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Abstract: The aim of this study was to create a novel machine learning (ML) algorithm for predicting
the post-pubertal mandibular length and Y-axis in females. Cephalometric data from 176 females
with Angle Class I occlusion were used to train and test seven ML algorithms. For all ML methods
tested, the mean absolute errors (MAEs) for the 2-year prediction ranged from 2.78 to 5.40 mm and
0.88 to 1.48 degrees, respectively. For the 4-year prediction, MAEs of mandibular length and Y-axis
ranged from 3.21 to 4.00 mm and 1.19 to 5.12 degrees, respectively. The most predictive factors
for post-pubertal mandibular length were mandibular length at previous timepoints, age, sagittal
positions of the maxillary and mandibular skeletal bases, mandibular plane angle, and anterior and
posterior face heights. The most predictive factors for post-pubertal Y-axis were Y-axis at previous
timepoints, mandibular plane angle, and sagittal positions of the maxillary and mandibular skeletal
bases. ML methods were identified as capable of predicting mandibular length within 3 mm and
Y-axis within 1 degree. Compared to each other, all of the ML algorithms were similarly accurate,
with the exception of multilayer perceptron regressor.

Keywords: artificial intelligence; neural network; regression algorithm; growth and development;
mandible

1. Introduction

Mandibular growth is a particularly important issue for orthodontists when treating
a growing patient. Within the craniofacial complex, there is no component with greater
postnatal growth potential than the mandible [1]. Much attention has been given to the
growth of the mandible and its unique features stemming from its functional roles [2–4],
dual growth centers [5], muscular attachments [6], adaptability [7], and interactions with
dental structures [8,9]. The magnitude of growth in the mandible also varies with the age
of the individual, with the largest changes occurring during and beyond the adolescent
growth spurt [10]. There are also very clear gender differences in mandibular growth.
Growth differences in the mandible between males and females can be observed in early
childhood and become more prominent during adolescence. Girls have been observed
to begin, reach peak, and complete the pubertal growth spurt approximately two years
prior to their male counterparts [11]. There is also significant difference in the magnitude
of growth between the sexes. While females tend to reach the pubertal growth spurt earlier
than males, males are shown to have a more intense growth spurt as well as two additional
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years of growth [12]. The rate of condylar change during peak growth is significantly
greater for males, and the overall magnitude change in mandibular length is greater in
males than females [13].

Researchers and orthodontists have been attempting to develop methods to predict
mandibular growth for decades. Despite these efforts, even the most experienced clinicians
often fail on their predictions [14]. Bjork developed a method using metallic implants
and cephalometric radiographs to analyze the growth pattern [10] and rotation [15] of the
mandible. He suggested that the most accurate way to predict the rotation of the mandible
from a single radiograph could be based on seven structural signs that represent bony
remodeling of the mandible during growth [15,16]. The predictive value utilizing this
method, however, was shown to be no more accurate than inputting random values and
therefore deemed clinically unacceptable [17]. Alternatively, Ricketts postulated that the
mandible grows along an arc, and growth can therefore be forecasted based on an arcial
pattern [18].

Mathematical and statistical procedures that build upon the previously described
models have also been attempted for predicting mandibular growth. Buschang et al. [19]
attempted to use multilevel models that took into consideration the mean growth curve of
the population as well as variations in the individuals observed. The multilevel models
were compared with individual data extrapolated from growth curves, and no statistically
significant benefit was found. In another study attempting to develop a mathematical
model, Oueis et al. [20] postulated that evaluating a younger population might lead to a
more predictable method. The study evaluated 15 measurements from the lateral cephalo-
grams of children aged 4–9 years old and derived a multiple regression equation that was
shown to be of little predictive value.

A fast-growing technology that is being utilized in many fields is that of artificial
intelligence (AI) and machine learning (ML). For simple AI to predict an outcome, it
requires every possible outcome to be programmed into its algorithm. ML is a subset of
AI that eliminates this requirement and allows the computer to learn from inputted data,
constructing output data without prior programming of such information [21]. AI and
ML are being increasingly applied in various areas of orthodontics to improve diagnostics,
treatment planning, and patient care. Most current applications of this new technology
have focused on image analysis and diagnosis [22–26], orthodontic/orthognathic decision-
making processes and treatment planning [27–38], and growth prediction [39,40]. In an
early study to test the ability of AI and ML to predict mandibular growth, Jiwa et al. [41]
sought to train a deep learning algorithm to predict mandibular growth. However, none of
the landmarks were predicted with an error below 1.5 mm, and only three were predicted
with an error below 2.5 mm. In a previously published study from our group, Wood
et al. [39] sought to improve the study of Jiwa by gathering a larger number of subjects
and reducing the complexity of the algorithm by narrowing the demographics of the
subjects, focusing on Class I males. They found that all ML methods tested could accurately
predict post-pubertal mandibular length and Y-axis within the range of 3.5 mm and 1.5◦,
respectively. The initial findings of these studies showed promising results in accurately
predicting mandibular growth using ML techniques. Gender plays a significant role
in human craniofacial growth, with variations observed in the timing and magnitude
of growth between males and females [11,42]. Despite this, there is a lack of research
evaluating the accuracy of ML models in predicting female pubertal mandibular growth.
Hence, the objective of this study was to develop a novel ML model capable of accurately
predicting pubertal mandibular growth in Class I females.

2. Materials and Methods
2.1. Study Sample

The digital lateral cephalometric radiographs used to formulate data for this retro-
spective study were collected from the American Association of Orthodontists Foundation
(AAOF) Craniofacial Growth Legacy Collection [43]. The collection consists of patient
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radiographic images from the following growth studies: Bolton-Brush Growth, Burlington
Growth, Denver Growth, Fels Longitudinal, Forsyth Twin, Iowa Growth, Mathews Growth,
Michigan Growth, and Oregon Growth. Inclusion criteria included female subjects with
cephalometric radiographs captured during the circumpubertal developmental period
and Angle Class I occlusion. Three timepoints were gathered with T1 representing the
pre-pubertal stage (mean age SD: 10.05 ± 0.33 yrs), T2 representing the pubertal stage
(mean age SD: 11.98 ± 0.36 yrs), and T3 representing the post-pubertal stage (mean age
SD: 13.85 ± 0.55 yrs). Subjects exhibiting craniofacial anomalies, noticeable skeletal asym-
metries, inadequate image quality, or missing relevant timepoints were excluded from the
study. A total of 176 subjects that satisfied the inclusion criteria were selected for the study.

2.2. Sample Size Justification

Power analysis revealed that a minimum of 36 subjects in the test set was required to
obtain a 95% confidence interval for the intraclass correlation coefficients (ICCs), ranging
from 0.64 to 0.89, assuming the ICC is 0.80. Furthermore, higher ICC values would result
in narrower confidence interval widths.

2.3. Data Collection

Digital images from the AAOF repository were uploaded into Dolphin Imaging v.
11.95 (Dolphin Imaging and Management Solutions, Chatsworth, CA, USA) and were
traced by a single investigator (M.P.) using 25 hard tissue landmarks and 12 soft tissue
landmarks (Figure 1). A total of 47 linear and angular measurements were measured and
recorded; definitions of the measurements are listed in Table S1. Images were scaled by
using fiducial data embedded on the images as described in reference material provided by
the AAOF. Fiduciaries are reference marks located on the images with known coordinate
values allowing the user to compute the scale of the image. The demographic and cephalo-
metric data were subsequently entered into a spreadsheet and securely stored in a cloud
service (OneDrive, Microsoft Co., Redmond, WA, USA). To evaluate the repeatability of
measurements, a research randomizer was employed to randomly choose 10 images for
retracing. The ICCs were utilized to assess the repeatability of these measurements.

2.4. Algorithm Training and Testing

The algorithm training and testing workflow is illustrated in Figure 2. Data were
randomly distributed into a training set consisting of 80% of the subjects (n = 140) and
a test set consisting of the remaining 20% (n = 36). The training set was used to train
the ML models using the linear and angular measurements derived from lateral cephalo-
gram tracings from all three timepoints. The prediction task was executed by giving the
algorithms input data from the test set to predict growth magnitude and direction of the
mandible at T3. They were first given measurements from T1 and T2 to predict values at T3,
then given measurements from T1 alone to predict values at T3, thus, providing a 2-year
prediction and a 4-year prediction, respectively. The performance of the trained models
was assessed based on their ability to predict post-pubertal mandibular length (Co-Gn) and
Y-axis (SGn-SN).
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Figure 1. Cephalometric landmarks used in this study. 1. Sella (S), 2. Nasion (N), 3. Orbitale (Or),
4. Porion (Po), 5. Condylion (Co), 6. Articulare (Ar), 7. Basion (Ba), 8. Gonion (Go), 9. Menton
(Me), 10. Gnathion (Gn), 11. Pogonion (Pog), 12. B point (B), 13. Lower incisor root apex (L1a),
14. Lower incisor incisal edge (L1i), 15. Mesial of lower first molar (L6m), 16. Mesiobuccal cusp of
lower first molar (L6mb), 17. Distal of lower first molar (L6d), 18. Distal of upper first molar (U6d),
19. Mesiobuccal cusp of upper first molar (U6mb), 20. Mesial of upper first molar (U6m), 21. Upper
incisor incisal edge (U1i), 22. Upper incisor root apex (U1a), 23. A point (A), 24. Anterior nasal spine
(ANS), 25. Posterior nasal spine (PNS), 26. Glabella (G), 27. Soft tissue nasion (N′), 28. Pronasale
(Pn), 29. Subnasale (Sn), 30. Soft tissue A point (A’), 31. Upper lip (Ls), 32. Stomion superioris (Ss),
33. Stomion inferioris (Si), 34. Lower lip (Li), 35. Soft tissue B point (B’), 36. Soft tissue pogonion
(Pog′), 37. Soft tissue menton (Me′).
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Overall, six traditional regression algorithms and a small neural network (NN) model
were trained and tested for analysis: XGBoost regression, Random Forest regressor, Lasso,
Ridge, Linear Regression, support vector regression (SVR), and multilayer perceptron (MLP)
regressor. To explore the linear relationship, least squares regression without any regularizer
(Linear Regression) and with L1 (Lasso) and L2 (Ridge) regularizers was implemented.
Least squares method is a standard statistical method used to approximate the solution
of problems that have more equations than unknowns. For data that did not fall in a
linear path, nonlinear methods like kernel-based SVR, tree-based XGBoost, RF, and NN
such as MLP are natural choices. Due to small training set and mixture of both numerical
and categorical features, tree-based regression methods were first to try, and we explored
boosting (XGBoost) and bagging trees (Random Forrest) regressors. Random Forest creates
an ensemble of decision trees to minimize the differences between predicted and actual
values of dependent variables; thus, it is less likely to overfit training data [44]. Although
the training set was too small for data hungry NN model, for the sake of completeness,
we added MLP regressor into the training algorithms. The input to all ML models were
the values of the 47 covariates, and models were asked to predict mandibular length and
Y-axis growth at 2 and 4 years. We performed automated hyperparameter tuning using
python Hyperopt package for all the models with 100 iterations for each model. The best
configuration was chosen based on the score on validation set, and then frozen models
were tested.

2.5. Statistical Analysis

The mean absolute error (MAE), root mean square error (RMSE), mean error (ME),
ICCs, and Bland–Altman plots were calculated for each technique to evaluate the agreement
between the predicted and actual outcome measurements. The accuracy percentage of
the methods was calculated using the formula (1 − (MAE/Actual value) × 100). The
directional and absolute differences between the predicted and actual measurements were
calculated and compared between prediction methods using analysis of variance (ANOVA),
with random effects to account for data correlation within the 2-year prediction data, within
the 4-year prediction data, and overall, and allowed for different error variances for the
2-year and 4-year prediction data. Comparisons of interest were among 2-year predictions
for each method, among 4-year predictions for each method, and between 2-year and 4-year
predictions by method. Paired t-tests were used to test for a significant mean directional
difference between predicted and actual measurements. A two-sided 5% significance level
was used for all tests. All analyses were performed using SAS version 9.4 (SAS Institute,
Inc., Cary, NC, USA).

3. Results
3.1. Reliability Analysis

The results of the reliability analysis are given in Table S2. Most variables showed
excellent repeatability (ICCs > 0.90) [45], with the remainder having good repeatability
(0.75 < ICC < 0.90). The two exceptions were soft tissue UFH (G’-Sn) and the Holdaway
ratio (L1-NB:Pg-NB) which had poor repeatability (ICCs < 0.50).

3.2. Descriptive Statistics

The descriptive statistics of the cephalometric measurements at T1, T2, and T3, includ-
ing mean, standard deviation, and minimum/maximum values, are shown in Table S3.

3.3. Prediction of the Female Post-Pubertal Mandibular Length

The results for the 2-year and 4-year predictions of female post-pubertal mandibular
length are given in Table 1 and Figure 3. For the 2-year prediction, MAEs ranged from
2.78 mm to 5.40 mm, with Lasso being most accurate and MLP regressor the least. All
methods demonstrated moderate to good correlation between predicted and actual values
(0.63 < ICCs < 0.86). Accuracy percentages ranged from 95.56% to 97.63%. For the 4-year
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prediction, MAEs ranged from 3.21 mm to 4.00 mm, with Ridge being most accurate and
Random Forest the least. All methods demonstrated moderate to good correlation between
predicted and actual values (0.61 < ICCs < 0.84). Accuracy percentages ranged from 96.71%
to 97.36%.

Table 1. Results of 2-year and 4-year prediction of the female post-pubertal mandibular length.

2-Year Prediction 4-Year Prediction

Models MAE RMSE ME ICC Accuracy % MAE RMSE ME ICC Accuracy %

XGBoost 3.10 4.18 0.75 0.79 97.45 3.97 5.04 1.17 0.70 96.73
Random Forest 3.16 4.19 0.70 0.74 97.40 4.00 5.31 1.55 0.61 96.71

Lasso 2.78 3.46 0.47 0.86 97.71 3.25 4.13 0.71 0.79 97.33
Ridge 2.88 3.60 0.35 0.85 97.63 3.21 3.79 0.23 0.84 97.36

Linear Regression 5.40 6.40 −1.13 0.63 95.56 3.53 4.21 0.13 0.81 97.10
SVR 3.25 3.85 0.69 0.84 97.33 3.74 4.40 0.79 0.78 96.92
MLP 3.88 5.24 1.39 0.63 96.81 3.78 4.65 −2.11 0.73 96.89

MAE: Mean absolute error, RMSE: Root mean square error, ME: Mean error, ICC: Intra-class correlation coefficient.
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Bland–Altman plots indicated a discernable pattern between predicted and actual
values (Figure 3). Both Lasso and Ridge over-estimated post-pubertal mandibular length
for smaller lengths and under-estimated it for larger lengths, in both the 2-year and 4-year
predictions.

The most predictive factors of female post-pubertal mandibular length selected by
Lasso and Ridge are presented in Figure 4. Mandibular length, age, SNPg, occlusal plane
to mandibular plane, SNB, and L1-MP were among the most predictive factors selected
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by Lasso, while Ridge additionally used lower, upper, and posterior face heights in its
predictions.
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3.4. Prediction of the Female Post-Pubertal Y-Axis

The results for the 2-year and 4-year predictions of female post-pubertal Y-axis are
given in Table 2 and Figure 5. For the 2-year prediction, MAEs ranged from 0.88◦ to 1.48◦,
with Lasso being most accurate and MLP regressor the least. All methods demonstrated
good to excellent correlation between predicted and actual values (0.79 < ICCs < 0.94).
Accuracy percentages ranged from 97.83% to 98.71%. For the 4-year prediction, MAEs
ranged from 1.19◦ to 1.66◦, with Lasso being most accurate and Random Forest the least. All
methods demonstrated good to excellent correlation between predicted and actual values
(0.87 < ICCs < 0.90). Accuracy percentages ranged from 97.56% to 98.25%. No discernable
pattern was detected for the Bland–Altman plots between predicted and actual values
(Figure 5). The most predictive factors of female post-pubertal Y-axis selected by Lasso and
Ridge are presented in Figure 6. Y-axis, ANB, SN-MP, FMA, SN-Pg, and lower face height
were among the most predictive factors selected by Lasso, while Ridge additionally used
Holdaway ratio, U1-NA, Wits appraisal, and SNB in its predictions.

Table 2. Results of 2-year and 4-year prediction of the female post-pubertal Y-axis.

2-Year Prediction 4-Year Prediction

Models MAE RMSE ME ICC Accuracy % MAE RMSE ME ICC Accuracy %

XGBoost 1.12 1.43 0.34 0.91 98.36 1.37 1.64 0.46 0.89 97.99
Random Forest 1.24 1.54 0.52 0.90 98.18 1.66 2.04 0.65 0.84 97.56

Lasso 0.88 1.25 0.22 0.94 98.71 1.19 1.53 0.36 0.90 98.25
Ridge 1.01 1.45 −0.04 0.92 98.52 1.32 1.65 0.15 0.88 98.06

Linear Regression 1.2 1.52 0.19 0.91 98.24 1.4 1.71 0.44 0.89 97.95
SVR 1.01 1.34 0.04 0.93 98.52 1.43 1.75 −0.12 0.87 97.90
MLP 1.48 2.42 0.52 0.79 97.83 1.43 1.76 −0.27 0.87 97.90

MAE: Mean absolute error, RMSE: Root mean square error, ME: Mean error, ICC: Intra-class correlation coefficient.
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3.5. Method Comparison

Directional and absolute difference comparisons between ML methods for 2-year
prediction of post-pubertal mandibular length are given in Table 3. Significant directional
and absolute differences were observed among the ML methods in 2-year prediction of the
post-pubertal mandibular length (p < 0.05). MLP regressor produced significantly different
directional results compared to all the tested ML methods; Linear Regression also showed
significant directional differences from multiple other methods. MLP regressor and Linear
Regression produced estimates that were significantly larger compared to various other
ML methods.

Table 3. Directional and absolute difference comparisons between ML methods for 2-year prediction
of post-pubertal mandibular length.

Directional Difference Absolute Difference

Result p-Value Result p-Value

Lasso < Linear Regression 0.01 Lasso < Linear Regression <0.001
Lasso > MLP <0.001 Lasso < MLP <0.001

Lasso and Random Forest 0.27 Lasso and Random Forest 0.15
Lasso and Ridge 0.93 Lasso and Ridge 0.80
Lasso and SVR 0.63 Lasso and SVR 0.30

Lasso and XGBoost 0.56 Lasso and XGBoost 0.48
Linear Regression > MLP <0.001 Linear Regression and MLP 0.10

Linear Regression > Random Forest <0.001 Linear Regression > Random Forest <0.001
Linear Regression > Ridge 0.014 Linear Regression > Ridge <0.001
Linear Regression > SVR 0.003 Linear Regression > SVR <0.001

Linear Regression > XGBoost 0.002 Linear Regression > XGBoost <0.001
MLP < Random Forest <0.001 MLP > Random Forest 0.014

MLP < Ridge <0.001 MLP > Ridge <0.001
MLP < SVR <0.001 MLP > SVR 0.004

MLP < XGBoost <0.001 MLP > XGBoost 0.001
Random Forest and Ridge 0.23 Random Forest and Ridge 0.23
Random Forest and SVR 0.53 Random Forest and SVR 0.68

Random Forest and XGBoost 0.59 Random Forest and XGBoost 0.45
Ridge and SVR 0.57 Ridge and SVR 0.43

Ridge and XGBoost 0.51 Ridge and XGBoost 0.65
SVR and XGBoost 0.92 SVR and XGBoost 0.74

Similar results were observed among the ML methods in 4-year prediction of the
post-pubertal mandibular length (Table 4). MLP regressor, Random Forest, and XGBoost
regression showed significant directional differences compared to various other methods
(p < 0.05). In terms of absolute differences, MLP regressor and Random Forest produced
estimates that were significantly larger than Lasso and Ridge.

The ML methods had greater agreement for Y-axis than mandibular length in both ab-
solute and directional difference and in both the 2-year and 4-year predictions (Tables 5 and 6).
MLP regressor produced estimates significantly larger than Lasso, Ridge, and SVR in the
2-year prediction, while SVR had significant directional difference compared to most other
methods in the 4-year prediction (p < 0.05).
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Table 4. Directional and absolute difference comparisons between ML methods for 4-year prediction
of post-pubertal mandibular length.

Directional Difference Absolute Difference

Result p-Value Result p-Value

Lasso and Linear Regression 0.20 Lasso and Linear Regression 0.51
Lasso > MLP <0.001 Lasso < MLP 0.04

Lasso > Random Forest 0.04 Lasso and Random Forest 0.05
Lasso and Ridge 0.29 Lasso and Ridge 0.93
Lasso and SVR 0.86 Lasso and SVR 0.25

Lasso and XGBoost 0.30 Lasso and XGBoost 0.09
Linear Regression > MLP <0.001 Linear Regression and MLP 0.16

Linear Regression > Random Forest 0.001 Linear Regression and Random
Forest 0.19

Linear Regression and Ridge 0.82 Linear Regression and Ridge 0.45
Linear Regression and SVR 0.15 Linear Regression and SVR 0.61

Linear Regression > XGBoost 0.02 Linear Regression and XGBoost 0.29
MLP < Random Forest 0.004 MLP and Random Forest 0.91

MLP < Ridge <0.001 MLP > Ridge 0.03
MLP < SVR <0.001 MLP and SVR 0.37

MLP < XGBoost <0.001 MLP and XGBoost 0.72
Random Forest < Ridge 0.002 Random Forest > Ridge 0.04
Random Forest and SVR 0.06 Random Forest and SVR 0.43

Random Forest and XGBoost 0.30 Random Forest and XGBoost 0.80
Ridge and SVR 0.22 Ridge and SVR 0.21

Ridge > XGBoost 0.04 Ridge and XGBoost 0.07
SVR and XGBoost 0.39 SVR and XGBoost 0.58

Table 5. Directional and absolute difference comparisons between ML methods for 2-year prediction
of post-pubertal Y-axis.

Directional Difference Absolute Difference

Result p-Value Result p-Value

Lasso and Linear Regression 0.92 Lasso and Linear Regression 0.12
Lasso and MLP 0.26 Lasso < MLP 0.004

Lasso and Random Forest 0.42 Lasso and Random Forest 0.13
Lasso and Ridge 0.33 Lasso and Ridge 0.53
Lasso and SVR 0.50 Lasso and SVR 0.53

Lasso and XGBoost 0.65 Lasso and XGBoost 0.26
Linear Regression and MLP 0.22 Linear Regression and MLP 0.19

Linear Regression and Random
Forest 0.37 Linear Regression and Random

Forest 0.97

Linear Regression and Ridge 0.38 Linear Regression and Ridge 0.36
Linear Regression and SVR 0.56 Linear Regression and SVR 0.35

Linear Regression and XGBoost 0.58 Linear Regression and XGBoost 0.67
MLP and Random Forest 0.74 MLP and Random Forest 0.17

MLP < Ridge 0.04 MLP > Ridge 0.03
MLP and SVR 0.07 MLP > SVR 0.03

MLP and XGBoost 0.50 MLP and XGBoost 0.08
Random Forest and Ridge 0.08 Random Forest and Ridge 0.37
Random Forest and SVR 0.14 Random Forest and SVR 0.37

Random Forest and XGBoost 0.73 Random Forest and XGBoost 0.70
Ridge and SVR 0.76 Ridge and SVR 0.99

Ridge and XGBoost 0.15 Ridge and XGBoost 0.61
SVR and XGBoost 0.26 SVR and XGBoost 0.61
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Table 6. Directional and absolute difference comparisons between ML methods for 4-year prediction
of post-pubertal Y-axis.

Directional Difference Absolute Difference

Result p-Value Result p-Value

Lasso and Linear Regression 0.69 Lasso and Linear Regression 0.20
Lasso and MLP 0.65 Lasso and MLP 0.15

Lasso and Random Forest 0.15 Lasso < Random Forest 0.005
Lasso and Ridge 0.29 Lasso and Ridge 0.43

Lasso < SVR 0.02 Lasso and SVR 0.14
Lasso and XGBoost 0.63 Lasso and XGBoost 0.27

Linear Regression and MLP 0.40 Linear Regression and MLP 0.89
Linear Regression and Random

Forest 0.29 Linear Regression and Random
Forest 0.13

Linear Regression and Ridge 0.15 Linear Regression and Ridge 0.61
Linear Regression < SVR 0.006 Linear Regression and SVR 0.86

Linear Regression and XGBoost 0.93 Linear Regression and XGBoost 0.85
MLP and Random Forest 0.06 MLP and Random Forest 0.17

MLP and Ridge 0.54 MLP and Ridge 0.52
MLP and SVR 0.05 MLP and SVR 0.98

MLP and XGBoost 0.35 MLP and XGBoost 0.74
Random Forest < Ridge 0.012 Random Forest > Ridge 0.045
Random Forest < SVR <0.001 Random Forest and SVR 0.18

Random Forest and XGBoost 0.33 Random Forest and XGBoost 0.09
Ridge and SVR 0.18 Ridge and SVR 0.50

Ridge and XGBoost 0.13 Ridge and XGBoost 0.75
SVR > XGBoost 0.004 SVR and XGBoost 0.72

Lastly, the directional and absolute differences between the 2-year and 4-year pre-
dictions of post-pubertal mandibular length and Y-axis with each ML algorithm were
compared, and the results are given in Tables 7 and 8. Directional and absolute differ-
ences of the mandibular length were significantly smaller in the 4-year predictions com-
pared to the 2-year predictions for Linear Regression (p = 0.028 for directional differences,
p < 0.001 for absolute differences). Absolute differences of Y-axis were significantly larger
in the 4-year predictions compared to the 2-year predictions for Random Forest (p = 0.025)
and SVR (p = 0.039). No significant differences in directional differences of Y-axis were
found between the 2-year or 4-year predictions for any method (p > 0.05).

Table 7. Comparisons of the directional and absolute differences between the 2-year and 4-year
predictions of post-pubertal mandibular length.

Directional Difference Absolute Difference

Method Result p-Value Result p-Value

XGBoost 2-year and 4-year 0.45 2-year and 4-year 0.06
Random Forest 2-year and 4-year 0.31 2-year and 4-year 0.18

Lasso 2-year and 4-year 0.59 2-year and 4-year 0.29
Ridge 2-year and 4-year 0.83 2-year and 4-year 0.48

Linear Regression 2-year > 4-year 0.03 2-year > 4-year <0.001
SVR 2-year and 4-year 0.86 2-year and 4-year 0.30
MLP 2-year and 4-year 0.30 2-year and 4-year 0.28
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Table 8. Comparisons of the directional and absolute differences between the 2-year and 4-year
predictions of post-pubertal Y-axis.

Directional Difference Absolute Difference

Method Result p-Value Result p-Value

XGBoost 2-year and 4-year 0.66 2-year and 4-year 0.21
Random Forest 2-year and 4-year 0.41 2-year < 4-year 0.025

Lasso 2-year and 4-year 0.60 2-year and 4-year 0.13
Ridge 2-year and 4-year 0.50 2-year and 4-year 0.13

Linear Regression 2-year and 4-year 0.36 2-year and 4-year 0.32
SVR 2-year and 4-year 0.54 2-year < 4-year 0.039
MLP 2-year and 4-year 0.36 2-year and 4-year 0.81

4. Discussion

A considerable amount of variation in the amount and direction of pubertal mandibu-
lar growth exists across genders, races, and individuals [10,13,15,42,46,47]. This fact makes
prediction of mandibular growth a very complex process. To achieve accurate and reli-
able predictions, a stepwise approach is essential, starting with a basic input that lays the
foundation for more comprehensive analyses. With that in mind, specific inclusion criteria
were employed in this study. Only records from girls at the circumpubertal stage (10 to
14 years) were analyzed to investigate the peak growth and maturation for the average
female. Our sample was further narrowed by selecting individuals without significant
skeletal sagittal discrepancies, as mandibular growth patterns differ significantly in the
presence of sagittal discrepancy. By limiting the initial dataset to this homogeneous group,
we can gain valuable insights into the growth patterns specific to this subset. This basic
input aids in establishing the fundamental relationships between various variables and
mandibular growth within the Class I population. Once the foundation is established,
incorporating subjects with Class II and Class III malocclusions into the study will be
the next logical step. This expansion introduces greater complexity to the analysis, as
these malocclusions present different growth patterns compared to Class I. Furthermore,
establishing a baseline reference with restrictive inclusion criteria allows us to gain insight
into the fundamental principles, patterns, and trends of utilizing AI predictive technology.
This paves the way for more in-depth analysis, hypothesis testing, and the development of
advanced methodologies.

There are two major factors that determine the final position of the mandible: mandibu-
lar length represents magnitude, and Y-axis represents direction of growth. The primary
aim of this study was to utilize ML models to accurately predict post-pubertal mandibular
length and Y-axis from cephalometric data of a subject given data from before (T1) and
during (T2) peak height velocity. Predictions using pre-pubertal data alone provide a 4-year
forecast of growth, while adding pubertal data provides a 2-year prediction. It would be
expected that more input data would result in a more accurate prediction, but it would
also be less clinically useful. The majority of the ML models were able to produce 4-year
predictions of post-pubertal mandibular length within 4 mm and ICCs > 0.75. The 2-year
prediction was marginally improved with two of the ML algorithms predicting mandibular
length under 3 mm and ICCs 0.85 or better. For Y-axis, all but one of the ML algorithms had
4-year predictions under 1.5◦ and ICCs 0.84 or better. The 2-year predictions were improved
with one ML algorithm predicting Y-axis within 0.88◦ and an ICC of 0.94. Overall, with a
few exceptions, the ML algorithms did not produce significantly more accurate predictions
of post-pubertal mandibular length and Y-axis with the addition of pubertal data. This is a
promising finding because an accurate prediction from a single radiograph would be very
clinically useful. It would mean fewer radiographic exposures for the patient and less time
wasted waiting for more growth to occur. Forecasting growth would allow the orthodontist
to decide whether or not growth modification would be required as a part of the treatment
plan.
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There are many potential variables that can influence mandibular growth. Previous
studies investigating methods to predict mandibular growth have noted this challenge.
Skieller et al. [16] identified four variables that could predict mandibular growth rotation
and direction. However, Leslie et al. [17] tested their method and found that the values for
the four variables could be swapped with random values and produce similar predictions.
The ML algorithms in our study identified the features that had the most influence in the
process of predicting post-pubertal mandibular length and Y-axis. The most influential
feature identified by each ML algorithm for predicting each variable was found to be the
value of the same variable at the most recent timepoint. It stands to reason that this would
be the case and provides proof of concept that the algorithms appropriately weighted
predictive factors. The majority of the predictive features for mandibular length were
values representing maxillary and mandibular sagittal skeletal bases. The mandibular
rotation model was also found to be an important factor. Vertical features carried heavier
weight in the 2-year prediction than the 4-year. The fact that vertical growth continues after
the completion of sagittal growth might explain this finding. Interestingly, Wood et al. [39]
found that vertical features weighed more heavily in their study on Class I males. Y-axis
predictive features identified by the ML algorithms in both studies were mostly angular
measurements related to the mandibular plane and vertical features. This makes sense
considering direction of mandibular growth directly relates to lower face height. Predictive
features relating to dental values were somewhat more surprising; upper and lower incisor
angulation and overjet were also identified by the ML. This could be explained by the fact
that the dentition must compensate for skeletal growth patterns.

A comparison of the ML algorithms revealed very little difference when predicting
post-pubertal Y-axis. Y-axis is less variable over time than mandibular length, making
its measurements more predictable. There was also no clear superiority among the ML
algorithms in predicting mandibular length. The Ridge and Lasso models most consistently
had the best MAEs and ICCs which is why they were chosen to be represented in our
predictive feature graphs. Based on the Bland–Altman plots, some of the plots indicate that
differences between predicted and actual values have a discernable pattern. Mandibular
length was constantly over-estimated for smaller lengths and under-estimated for larger
lengths with all ML methods except MLP regression. MLP regression, a neural-network-
based model, consistently under-estimated the lengths. No obvious estimation pattern was
seen in the y-axis predictions.

The present research study acknowledges several limitations that need to be con-
sidered. First, the study relied on retrospective data, which inherently carries the risk
of recall bias and limited availability of certain information. Second, given the limited
information on subjects provided in the AAOF Legacy Collection, developmental stage
was based on chronological age in lieu of other developmental indicators. While this is
the least correlative indicator of maturation, it simplified the identification of subjects to
be included in the study. Third, the sample size used in this study was relatively small,
which may limit the generalizability of the findings to larger populations. Fourth, the study
faced challenges in obtaining standardized sources of data, leading to variations in data
quality and reliability. Finally, it is important to acknowledge the potential for human
error in cephalometric tracing and analysis, which can introduce unintentional biases or
inaccuracies. Despite these limitations, the study’s findings provide valuable insights and
serve as a starting point for further investigation in this area.

5. Conclusions

The tested ML models were able to predict post-pubertal mandibular length within
3 mm and Y-axis within 1◦ and did not produce significantly more accurate predictions
with the addition of pubertal data. Most predictive factors for mandibular length were
mandibular length at previous timepoints, age, sagittal positions of the maxillary and
mandibular skeletal bases, mandibular plane angle, and anterior and posterior face heights.
Most predictive factors for Y-axis were Y-axis at previous timepoints, mandibular plane
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angle, and sagittal positions of the maxillary and mandibular skeletal bases. All ML
algorithms yielded consistent results with the exception of MLP regressor consistently
underestimating the mandibular length.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/diagnostics13172729/s1, Table S1: Cephalometric variables and
their definitions. Table S2: Intra-examiner repeatability of the measurements. Table S3: The de-
scriptive statistics of the cephalometric measurements at T1, T2, and T3, including mean, standard
deviation, and minimum/maximum values.

Author Contributions: Conceptualization, M.P., S.B. and H.T.; Data curation, M.P., E.O. and H.T.;
Formal analysis, M.P., G.E. and H.T.; Investigation, M.P. and H.T.; Methodology, M.P., G.E., J.H., S.B.
and H.T.; Project administration, H.T.; Resources, M.P. and H.T.; Software, S.B.; Supervision, H.T.;
Validation, M.P., S.B. and H.T.; Visualization, H.T.; Writing—original draft, M.P., E.O., G.E., J.H., S.B.
and H.T.; Writing—review and editing, M.P., E.O., G.E., J.H., S.B. and H.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was approved as a non-human subjects research
(NHSR) project by the Institutional Review Board (IRB) of Indiana University Human Research
Protection Program (HRPP) (Protocol #: 1457).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data underlying this article are available in the article. The
datasets were derived from sources in the public domain from the AAOF Legacy Collection at
https://www.aaoflegacycollection.org (accessed on 25 April 2023).

Acknowledgments: This study was made possible by the American Association of Orthodontists
Foundation Craniofacial Growth Collection managing the Oregon Growth Study, Denver Growth
Study, Forsyth Twin Study, Fels Longitudinal study, Bolton Brush Growth Study, Iowa Growth Study,
Michigan Growth Study, and Matthews Growth Study. This study was also made possible through
the use of material from the Burlington Growth Centre, Faculty of Dentistry, University of Toronto,
which was supported by funds provided by (1) (No. 605-7-299) National Health Grant (Canada) (data
collection), (2) Province of Ontario Grant PR 33 (duplicating), and (3) the Varsity Fund (for housing
and collection).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Manlove, A.E.; Romeo, G.; Venugopalan, S.R. Craniofacial Growth: Current Theories and Influence on Management. Oral

Maxillofac. Surg. Clin. N. Am. 2020, 32, 167–175. [CrossRef]
2. Moss, M. The primacy of functional matrices in orofacial growth. Dent. Pract. 1968, 19, 65–73.
3. Linder-Aronson, S. Adenoids. Their effect on mode of breathing and nasal airflow and their relationship to characteristics of the

facial skeleton and the denition. A biometric, rhino-manometric and cephalometro-radiographic study on children with and
without adenoids. Acta Oto-Laryngologica. Suppl. 1970, 265, 1–132.

4. Mcnamara, J.A. Influence of Respiratory Pattern On Craniofacial Growth. Angle Orthod. 1981, 51, 269–300. [CrossRef]
5. Landesberg, R.; Proctor, R.L.; Rosier, R.N.; Puzas, J.E. The mandibular condylar growth center: Separation and characterization of

the cellular elements. Calcif. Tissue Int. 1995, 56, 71–77. [CrossRef]
6. Sella-Tunis, T.; Pokhojaev, A.; Sarig, R.; O’Higgins, P.; May, H. Human mandibular shape is associated with masticatory muscle

force. Sci. Rep. 2018, 8, 6042. [CrossRef] [PubMed]
7. Kaul, R.; O’Brien, M.H.; Dutra, E.; Lima, A.; Utreja, A.; Yadav, S. The Effect of Altered Loading on Mandibular Condylar Cartilage.

PLoS ONE 2016, 11, e0160121. [CrossRef] [PubMed]
8. Kurusu, A.; Horiuchi, M.; Soma, K. Relationship between Occlusal Force and Mandibular Condyle Morphology: Evaluated by

Limited Cone-Beam Computed Tomography. Angle Orthod. 2009, 79, 1063–1069. [CrossRef]
9. Proffit, W.R.; Fields, H.W. Occlusal Forces in Normal- and Long-face Children. J. Dent. Res. 1983, 62, 571–574. [CrossRef]

[PubMed]
10. Bjork, A. Variations in the growth pattern of the human mandible: Longitudinal radiographic study by the implant method. J.

Dent. Res. 1963, 42 Pt 2, 400–411. [CrossRef] [PubMed]
11. Hägg, U.; Taranger, J. Maturation indicators and the pubertal growth spurt. Am. J. Orthod. 1982, 82, 299–309. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/diagnostics13172729/s1
https://www.mdpi.com/article/10.3390/diagnostics13172729/s1
https://www.aaoflegacycollection.org
https://doi.org/10.1016/j.coms.2020.01.007
https://doi.org/10.52010/ijom.1984.10.2.4
https://doi.org/10.1007/BF00298747
https://doi.org/10.1038/s41598-018-24293-3
https://www.ncbi.nlm.nih.gov/pubmed/29662127
https://doi.org/10.1371/journal.pone.0160121
https://www.ncbi.nlm.nih.gov/pubmed/27472059
https://doi.org/10.2319/120908-620R.1
https://doi.org/10.1177/00220345830620051301
https://www.ncbi.nlm.nih.gov/pubmed/6573374
https://doi.org/10.1177/00220345630420014701
https://www.ncbi.nlm.nih.gov/pubmed/13971295
https://doi.org/10.1016/0002-9416(82)90464-X
https://www.ncbi.nlm.nih.gov/pubmed/6961802


Diagnostics 2023, 13, 2729 15 of 16

12. Buschang, P.H.; Gandini Júnior, L.G. Mandibular skeletal growth and modelling between 10 and 15 years of age. Eur. J. Orthod.
2002, 24, 69–79. [CrossRef] [PubMed]

13. Bishara, S.E.; Jamison, J.E.; Peterson, L.C.; DeKock, W.H. Longitudinal changes in standing height and mandibular parameters
between the ages of 8 and 17 years. Am. J. Orthod. 1981, 80, 115–135. [CrossRef] [PubMed]

14. Baumrind, S.; Korn, E.L.; West, E.E. Prediction of mandibular rotation: An empirical test of clinician performance. Am. J. Orthod.
1984, 86, 371–385. [CrossRef]

15. Björk, A. Prediction of mandibular growth rotation. Am. J. Orthod. 1969, 55, 585–599. [CrossRef]
16. Skieller, V.; Björk, A.; Linde-Hansen, T. Prediction of mandibular growth rotation evaluated from a longitudinal implant sample.

Am. J. Orthod. 1984, 86, 359–370. [CrossRef]
17. Leslie, L.R.; Southard, T.E.; Southard, K.A.; Casko, J.S.; Jakobsen, J.R.; Tolley, E.A.; Hillis, S.L.; Carolan, C.; Logue, M. Prediction of

mandibular growth rotation: Assessment of the Skieller, Björk, and Linde-Hansen method. Am. J. Orthod. Dentofac. Orthop. 1998,
114, 659–667. [CrossRef]

18. Ricketts, R.M. A principle of arcial growth of the mandible. Angle Orthod. 1972, 42, 368–386.
19. Buschang, P.H.; Tanguay, R.; LaPalme, L.; Demirjian, A. Mandibular growth prediction: Mean growth increments versus

mathematical models. Eur. J. Orthod. 1990, 12, 290–296. [CrossRef]
20. Oueis, H.; Ono, Y.; Takagi, Y. Prediction of mandibular growth in Japanese children age 4 to 9 years. Pediatr. Dent. 2002, 24,

264–268.
21. Bini, S.A. Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and

How Will They Impact Health Care? J. Arthroplast. 2018, 33, 2358–2361. [CrossRef] [PubMed]
22. Panesar, S.; Zhao, A.; Hollensbe, E.; Wong, A.; Bhamidipalli, S.S.; Eckert, G.; Dutra, V.; Turkkahraman, H. Precision and

Accuracy Assessment of Cephalometric Analyses Performed by Deep Learning Artificial Intelligence with and without Human
Augmentation. Appl. Sci. 2023, 13, 6921. [CrossRef]

23. Lindner, C.; Wang, C.W.; Huang, C.T.; Li, C.H.; Chang, S.W.; Cootes, T.F. Fully Automatic System for Accurate Localisation and
Analysis of Cephalometric Landmarks in Lateral Cephalograms. Sci. Rep. 2016, 6, 33581. [CrossRef] [PubMed]

24. Bulatova, G.; Kusnoto, B.; Grace, V.; Tsay, T.P.; Avenetti, D.M.; Sanchez, F.J.C. Assessment of automatic cephalometric landmark
identification using artificial intelligence. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 37–42. [CrossRef] [PubMed]

25. Kim, J.; Kim, I.; Kim, Y.J.; Kim, M.; Cho, J.H.; Hong, M.; Kang, K.H.; Lim, S.H.; Kim, S.J.; Kim, Y.H.; et al. Accuracy of automated
identification of lateral cephalometric landmarks using cascade convolutional neural networks on lateral cephalograms from
nationwide multi-centres. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 59–67. [CrossRef]

26. Ryu, J.; Kim, Y.H.; Kim, T.W.; Jung, S.K. Evaluation of artificial intelligence model for crowding categorization and extraction
diagnosis using intraoral photographs. Sci. Rep. 2023, 13, 5177. [CrossRef]

27. Lee, H.; Ahmad, S.; Frazier, M.; Dundar, M.M.; Turkkahraman, H. A novel machine learning model for class III surgery decision.
J. Orofac. Orthop. 2022. [CrossRef]

28. Leavitt, L.; Volovic, J.; Steinhauer, L.; Mason, T.; Eckert, G.; Dean, J.A.; Dundar, M.M.; Turkkahraman, H. Can we predict
orthodontic extraction patterns by using machine learning? Orthod. Craniofac. Res. 2023. [CrossRef]

29. Mason, T.; Kelly, K.M.; Eckert, G.; Dean, J.A.; Dundar, M.M.; Turkkahraman, H. A machine learning model for orthodontic
extraction/non-extraction decision in a racially and ethnically diverse patient population. Int. Orthod. 2023, 21, 100759. [CrossRef]

30. Jung, S.K.; Kim, T.W. New approach for the diagnosis of extractions with neural network machine learning. Am. J. Orthod.
Dentofac. Orthop. 2016, 149, 127–133. [CrossRef]

31. El-Dawlatly, M.M.; Abdelmaksoud, A.R.; Amer, O.M.; El-Dakroury, A.E.; Mostafa, Y.A. Evaluation of the efficiency of computer-
ized algorithms to formulate a decision support system for deepbite treatment planning. Am. J. Orthod. Dentofac. Orthop. 2021,
159, 512–521. [CrossRef] [PubMed]

32. Etemad, L.; Wu, T.H.; Heiner, P.; Liu, J.; Lee, S.; Chao, W.L.; Zaytoun, M.L.; Guez, C.; Lin, F.C.; Jackson, C.B.; et al. Machine
learning from clinical data sets of a contemporary decision for orthodontic tooth extraction. Orthod. Craniofac. Res. 2021, 24
(Suppl. S2), 193–200. [CrossRef] [PubMed]

33. Li, P.; Kong, D.; Tang, T.; Su, D.; Yang, P.; Wang, H.; Zhao, Z.; Liu, Y. Orthodontic Treatment Planning based on Artificial Neural
Networks. Sci. Rep. 2019, 9, 2037. [CrossRef] [PubMed]

34. Prasad, J.; Mallikarjunaiah, D.R.; Shetty, A.; Gandedkar, N.; Chikkamuniswamy, A.B.; Shivashankar, P.C. Machine Learning
Predictive Model as Clinical Decision Support System in Orthodontic Treatment Planning. Dent. J. 2022, 11, 1. [CrossRef]
[PubMed]

35. Real, A.D.; Real, O.D.; Sardina, S.; Oyonarte, R. Use of automated artificial intelligence to predict the need for orthodontic
extractions. Korean J. Orthod. 2022, 52, 102–111. [CrossRef]

36. Senirkentli, G.B.; Ince Bingol, S.; Unal, M.; Bostanci, E.; Guzel, M.S.; Acici, K. Machine learning based orthodontic treatment
planning for mixed dentition borderline cases suffering from moderate to severe crowding: An experimental research study.
Technol. Health Care 2023, 1–13. [CrossRef]

37. Suhail, Y.; Upadhyay, M.; Chhibber, A.; Kshitiz. Machine Learning for the Diagnosis of Orthodontic Extractions: A Computational
Analysis Using Ensemble Learning. Bioengineering 2020, 7, 55. [CrossRef]

38. Xie, X.; Wang, L.; Wang, A. Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic
treatment. Angle Orthod. 2010, 80, 262–266. [CrossRef]

https://doi.org/10.1093/ejo/24.1.69
https://www.ncbi.nlm.nih.gov/pubmed/11887381
https://doi.org/10.1016/0002-9416(81)90213-X
https://www.ncbi.nlm.nih.gov/pubmed/6943933
https://doi.org/10.1016/S0002-9416(84)90029-0
https://doi.org/10.1016/0002-9416(69)90036-0
https://doi.org/10.1016/S0002-9416(84)90028-9
https://doi.org/10.1016/S0889-5406(98)70198-2
https://doi.org/10.1093/ejo/12.3.290
https://doi.org/10.1016/j.arth.2018.02.067
https://www.ncbi.nlm.nih.gov/pubmed/29656964
https://doi.org/10.3390/app13126921
https://doi.org/10.1038/srep33581
https://www.ncbi.nlm.nih.gov/pubmed/27645567
https://doi.org/10.1111/ocr.12542
https://www.ncbi.nlm.nih.gov/pubmed/34842346
https://doi.org/10.1111/ocr.12493
https://doi.org/10.1038/s41598-023-32514-7
https://doi.org/10.1007/s00056-022-00421-7
https://doi.org/10.1111/ocr.12641
https://doi.org/10.1016/j.ortho.2023.100759
https://doi.org/10.1016/j.ajodo.2015.07.030
https://doi.org/10.1016/j.ajodo.2020.05.014
https://www.ncbi.nlm.nih.gov/pubmed/33795092
https://doi.org/10.1111/ocr.12502
https://www.ncbi.nlm.nih.gov/pubmed/34031981
https://doi.org/10.1038/s41598-018-38439-w
https://www.ncbi.nlm.nih.gov/pubmed/30765756
https://doi.org/10.3390/dj11010001
https://www.ncbi.nlm.nih.gov/pubmed/36661538
https://doi.org/10.4041/kjod.2022.52.2.102
https://doi.org/10.3233/THC-220563
https://doi.org/10.3390/bioengineering7020055
https://doi.org/10.2319/111608-588.1


Diagnostics 2023, 13, 2729 16 of 16

39. Wood, T.; Anigbo, J.O.; Eckert, G.; Stewart, K.T.; Dundar, M.M.; Turkkahraman, H. Prediction of the Post-Pubertal Mandibular
Length and Y Axis of Growth by Using Various Machine Learning Techniques: A Retrospective Longitudinal Study. Diagnostics
2023, 13, 1553. [CrossRef]

40. Kim, D.W.; Kim, J.; Kim, T.; Kim, T.; Kim, Y.J.; Song, I.S.; Ahn, B.; Choo, J.; Lee, D.Y. Prediction of hand-wrist maturation stages
based on cervical vertebrae images using artificial intelligence. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 68–75. [CrossRef]

41. Jiwa, S. Applicability of Deep Learning for Mandibular Growth Prediction; Boston University—Henry M. Goldman School of Dental
Medicine: Boston, MA, USA, 2020.

42. Ursi, W.J.; Trotman, C.A.; McNamara, J.A., Jr.; Behrents, R.G. Sexual dimorphism in normal craniofacial growth. Angle Orthod.
1993, 63, 47–56. [PubMed]

43. AAOF Craniofacial Growth Legacy Collection. Available online: https://www.aaoflegacycollection.org/aaof_home.html
(accessed on 19 June 2023).

44. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
45. Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr.

Med. 2016, 15, 155–163. [CrossRef]
46. Buschang, P.H.; Santos-Pinto, A. Condylar growth and glenoid fossa displacement during childhood and adolescence. Am. J.

Orthod. Dentofac. Orthop. 1998, 113, 437–442. [CrossRef]
47. Baumrind, S.; Ben-Bassat, Y.; Korn, E.L.; Bravo, L.A.; Curry, S. Mandibular remodeling measured on cephalograms. 1. Osseous

changes relative to superimposition on metallic implants. Am. J. Orthod. Dentofac. Orthop. 1992, 102, 134–142. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/diagnostics13091553
https://doi.org/10.1111/ocr.12514
https://www.ncbi.nlm.nih.gov/pubmed/8507031
https://www.aaoflegacycollection.org/aaof_home.html
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1016/s0889-5406(98)80016-4
https://doi.org/10.1016/0889-5406(92)70025-6

	Introduction 
	Materials and Methods 
	Study Sample 
	Sample Size Justification 
	Data Collection 
	Algorithm Training and Testing 
	Statistical Analysis 

	Results 
	Reliability Analysis 
	Descriptive Statistics 
	Prediction of the Female Post-Pubertal Mandibular Length 
	Prediction of the Female Post-Pubertal Y-Axis 
	Method Comparison 

	Discussion 
	Conclusions 
	References

