet. Moreover, a custom-developed CNN model is proposed.

ResNet50: This model [39] was originally trained for 1000 classes using the ImageNet
database [40]. The ResNet50 CNN model is adequately efficient on vision tasks, and
particularly fits well considering the efficiency as well as complexity. Moreover, this has
been widely used as the default choice for deep transfer learning in computer vision tasks.
It has 48 convolutional layers, one max-pool, and one average-pool layer. For diabetic foot
ulcer recognition, the last three layers’ parameters were updated via transfer learning by
network training using thermogram image data. The input image was resized as 224 × 224
to match the ResNet input image resolution requirement. The output was restricted to one
neuron, providing the probability for the sample to be recognized as a diabetic group.
DenseNet121: DenseNet was developed with the aim to obtain benefit from a deep network
while keeping fewer parameters [41]. It improves the accuracy by minimizing the problem
of a vanishing gradient. It has 120 convolutional layers and 4 average-pool layers. To use it
with diabetic foot thermogram data, the last two layers were used for the parameter update
via training. The input image was resized at 224 × 224 for this network also.
Proposed CNN Model: In addition to pre-trained networks, a custom CNN model was
developed specifically for DF classification. For this purpose, the DFTNet model was
adopted as the base model [9]; however, there were major differences. This study utilized
the input volume size 180 × 80 × 3; however, the DFTNet used an input volume of
227 × 227 × 3. The learning rate was chosen as 0.001 with the Adam optimizer. The batch
size was set to 64. The network architecture diagram is shown in Figure 4. The detailed
working of the proposed model is shown in Figure 5.
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5. Results and Discussion

For training the classifiers, 80% of the data were used for training and the remaining
20% for test purposes. For performance evaluation, classification measures such as the
sensitivity, specificity, precision, accuracy, and F1-score were considered. The mathematical
expressions of these measures are as follows:

Sensitivity = TP/(TP + FN) (1)

Specificity = TN/(TN + FP) (2)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (3)

F1 Score = 2TP/(2TP + FP + FN) (4)

where TP: true positive, TN: true negative, FP: false positive, FN: false negative.

5.1. Results of Machine-Learning Approaches

As discussed in the methodology section, the machine-learning approaches used for
the classification of thermogram data include SVM, RF, XGBoost, naive Bayes, ADABoost,
kNN, and bagging. To compute the results for each of these algorithms, all individual
features including HOG, Gabor, GLCM, and LBP were employed. Moreover, a combination
of all features was also used.

5.1.1. Classification of Combined Data (Image+Patch)

In this section, the images and patches are combined to form the total data. Then, the
features are extracted from these data and used for classification. The receiver operative
characteristic (ROC) curve and AUC (area under the curve) results of the machine-learning
classifiers are shown in Figures 6–10, using individual as well as combined features. Table 2
shows the results in terms of the evaluation metrics for the individual and combined
features. It can be observed that a sensitivity score of 0.71 was recorded using the SVM, RF,
XGBoost, and bagging classifiers with HOG features. The SVM and bagging produced the
best results using both the HOG features and Gabor features. In the case of specificity, again,
the SVM produced 0.95 using the GLCM features. The overall best accuracy of 78% was
achieved by the SVM classifier while combining all four kinds of features. The highest F1-
score was recorded by both the RF and XGBoost classifiers of 0.71. By comparing the ROC
curves of classifiers employing different features, it can be observed that the HOG features
produced the best results among the other individual features. The overall best AUC of
0.93 was recorded by employing combined features from multiple classifiers including
RF, bagging, and naive Bayes. Concretely, the SVM happened to be the best machine-
learning classifier regarding recognizing the diabetes class (with the highest sensitivity
value observation), while the combined features gave the best accuracy as well as AUC.

Table 2. Machine-learning classifier results using different features for combined image+patch data.

Evaluation Metric Features SVM RF XGBoost Naive Bayes AdaBoost kNN Bagging

Sensitivity

HOG 0.71 0.71 0.71 0.64 0.57 0.67 0.71
Gabor 0.71 0.14 0.16 0.71 0.28 0.14 0.71
GLCM 0.26 0.28 0.36 0.14 0.14 0.36 0.4

LBP 0.07 0.14 0.14 0.07 0.07 0.14 0.19
Combined 0.53 0.51 0.51 0.46 0.64 0.57 0.55
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Table 2. Cont.

Evaluation Metric Features SVM RF XGBoost Naive Bayes AdaBoost kNN Bagging

Specificity

HoG 0.85 0.9 0.9 0.85 0.87 0.7 0.87
Gabor 0.9 0.77 0.87 0.47 0.8 0.9 0.87
GLCM 0.95 0.75 0.75 0.85 0.9 0.75 0.77

LBP 0.9 0.78 0.78 0.8 0.85 0.73 0.88
Combined 0.89 0.83 0.82 0.94 0.79 0.81 0.83

Accuracy

HoG 0.71 0.65 0.69 0.66 0.59 0.7 0.73
Gabor 0.68 0.61 0.65 0.54 0.67 0.7 0.73
GLCM 0.7 0.63 0.65 0.67 0.6 0.65 0.67

LBP 0.69 0.59 0.6 0.61 0.65 0.57 0.59
Combined 0.78 0.73 0.72 0.79 0.75 0.73 0.74

F1-score

HoG 0.67 0.71 0.71 0.62 0.59 0.6 0.69
Gabor 0.7 0.16 0.1 0.44 0.3 0.2 0.69
GLCM 0.34 0.29 0.34 0.18 0.2 0.34 0.36

LBP 0.1 0.16 0.19 0.08 0.09 0.15 0.17
Combined 0.59 0.54 0.53 0.57 0.61 0.57 0.57
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5.1.2. Full-Image Thermogram-Based Classification Results

In this section, thermogram image-level data are considered to record the classification
results. Considering the results presented in the previous section, further experiments with
machine-learning classifiers were restricted to using combined features only. Therefore,
the HOG, Gabor, GLCM, and LBP features were extracted from the images and combined
to be fed into the classifiers. Table 3 shows the image-level classification results using the
combined features. The ROC curves are shown in Figure 11. The best sensitivity 0.642 was
recorded using the kNN classifier while the SVM produced the best specificity value of
0.968. The XGBoost classifier achieved the best results for image-level classification with
an 85.6% accuracy and F1-score of 0.688. The highest AUC of 0.84 was recorded with the
naive Bayes classifier.

Table 3. Machine-learning classifier results using different features for full-image-level data.

Models Sensitivity Specificity Accuracy F1-Score

SVM 0.345 0.968 0.811 0.479
RF 0.559 0.948 0.850 0.652

XGB 0.630 0.932 0.856 0.688
NB 0.392 0.9 0.772 0.464

ADA 0.630 0.896 0.829 0.650
kNN 0.642 0.916 0.847 0.679
BAG 0.619 0.908 0.835 0.654
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5.1.3. Thermogram Patch-Based Classification Results

In this section, only thermogram patch-level data are considered to compute the
results. The HOG, Gabor, GLCM, and LBP features were extracted from the image patches
and combined to be fed into the classifiers. Table 4 shows the image-level classification
results using the combined features. The AdaBoost classifier produced the best sensitivity
score and F1-score of 0.638 and 0.609. In contrast, the naive Bayes classifier achieved the
highest specificity and accuracy of 0.935 and 78.7%, respectively. The ROC curves of the
patch-level results are shown in Figure 12. The highest AUC of 0.84 was observed by the
naive Bayes classifier.
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Table 4. Machine-learning classifier results using different features for patch-level data.

Models Sensitivity Specificity Accuracy F1-Score

SVM 0.530 0.886 0.776 0.594
RF 0.506 0.827 0.727 0.535

XGB 0.506 0.821 0.723 0.531
NB 0.457 0.935 0.787 0.571

ADA 0.638 0.794 0.746 0.609
kNN 0.566 0.805 0.731 0.566
BAG 0.554 0.827 0.742 0.571
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5.2. Results of Deep-Learning Approaches

In this section, the results of the CNN-based models are presented. As discussed
earlier in the methodology section, the ResNet50 and DesnseNet121 models are used via
transfer learning to classify the thermogram data. Moreover, the customized CNN model
was developed for DFU classification. For the deep-learning approaches, the results are
recorded at image level, at patch level, and by combining the images and patches. The
results of both pre-trained models as well as the customized model are shown in Table 5. It
can be observed that the proposed CNN model outperformed the pre-trained models in
terms of sensitivity at each data representation level while achieving a best value of 0.97 at
image level. The ResNet50 model produced the best specificity at patch level and at image–
patch level of 0.913 and 0.902, respectively. However, the highest specificity of 0.958 was
achieved by the proposed model again. The proposed model achieved the best accuracy
among the three deep-learning models with a value of 97.1%, 93%, and 93.3% at image
level, patch level, and image-patch level, respectively. The best F1-score of 0.891 was again
recorded for the proposed model for all data representation levels. In medical diagnosis,
it is critical to reduce false negatives so that the potential patient may be treated on time
and the risk of amputation may be reduced. Table 5 presents the sensitivity and specificity
analysis of the pre-trained models as well as the custom model. It can be observed that
the custom model achieved the highest sensitivity rate and ensured the minimization of
false negatives at all three levels. The graphical representation of the results using deep-
learning-based models are shown in Figure 13. The accuracy and loss observations for
the proposed CNN model are illustrated in Figures 14–16 at image level, patch level, and
image-patch level, respectively. The proposed custom-developed CNN model was trained
on the original foot thermogram data from scratch. In comparison, the pre-trained model
was utilized with pre-trained weights originally tuned on ImageNet data; only the weights
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of the last couple of layers were tuned based on the thermogram data. Therefore, the
accuracy of the custom-developed model was better than the pre-trained models.

Table 5. Deep-learning classifier results using data at different levels.

Models Sensitivity Specificity Accuracy F1-Score AUC

Image
Level

ResNet50 0.778 0.571 0.627 0.875 0.623
DenseNet121 0.5 0.542 0.521 0.511 0.52

Custom Model 0.97 0.958 0.97 0.891 0.976

Patch
Level

ResNet50 0.565 0.913 0.832 0.874 0.834
DenseNet121 0.661 0.822 0.791 0.8 0.788

Custom Model 0.839 0.889 0.93 0.891 0.932

Image
+ Patch

Level

ResNet50 0.697 0.902 0.881 0.75 0.879
DenseNet121 0.75 0.875 0.843 0.8 0.841

Custom Model 0.839 0.889 0.933 0.891 0.938
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When comparing the results of the proposed model with the state-of-the-art existing
solution [9], the comparison is not straight forward. Firstly, the number of samples used
after augmentation with the DFTNet were 10× than the original samples; however, the
samples after augmentation were almost 3× which means that only 1/3 of data were
used in this study in comparison to [9]. Next, only the patch-level thermogram data were
considered in the study [9]. However, this study used data representation and result
computation at image level, patch level, and image-patch level. Moreover, this study
presents a binary classification between the diabetic foot and control group foot. However,
the study [9] segregated the data as five distinct classes, and performed binary classification
by taking two classes at a time randomly. Yet, they [9] achieved the best AUC score of
0.8533 and 0.8333 using the DFTNet and ANN, respectively. In comparison, we achieved
an AUC score of 0.976, 0.932, and 0.938 for the image-level, patch-level, and image-patch
level data, respectively. The DFTNet [9] achieved the best accuracy of 0.853 while the
proposed model produced a 0.97 accuracy. Concretely, the comparison with the study [9]
is not simple and there are many differences with respect to data selection, data quantity,
data representation, and class representation. However, the proposed model outperforms
by looking at several possible simpler comparisons.

Regarding the limitations of this study, it is worth mentioning that in all the experi-
ments, including machine-learning and deep-learning classification, the thermogram im-
ages of the database and the augmented samples were utilized without any pre-processing.
However, since the augmentation was performed only by rotation and flipping, the content
of the image was retained. Speaking about the practical applicability of the proposed
model, it cannot replace a human expert completely; however, it can provide a reliable
second opinion while diagnosing the diabetic foot ulcer diagnosis. In contrast, in remote
areas where a medical expert is not available, such a system can play a significant role in
decision-making for DFU diagnosis.
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6. Conclusions

In this study, the classification of DFU foot is presented via the comprehensive and
comparative analysis of machine-learning as well as deep-learning approaches. The ther-
mogram data of DFU and non-DFU feet are used at image level, patch level, and combined
image–patch levels. The results of the machine-learning approaches are presented by
employing several features extracted from thermograms. The SVM classifier among the
machine-learning techniques proved to be the best. The classification results of the machine-
leaning models were best when the data at the full-image level were used. Among the
pre-trained and the proposed deep-leaning models, the proposed model produced the best
results. The comparison of the proposed model with an existing solution based on the used
thermogram data was not straight forward. However, while comparing at an abstract level,
the proposed model performed better given the constraints.
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