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Abstract: Background: The objective of this study was to formulate and validate a prognostic model
for postoperative severe Pneumocystis carinii pneumonia (SPCP) in kidney transplant recipients
utilizing machine learning algorithms, and to compare the performance of various models. Meth-
ods: Clinical manifestations and laboratory test results upon admission were gathered as variables
for 88 patients who experienced PCP following kidney transplantation. The most discriminative
variables were identified, and subsequently, Support Vector Machine (SVM), Logistic Regression
(LR), Random Forest (RF), K-Nearest Neighbor (KNN), Light Gradient Boosting Machine (LGBM),
and eXtreme Gradient Boosting (XGB) models were constructed. Finally, the models’ predictive
capabilities were assessed through ROC curves, sensitivity, specificity, accuracy, positive predictive
value (PPV), negative predictive value (NPV), and F1-scores. The Shapley additive explanations
(SHAP) algorithm was employed to elucidate the contributions of the most effective model’s variables.
Results: Through lasso regression, five features—hemoglobin (Hb), Procalcitonin (PCT), C-reactive
protein (CRP), progressive dyspnea, and Albumin (ALB)—were identified, and six machine learning
models were developed using these variables after evaluating their correlation and multicollinearity.
In the validation cohort, the RF model demonstrated the highest AUC (0.920 (0.810–1.000), F1-Score
(0.8), accuracy (0.885), sensitivity (0.818), PPV (0.667), and NPV (0.913) among the six models, while
the XGB and KNN models exhibited the highest specificity (0.909) among the six models. Notably,
CRP exerted a significant influence on the models, as revealed by SHAP and feature importance rank-
ings. Conclusions: Machine learning algorithms offer a viable approach for constructing prognostic
models to predict the development of severe disease following PCP in kidney transplant recipients,
with potential practical applications.

Keywords: Pneumocystis carinii pneumonia (PCP); machine learning models; predict; artificial intelligence

1. Background

Due to the prolonged use of immunosuppressive medications, the immune response
of kidney transplant recipients is compromised, making them susceptible to severe compli-
cations such as Pneumocystis carinii pneumonia (PCP). PCP progresses rapidly and can lead
to irreversible organ damage and even death. The risk of PCP is high up to 1 year after
kidney transplantation, especially up to 6 months after surgery, and in addition, according
to studies, PCP can occur after 1 year after surgery even if the kidney transplant recipient
has received prophylactic treatment for 6–12 months [1,2]. The overall incidence of PCP
after kidney transplantation ranges from 0.3% to 2.6%, with a mortality rate of up to 50% [3].
Therefore, early identification of patients at risk of developing severe Pneumocystis carinii
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pneumonia (SPCP) during hospitalization is crucial for timely intervention and improved
clinical management [4].

Given the complexity of PCP in kidney transplant recipients and the numerous factors
influencing disease progression, relying solely on traditional statistical methods for clinical
assessment may not accurately predict the likelihood of SPCP. However, machine learning
algorithms offer a promising approach by integrating multiple clinical and laboratory
variables to enhance predictive accuracy, albeit at the cost of interpretability. Currently, there
is limited research on PCP prediction. Previous studies by Tang et al. [5] and Elie et al. [6]
have developed prediction models for PCP development in immunosuppressed HIV-
negative patients and ICU patients with hematologic malignancies and acute respiratory
failure, respectively. Cai et al. [7] developed a prediction model for PCP in CKD patients
using decision trees and Nomogram plots, while Wan et al. [8] established a prediction
model for invasive mechanical ventilation (IMV) in 148 PCP patients using Nomogram
plots. However, to date, no machine learning-based prognostic model specifically targeting
SPCP in kidney transplant recipients has been developed.

In this study, we enrolled 88 post-kidney transplant patients with PCP and utilized
a machine learning approach to predict the risk of developing SPCP based on common
laboratory test results and clinical presentations at admission. We analyzed the most
important laboratory parameters that can be used for early identification of patients at a
high risk of developing SPCP and increased mortality.

2. Methods
2.1. Study Population

The study population comprised patients who underwent kidney transplantation and
were admitted to the Organ Transplantation Department of Renmin Hospital of Wuhan
University between April 2018 and April 2022. Ultimately, a total of 88 patients with PCP
were included in the study. The primary outcome of interest was the occurrence of SPCP
during hospitalization. SPCP was defined as patients with hypoxaemia or respiratory
failure requiring non-invasive ventilation with at least 50% FiO2 (partial oxygen inhalation)
or invasive ventilation [9]. The diagnosis of SPCP was established by two physicians with
advanced clinical expertise. Secondary outcome measures included patient mortality and
laboratory test results at the time of discharge. Due to the limitations of bedside oxygen
therapy in general hospital beds, all SPCP were admitted to the ICU for treatment in this
study, and none of the general PCP patients were admitted to the ICU for treatment.

2.2. Variable Collection

We collected various patient information, including: (I) Demographic data such as age,
gender, and time since kidney transplantation. (II) Clinical manifestations upon admission,
such as fever, dry cough, and progressive dyspnea. (III) Laboratory results at admission,
including glactomannan (GM) testing, C-reactive protein (CRP), procalcitonin (PCT), white
blood cell count (WBC), lymphocyte count (LYM), neutrophil count (Neu), hemoglobin
(Hb), albumin (ALB), globulin (GLB), platelet count (PLT), blood urea nitrogen (BUN),
blood glucose (Glu), serum creatinine (sCr), CD4 count, and presence of cytomegalovirus
(CMV) infection. (IV) Past medical history, including prior ATG induction and episodes
of rejection. (V) Additionally, we monitored the patients’ outcome measures, including
length of hospital stay, admission to the ICU, and mortality. We used the KNN method to
interpolate missing data. By collecting these variables, we aimed to capture comprehensive
information about the patients’ characteristics, clinical presentation, laboratory findings,
medical history, and subsequent prognostic outcomes.

2.3. Data Preprocessing

We divided the overall dataset into training and test sets using a 7:3 ratio. Categorical
variables were encoded using one-hot encoding, while continuous variables were standard-
ized using the min–max scaling technique, which rescales the variable values to a range
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of 0–1, ensuring comparability across dimensions. To address the issue of imbalanced
data, we employed the Synthetic Minority Over-sampling Technique (SMOTE) on the
training set [10]. SMOTE offers a valuable solution by generating synthetic samples of the
minority class, effectively improving its representation and enhancing the model’s ability
to learn from the data. By oversampling the minority class, SMOTE helps mitigate bias in
predictions, enhances accuracy, and reduces the risk of overfitting.

2.4. Variable Screening

In the SMOTE-treated training set, we employed LASSO regression to reduce the
dimensionality of the data variables and identify the most relevant variables for predicting
the probability of SPCP upon admission using the optimal lambda. Lasso regression pro-
vides effective variable filtering and prediction capabilities due to its advantages in feature
selection and regularization. It efficiently selects relevant variables while suppressing noise,
improving model interpretability, and reducing overfitting.

2.5. Correlation Analysis

Furthermore, we conducted Spearman correlation analysis to examine the interrela-
tionships among the variables after LASSO regression screening. This allowed us to assess
for potential multicollinearity, ensuring that there were no significant correlations among
the variables. By evaluating multicollinearity, we ensured the robustness of our model and
minimized any adverse effects on the interpretability and reliability of the results.

2.6. Hyperparameter Optimisation

Six machine learning methods, including LR, SVM, XGB, RF, LGBM, and KNN, were
selected for hyperparameter optimization in the training set, and a 5-fold cross-validation
approach was used. The 5-fold cross-validation involved dividing the training set into five
subsets, four of which were used as the internal training set and one as the internal validation set.
Exploration was carried out. The average performance was calculated and the hyperparameters
were adjusted using a grid search to maximize the AUC of the internal validation set.

2.7. Model Evaluation

We fitted the machine learning models using the optimal hyperparameters and evalu-
ated the models on a test set. We compared different models based on their AUC values,
sensitivity, specificity, accuracy, NPV, PPV, and F1-score.

2.8. SHAP and Variable Importance of the Best Model

We utilized the SHAP framework to generate visualizations of the optimal model,
showcasing the variable importance in predicting the probability of developing SPCP
disease after hospitalization. SHAP, a robust methodology for interpreting machine learning
models, leverages Shapley values derived from cooperative game theory to measure the
impact of each feature on the model’s output. By applying SHAP, we are able to analyze
the importance of individual variables.

2.9. Statistical Analysis

Statistical analysis of the data was performed using R language (V4.2.1) and Python
(3.11.3). Continuous variables were assessed using independent t-tests or Mann–Whitney
U-tests and reported as mean ± standard deviation or median with interquartile range.
Categorical variables were expressed as numbers and percentages and analyzed using the
Chi-square test or Fisher’s exact test.

3. Results
3.1. Patients and Variables

In this study, a total of 88 patients who underwent kidney transplantation and devel-
oped PCP were included. The inclusion criteria were as follows: 1. Radiological evidence
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of pneumonia with detection of P. jirovecii in sputum samples or peripheral blood using
metagenomic next-generation sequencing (mNGS). 2. Clinical diagnosis was based on
clinical characteristics, typical pulmonary CT imaging changes, elevated 1,3-β-D-glucan
levels, and the sensitive response to anti-PCP therapy [11]. Patients who met the following
exclusion criteria were not included in the study: (1) Patients who died upon admission.
(2) Recipients of multi-organ transplantation. A flowchart of the process of this study is
shown in Figure 1. All patients met the diagnostic criteria for PCP. Based on the occurrence
of SPCP, the patients were divided into two groups: 18 patients in the SPCP group and
70 patients in the non-severe PCP (NSPCP) group. Among the included patients, 28 were
female and 60 were male, as shown in Table 1. The dataset was divided into a training set
and a test set using a 7:3 ratio. Statistical differences were observed between the training
and test sets for gender, Scr at admission, and concurrent CMV infection (p < 0.05), while no
statistical differences were observed for other variables (p > 0.05). Variables such as symp-
toms at admission, admission data, and medical history (excluding prognosis information
such as ICU, death, and duration of hospitalization) were selected as potential predictors.
Feature selection was carried out using a LASSO regression with 5-fold cross-validation (as
shown in Figure 2), using the “minimum plus one standard error” criterion to identify the
optimal penalization coefficient lambda (λ), and finally, five variables were identified. The
correlation heat map showed no significant correlation between the five variables screened
(as shown in Figure 3). The results of the analysis of covariance showed that the variance
inflation factor (VIF) between each variable was less than 10, indicating the absence of
multicollinearity (Supplementary Table S1).
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Table 1. Baseline demographic and clinical laboratory examination characteristics of all patients
(training and test groups).

All, n = 88 Training, n = 62 Test, n = 26 p-Value

Age, yr 43.97 ± 9.93 42.81 ± 10.22 46.73 ± 8.78 0.091
Male, n 60 (68.2%) 37 (59.7%) 23 (88.5%) 0.017
Post-transplant time, months 7.00 [5.00, 10.00] 7.00 [5.00, 10.00] 7.00 [4.25, 10.00] 0.72
Clinical presentation
Fever, n 64 (72.7%) 45 (72.6%) 19 (73.1%) 1
Dry cough, n 25 (28.4%) 17 (27.4%) 8 (30.8%) 0.953
Progressive dyspnea, n 49 (55.7%) 38 (61.3%) 11 (42.3%) 0.161
Laboratory results
GM test number 469.30 [174.74, 600.00] 436.35 [162.26, 600.00] 571.00 [253.41, 612.15] 0.423
GM test, n 76 (86.4%) 53 (85.5%) 23 (88.5%) 0.975
CRP, mg/L 71.10 [43.70, 92.75] 76.00 [44.18, 99.17] 61.55 [41.75, 75.62] 0.101
PCT, ng/ml 0.20 [0.10, 0.34] 0.20 [0.11, 0.40] 0.18 [0.10, 0.30] 0.711
PCT ≥ 0.5 ng/mL, n 17 (19.3%) 14 (22.6%) 3 (11.5%) 0.367
Neut, 1 × 109 6.26 [4.16, 8.81] 6.10 [4.41, 8.81] 6.60 [3.83, 8.57] 0.671
Hb, g/L 113.00 [98.50, 121.25] 113.00 [96.00, 121.00] 113.50 [102.25, 123.50] 0.355
Plt, 1 × 109 210.00 [163.50, 246.50] 212.00 [175.75, 239.50] 188.50 [150.00, 247.50] 0.209
BUN, mg/dL 12.28 [8.96, 19.16] 12.60 [9.21, 19.38] 12.00 [8.77, 17.62] 0.791
Glu, mmol/L 6.35 [5.30, 8.20] 6.12 [5.26, 7.80] 7.12 [5.75, 8.39] 0.167
WBC, 1 × 109 7.69 [5.02, 10.14] 7.69 [5.36, 10.27] 7.58 [4.76, 9.85] 0.586
LYM, 1 × 109 0.53 [0.36, 0.89] 0.52 [0.34, 0.86] 0.53 [0.40, 0.90] 0.742
ALB, g/L 37.40 [33.65, 40.00] 37.75 [34.35, 40.00] 35.05 [33.05, 39.30] 0.583
GLB, g/L 21.25 [18.80, 23.79] 21.15 [18.65, 23.38] 21.80 [19.30, 24.09] 0.22
Scr, µmol/L 151.50 [122.50, 195.25] 158.00 [134.25, 198.25] 134.50 [113.50, 172.00] 0.034
Previous history
ATG induction, n 33 (37.5%) 23 (37.1%) 10 (38.5%) 1
ATG dose, mg 0.00 [0.00, 75.00] 0.00 [0.00, 75.00] 0.00 [0.00, 75.00] 1
Rejection, n 39 (44.3%) 29 (46.8%) 10 (38.5%) 0.63
CMV infection, n 40 (45.5%) 31 (50.0%) 9 (34.6%) 0.031
ICU, n 18 (20.5%) 14 (22.6%) 4 (15.4%) 0.636
Death, n 11 (12.5%) 8 (12.9%) 3 (11.5%) 1
Duration of hospitalization, days 28.50 [19.00, 36.25] 29.00 [19.25, 37.00] 28.00 [17.25, 36.00] 0.277

GM test: glactomannan test; CRP: C-reactive protein; Scr: serum creatinine; PCT: procalcitonin; WBC: white
blood cell; LYM: lymphocyte; Neut: Neutrocyte; Hb: Hemoglobin; Plt: platelet count; BUN: Blood Urea Nitrogen;
Glu: Glucose; ALB: albumin; GLB: globulin; ATG: antihuman thymocyte globulin; PJP: pneumocystis jiroveci
pneumonia; CMV: cytomegalovirus; and PSI: pneumonia severity index.

3.2. Parameter Optimization and Model Fitting

Due to the imbalance of the dataset, which can lead to model instability, we applied
the SMOTE technique to the training set. This resulted in a balanced training set consisting
of 48 cases of NSPCP and 48 cases of SPCP. After standardizing the variables, we selected
the five variables identified in the training set and used them as inputs for the machine
learning classifiers to construct the prediction model. We adjusted the model parameters
using the average optimal AUC value, and the specific parameter settings are provided
in Supplementary Table S2. The five-fold cross-validated ROC curves of the internal
validation set are shown in Figure 4. It can be observed that, except for the LGBM model,
the average AUC values of the other five models in the internal validation set exceeded
90%. The KNN model performed the best in terms of AUC, PPV, and F1_Score. The LR
model demonstrated the highest accuracy and NPV. The XGB and SVM models performed
optimally in terms of sensitivity and specificity, respectively. The RF model performs well
in terms of overall performance. Detailed modelling results are provided in Supplementary
Table S3. Since the training set was primarily used for parameter optimization, we focused
on comparing the performance of different models in the validation set. We found that the
RF model outperformed the others in the validation set, except for specificity. Meanwhile,
the XGB and GBM models demonstrated the best performance in terms of specificity. The
detailed test set model results are shown in Table 2 and Figures 5 and 6.
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Boosting Machine model; (E) Support Vector Machine model; and (F) K-Nearest Neighbor model.

Table 2. Summary of the specific performance of the six machine algorithm models in the test set.

AUC Accuracy Sensitivity Specificity PPV NPV F1_Score

RF 0.920 (0.810–1.000) 0.885 1 0.864 0.667 0.913 0.8
LR 0.886 (0.752–1.000) 0.846 1 0.818 0.5 0.875 0.667
XGB 0.909 (0.786–1.000) 0.846 1 0.909 0.5 0.909 0.667
SVM 0.875 (0.740–1.000) 0.808 1 0.818 0.4 0.905 0.571
KNN 0.909 (0.794–1.000) 0.846 1 0.864 0.5 0.909 0.667
LGBM 0.693 (0.391–0.996) 0.846 0.5 0.909 0.5 0.909 0.5

RF: Random Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; SVM: Support Vector Machine;
KNN: K-Nearest Neighbor; LGBM: Light Gradient Boosting Machine; AUC: area under the curve; PPV: positive
predictive Value; and NPV: negative predictive value.

3.3. Model Interpretation

To help explain the impact of each feature on the model outcome, we employed the
SHAP algorithm. Each row in the graph represents a feature, sorted from top to bottom
based on feature importance. The x-axis represents the SHAP values, while the points
indicate the samples, and the color represents the feature values (red indicating high and
blue indicating low). We selected the RF model, which exhibited the best overall perfor-
mance in the test set, to interpret the feature importance. Additionally, we presented the
ranking of each variable’s importance for the model. As shown in Figure 7, by combining
both approaches, we can observe that the feature importance ranking of the RF model is
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as follows: CRP, ALB, PCT, Progressive dyspnea, and Hb. Among these, CRP, PCT, and
Progressive dyspnea showed a positive correlation with the occurrence of SPCP. Higher
values of CRP and PCT were associated with an increased likelihood of progressing to
SPCP. On the other hand, ALB and Hb demonstrated a negative correlation with SPCP,
indicating that lower values were associated with a higher risk of developing SPCP.
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Figure 6. Visualization of the specific performance of the six machine learning algorithms in the test
set. RF: Random Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; SVM: Support
Vector Machine; KNN: K-Nearest Neighbor; LGBM: Light Gradient Boosting Machine; AUC: area
under the curve; PPV: positive predictive Value; and NPV: negative predictive value.
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albumin; Hb, Hemoglobin.

4. Discussion

In this investigation, the prevalence of SPCP was found to be 20.5%. A notable distinction
in mortality rates during hospitalization was observed between SPCP and NSPCP groups,
with a significantly higher mortality rate in the SPCP group (61.1% vs. 0%, p < 0.05). Re-
markably, kidney transplant patients with SPCP exhibited a significantly worse prognosis.
Therefore, timely identification and intervention in individuals at high risk are of paramount
importance. To evaluate the prognosis of 88 patients who experienced PCP following kidney
transplantation, this research employed multiple machine learning algorithms.

Among the variables analyzed in this study, CRP emerged as the most prominent.
CRP is an acute-phase protein synthesized by the liver in response to inflammation and is
commonly utilized as an indicator of systemic inflammation and infection [12,13]. CRP rises
rapidly during the initial stages of infection, with elevated values correlating positively
with the severity of the infection or inflammation, and can serve as a sensitive biomarker
for many inflammatory diseases, such as infections and tissue damage [14,15]. And it can
serve as one of the predictors of severe COVID-19 [16]. PCP is caused by the opportunistic
pathogen Pneumocystis carinii. Sun et al. assessed blood biomarkers in 32 HIV-infected
PCP patients and found that CRP levels were significantly higher in patients who were
critically ill or died [17]. Elevated CRP has also been previously reported to be strongly
associated with disease severity and death in HIV-infected PCP patients [18]. A multicenter
study by Shiba et al. on PCP patients with rheumatoid arthritis similarly found that
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CRP levels at baseline were significantly higher in the PCP mortality group than in the
survivor group [19]. Hou et al. found that advanced age, high baseline levels of LDH and
CRP, and low platelet counts were risk factors for in-hospital mortality in patients with
mNGS-positive PCP diagnosed by second-generation sequencing of macrogenomi [20].
The numerous evidence above indicates the important role of CRP in assessing the severity
of PCP patients, and the possible mechanism is that when the immune system detects
the presence of Pneumocystis carinii, it triggers an inflammatory response, which in turn
activates immune cells to release inflammatory cytokines. And CRP can play a crucial
role in the immune response against infection by participating in the activation of the
complementary system [12,21]. Consequently, CRP levels can serve as a potential biomarker
for evaluating the progression and severity of PCP in kidney transplant recipients.

ALB, a significant protein synthesized by the liver, plays crucial roles in maintaining
osmolarity and facilitating substance transport in the bloodstream. ALB reduces inflamma-
tory exudation in the lungs and also has antioxidant properties, and serum ALB levels can
decrease during oxidative stress or infection, and its antioxidant properties can be impaired,
ultimately leading to further tissue damage [22]. The existing literature has demonstrated a
correlation between decreased ALB levels and severe pneumonia [23]. Serum ALB levels
were considered to be good predictive markers for morbidity and mortality of critically
ill patients [24–26]. Previous studies have also shown that low ALB levels significantly
increase pneumonia mortality in kidney transplant recipients [27,28]. Because of the associ-
ation between low serum albumin levels and increased disease severity, serum albumin
could theoretically also be used as a predictive biomarker of disease severity in patients
with PCP. Therefore, close monitoring of ALB levels and appropriate supplementation may
aid in slowing the progression of PCP.

According to the SHAP plot, the third-ranked variable in the RF model is PCT, a
precursor protein for calcitonin. PCT is primarily synthesized by the C-cells of the thyroid
gland. It is worth noting that PCT is predominantly released into the bloodstream as a
response to bacterial infection and systemic inflammation. During infection, PCT plays a
crucial regulatory role in modulating the immune response. It exerts inhibitory effects on
the production of pro-inflammatory cytokines, such as TNF-α and IL-6, while promoting
the release of anti-inflammatory cytokines, such as IL-10. This regulatory function is vital
for controlling the inflammatory response and minimizing tissue damage. PCT is also
frequently used in the intensive care unit as an indication for infection, severity of illness
and antibiotic therapy [29–31]. Despite Pneumocystis not being a bacterium, its presence
still triggers an immune response that can result in elevated PCT levels. In the case of
PCP, higher PCT levels can serve as an indicator of the intensity of the immune response
and the severity of the infection. Elevated PCT levels are associated with more SPCP
and unfavorable clinical outcomes. Monitoring PCT levels can assist in assessing disease
progression and guiding the treatment of kidney transplant recipients affected by PCP.

The occurrence of progressive dyspnea upon admission to hospital often indicates
a more severe form of PCP and suggests that the patient may have missed out on early
intervention and treatment. Previous studies have shown that early intervention and
treatment are critical to the prognosis of non-HIV patients with PCP [32–34]. In addition,
non-HIV-infected patients with PCP have faster disease progression, poorer outcomes,
higher mortality rates, and a higher risk of co-infections compared to HIV-infected pa-
tients, with major symptoms typically including exertional dyspnea, dry cough, and
fever [33,35–38]. The presence of progressive dyspnea, on the other hand, often indicates
the presence of a persistent inflammatory process in the lungs with concomitant damage to
the alveolar–capillary membrane, and as the infection progresses, respiratory muscle fa-
tigue or even respiratory failure may occur [32]. In summary, the evaluation of progressive
dyspnea upon admission holds great clinical importance as it enables the prevention of
further respiratory damage and contributes to the improvement of the patient’s prognosis.

PCP has the potential to impede efficient exchange of oxygen and carbon dioxide in
the lungs. Hb, the protein found in red blood cells responsible for oxygen transport, plays
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a critical role in maintaining tissue oxygenation. When Hb levels decrease, the capacity for
oxygen transportation is reduced. This impairment can disrupt the body’s ability to deliver
sufficient oxygen to tissues and organs, including the lungs themselves. Previous studies
have found that severe COVID-19 is associated with lower red blood cell counts in patients,
and this may also apply to Hb [39]. Walzer et al. [40] and Miller et al. [41] showed that low
Hb levels on admission were an independent risk factor for death in HIV-infected PCP
patients. Therefore, the detection of Hb in admitted patients may be clinically important
for the prognostic assessment of patients with PCP after renal transplantation.

In the realm of PCP, various prior studies have been conducted to predict the risk of
ICU admission and mortality in affected patients. One study by Benjamin et al. examined
107 immunocompromised PCP patients, including 25% with solid-organ transplantation.
Their findings revealed that older age and the presence of P. jirovecii oocysts in bronchoalve-
olar lavage (BAL) examination were independently associated with SPCP [42]. Fan et al.
utilized nomogram to predict the risk of death and ICU admission in non-HIV-infected PCP
patients. Their research identified respiratory rate, dyspnea, lung moist rales, LDH, BUN,
CRP/ALB ratio, and pleural effusion as potential predictors for ICU admission risk [43].

In contrast to previous studies, our research employed six machine learning models for
prediction. Through parameter tuning and validation, we identified the RF model as the best-
performing model in the validation set, exhibiting an AUC value of 0.92. Notably, the variables
utilized in this model consisted of laboratory test results and clinical symptoms, which are
easily obtainable and allow clinicians to determine the likelihood of SPCP development upon
hospital admission for patients with PCP following kidney transplantation.

However, it is important to acknowledge some limitations of this study. Firstly, it is
a single-center observational study, making it susceptible to potential biases. Secondly,
despite utilizing SMOTE to address imbalanced data, it is crucial to recognize that the
sample size in this study was limited. To further enhance the accuracy of the model, we
plan to gather additional clinical data and optimize the parameters in future research.

5. Conclusions

We used multiple machine learning approaches for predicting the risk of SPCP in
patients with PCP after kidney transplantation. Machine learning allows for early and
accurate estimation of SPCP risk in PCP patients at the time of admission, which may
provide guidance for clinical decision making.
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