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Abstract: Background: The study investigated whether three deep-learning models, namely, the
CNN_model (trained from scratch), the TL_model (transfer learning), and the FT_model (fine-tuning),
could predict the early response of brain metastases (BM) to radiosurgery using a minimal pre-
processing of the MRI images. The dataset consisted of 19 BM patients who underwent stereotactic-
radiosurgery (SRS) within 3 months. The images used included axial fluid-attenuated inversion
recovery (FLAIR) sequences and high-resolution contrast-enhanced T1-weighted (CE T1w) sequences
from the tumor center. The patients were classified as responders (complete or partial response) or
non-responders (stable or progressive disease). Methods: A total of 2320 images from the regression
class and 874 from the progression class were randomly assigned to training, testing, and validation
groups. The DL models were trained using the training-group images and labels, and the validation
dataset was used to select the best model for classifying the evaluation images as showing regression
or progression. Results: Among the 19 patients, 15 were classified as “responders” and 4 as “non-
responders”. The CNN_model achieved good performance for both classes, showing high precision,
recall, and F1-scores. The overall accuracy was 0.98, with an AUC of 0.989. The TL_model performed
well in identifying the “progression” class, but could benefit from improved precision, while the
“regression” class exhibited high precision, but lower recall. The overall accuracy of the TL_model
was 0.92, and the AUC was 0.936. The FT_model showed high recall for “progression”, but low
precision, and for the “regression” class, it exhibited a high precision, but lower recall. The overall
accuracy for the FT_model was 0.83, with an AUC of 0.885. Conclusions: Among the three models
analyzed, the CNN_model, trained from scratch, provided the most accurate predictions of SRS
responses for unlearned BM images. This suggests that CNN models could potentially predict SRS
prognoses from small datasets. However, further analysis is needed, especially in cases where class
imbalances exist.

Keywords: stereotactic radiosurgery; radiomics; brain metastasis; treatment response; machine
learning
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1. Introduction

Gamma Knife stereotactic radiosurgery (GKSRS) is a non-invasive technique used
to treat brain tumors, vascular malformations, and other neurological conditions. Its
history dates back to the 1940s when neurosurgeon Lars Leksell developed the concept
of radiosurgery. In the 1950s, Leksell and Borje Larsson created the first Gamma Knife
prototype at the Karolinska Institute in Sweden. The machine uses 192–201 cobalt-60
sources to deliver precise brain radiation [1].

The first clinical use of Gamma Knife treatment was in 1968, and it began gaining
popularity in the 1970s and 1980s [2]. Initially, it treated hard-to-reach brain tumors
and vascular malformations. Now, it addresses neurological conditions like trigeminal
neuralgia, epilepsy, and Parkinson’s disease [3].

Over time, the Gamma Knife has seen technological improvements, including com-
puterized treatment planning and image guidance. Today, it is used in over 700 medical
centers worldwide, treating over one million patients per year [1–4].

Machine learning (ML) is a subset of AI, enabling computer systems to learn from
experience without explicit programming. ML uses algorithms trained on data to recognize
patterns and make decisions as humans do [5,6].

The three main ML algorithms are:

1. Supervised learning: Maps input data to known output data for predictions, e.g., linear
regression, decision trees, and neural networks.

2. Unsupervised learning: Identifies patterns and relationships in data, without supervi-
sion, e.g., clustering and principal component analysis.

3. Reinforcement learning: Learns through trial and error, optimizing for cumulative
rewards, e.g., Q-learning and deep reinforcement learning.

ML finds applications in natural language processing, image recognition, predictive
maintenance, fraud detection, and recommendation systems [5].

Deep learning, a subfield of ML, employs multi-layer neural networks for complex
tasks like image and speech recognition. It excels in computer vision, speech recognition,
and natural language processing [7,8].

There are various types of deep learning algorithms for different problems [7,8]:

1. Convolutional neural networks (CNNs): Used for image and video recognition, and
for analyzing local patterns.

2. Recurrent neural networks (RNNs): For sequential data, such as speech recognition
and time series analysis.

3. Generative adversarial networks (GANs): Generate data similar to a given dataset,
such as realistic images.

4. Autoencoders: Tasked with image/text compression, feature extraction, and denoising.

Many other algorithm variations exist to solve diverse problems [7,8]. Transfer learning
(TL) is a technique in which a pre-trained model kickstarts a new task. The model first
learns general features from a large dataset, then trains on a smaller, specific sample. TL is
beneficial with limited labeled data, leveraging the pre-trained model’s knowledge [9,10].
It is used in computer vision, natural language processing, and speech recognition [11,12].

There are some new methods, like RCNN (region-based convolutional neural net-
work) [13] and attention models [14], which are two different techniques commonly used in
computer vision tasks. While they might not be the most typical choices for addressing the
problem of early response prediction of brain metastases, they could potentially be applied
in creative ways to enhance the performance of predictive models for this specific medical
imaging task. RCNN is a family of methods used for object detection and localization in
images. It involves dividing an image into multiple regions (proposals) and processing
each region separately to detect and classify objects within them. In the context of brain
metastases prediction, RCNN-like approaches could be adapted to identify and classify
different regions of interest (ROIs) within medical images that indicate the presence of
metastatic growth. These regions could correspond to areas with abnormal features indica-
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tive of metastases. By processing these ROIs separately, the model could potentially learn
to detect early signs of metastases that might be overlooked by more traditional image
analysis methods. Attention mechanisms have gained popularity in various deep learn-
ing applications, including computer vision and natural language processing. Attention
mechanisms help models focus on the most relevant parts of the input data when making
predictions. In the context of brain metastases prediction, attention mechanisms could be
used to guide the model’s focus to specific regions within the medical images that are more
likely to contain early signs of metastases. This could be particularly helpful in identifying
subtle patterns or anomalies that might not be immediately apparent to human observers
or traditional image analysis methods.

It is important to note that neither RCNN nor attention models are directly designed for
the early response prediction of brain metastases. The typical approach for medical image
analysis involves techniques such as convolutional neural networks (CNNs) and other
deep learning architectures specifically tailored for image classification and segmentation
tasks. However, the application of RCNN-like techniques and attention mechanisms in this
context could be explored as part of a more advanced and innovative approach to improve
the sensitivity and accuracy of early response prediction for brain metastases.

The success of these techniques would depend on factors such as the availability
of labeled data, the complexity of the metastases detection task, and the computational
resources available for model training and evaluation. It is recommended to work closely
with domain experts in radiology and medical imaging when designing and evaluating
such models to ensure their clinical relevance and efficacy.

GKSRS is a non-invasive radiation therapy for brain conditions. Machine learning and
deep learning enhance SRS in multiple ways [15–19]:

1. Treatment planning: ML helps identify brain structures in medical images (MRI) for
precise target delineation.

2. Dose optimization: ML optimizes radiation doses during planning, balancing efficacy
and tissue protection.

3. Prediction of outcomes: ML predicts SRS treatment outcomes based on patient
characteristics.

4. Quality assurance: ML automates error detection in treatment delivery, enhancing
safety and efficacy.

5. Treatment evaluation: ML assesses treatment effectiveness through patient data,
refining protocols.

In summary, machine learning and deep learning improve Gamma Knife stereotactic
radiosurgery, leading to a more efficient healthcare system [18,19].

In this work, we utilize Google Colaboratory (Google Colab), a cloud-based platform
for Python code development via Jupyter notebooks. It offers a free environment for
researchers, data scientists, and ML practitioners to analyze data, perform machine learning
tasks, etc. [20]. Google Colab boasts features such as access to free GPUs and TPUs for
model training, integration with Google Drive for storage and notebook sharing, and real-
time code cell execution with instant feedback. Popular Python libraries like TensorFlow,
Keras, and PyTorch are supported [18,19].

Data augmentation is employed in ML and computer vision to expand training
datasets with varied samples, addressing limited data and overfitting [21–24]. ML tech-
niques include flipping, rotating, scaling, cropping, adding noise, and adjusting bright-
ness/contrast. These transformations enhance model robustness and accuracy, with care
taken to maintain data representativeness [24].

Unbalanced datasets pose challenges in ML when one class vastly outweighs the others.
Approaches to address this issue include resampling (oversampling/undersampling), class
weighting, cost-sensitive learning, ensemble methods, and data augmentation [25–29]. The
appropriate method depends on the problem and dataset, necessitating evaluation of all
classes for accurate results [25–29].
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Deep learning employs early stopping and callback lists to improve performance and
prevent overfitting. Early stopping halts training when validation performance degrades
after a set number of epochs, guarding against overfitting. Callback lists execute functions
during training, enabling customization and the implementation of techniques like model
checkpointing and learning rate scheduling [25–29]. Keras supports both early stopping
and callback lists, enhancing model training and performance.

In the following sections, we present an AI evaluation of prognostic factors in the
evolution of stage-treated metastases based on medical imaging with the Gamma Knife
treatment machine from our department, as depicted in the diagram from Figure 1.
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based on medical imaging with the Gamma Knife treatment machine from our department.

Our present goals are as follows:

1. Gather and preprocess data: Collect MRI scans from patients with stage-treated
metastases who underwent Gamma Knife treatment. Preprocess the data to ensure
its analysis readiness, addressing data imbalance using augmentation techniques
like SMOTE.

2. Identify prognostic factors: Use domain expertise and existing research to identify
potential factors influencing metastases evolution, including tumor size, location,
shape, patient demographics, and clinical history.

3. Develop the AI model: Select a suitable deep learning algorithm and train it on
preprocessed data to predict metastases evolution likelihood, considering the iden-
tified prognostic factors and Gamma Knife treatment specifics. Three methods are
employed: CNN model from scratch, CNN model with transfer learning, and CNN
model with fine-tuning.

4. Evaluate model performance: Test the AI model on separate data to assess its predic-
tive capabilities using metrics like accuracy, sensitivity, specificity, confusion matrix,
and receiver operating characteristics.

5. Interpret results: Analyze AI model outputs to identify the most important prog-
nostic factors affecting metastases evolution in Gamma Knife-treated patients, using
visualizations and statistical analysis to explore relationships between factors.

6. Validate findings: Verify AI model results with additional data and compare predic-
tions against outcomes of real Gamma Knife-treated patients.

7. Communicate results: Present the AI evaluation findings clearly, highlighting cru-
cial prognostic factors and their implications for metastases treatment with the
Gamma Knife.
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Research Gaps and Critical Limitations:
This paper’s study regarding the use of deep learning techniques to predict metastases

evolution post-treatment represents a significant step forward; however, there are notable
research gaps and limitations that should be acknowledged:

Sample Size and Generalization: One critical limitation is the relatively small sample
size used in the study. This raises concerns about the model’s ability to generalize to a
larger patient population and diverse clinical settings. Addressing this gap is crucial to
ensure the model’s robustness and reliability.

Single-Center Design and Bias: The single-center design of the study introduces the
potential for institutional biases and limitations in regards to the diversity of patient
cases. Multicenter studies or more diverse datasets are needed to validate the model’s
effectiveness across different healthcare settings.

Retrospective Nature and Confounding Factors: The retrospective nature of the data
collection may introduce confounding factors that could impact the accuracy and gen-
eralizability of the deep learning model’s predictions. Future research should consider
prospective designs to minimize such biases.
Motivation, Contribution, and Novelties:

The motivation of the paper lies in leveraging deep learning techniques for predicting
treatment outcomes in patients with stage-treated metastases who underwent Gamma
Knife radiosurgery. The paper’s contributions and novelties include:

Clinical Application of Deep Learning: The paper introduces the novel application
of deep learning in predicting metastases evolution, bridging the gap between advanced
machine learning techniques and clinical decision making.

Accurate Outcome Prediction: The study demonstrates that deep learning algorithms
can accurately predict treatment outcomes post-Gamma Knife radiosurgery. This insight
has significant clinical implications for enhancing treatment decision-making processes.
Future Research:

The identified limitations and the potential impact of the paper’s findings suggest
several avenues for future research:

Validation in Larger Cohorts: Future studies should aim to validate deep learning
models using larger and more diverse patient cohorts. This will enhance the model’s
reliability and ability to generalize to a broader patient population.

Multi-Center Studies: Conducting multicenter studies across different healthcare
institutions can help mitigate biases associated with a single-center design and improve
the model’s robustness in various clinical settings.

Prospective Studies: Prospective studies can offer more controlled data collection
and minimize retrospective biases, thereby strengthening the validity of the deep learning
model’s predictions.

Model Interpretability: Exploring techniques for explaining the deep learning model’s
predictions could enhance its clinical utility by providing insights into the factors driving
specific outcomes.

Generalizability to Other Clinical Contexts: Given the success of the model in pre-
dicting metastases evolution, investigating the adaptability of deep learning algorithms to
other clinical contexts could expand the scope of its application.

Ethical Considerations: Future research should delve into the ethical implications of
using AI-driven predictions in medical decision making, ensuring that patient autonomy,
consent, and privacy are upheld.

Integration into Clinical Workflow: As mentioned in the context of an upcoming
paper, developing an application for deploying the model in a clinical setting would require
research into user interface design, real-time processing, and seamless integration with
existing healthcare systems.

In summary, while the paper contributes valuable insights into using deep learning for
predicting treatment outcomes in metastases patients, addressing its limitations and pursu-
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ing further research avenues will enhance the reliability, generalizability, and practicality of
the proposed approach.

2. Materials and Methods
2.1. Ethics

All experiments were carried out in accordance with relevant guidelines and regula-
tions. The study used only pre-existing medical data; therefore, patient consent was not
required, and since it was retrospective, there was no need of approval from the Ethics
Committee of Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu” Iasi.

2.2. Patients

From July 2022 to February 2023, in the Stereotactic Radiosurgery Laboratory, Prof. Dr.
N. Oblu Emergency Clinical Hospital, Iasi, 19 patients with single metastases were staged
treated according to a treatment scheme of 30 Gy administered in 3 sessions (S1, S2, S3) of
10 Gy at 2-week intervals. Among the 19 patients, 5 were female and 14 male, aged between
43 and 80 years. All treated patients had a Karnofsky score of at least 70, and the initial
tumor volumes before the first treatment session varied from 2 to 81 cm3, with an average
of 16 cm3. The primary site of the 19 metastases treated was bronchopulmonary neoplasm
in 14 cases, breast neoplasm in 3 cases, laryngeal neoplasm and prostate neoplasm, in one
case each.

After the treatment, only one patient showed a clear regression of the lesion using
the three-session treatment scheme, with another three being observed as a fluctuating
progression and regression lesion case.

2.3. MRI Data Acquisition

All MRI examinations were performed on a 1.5 Tesla whole-body scanner (GE SIGMA
EXPLORER) that was equipped with the standard 16-channel head coil. The MRI study
protocol consisted of:

1. The conventional anatomical MRI (cMRI) protocol for clinical routine diagnosis of
brain tumors included, among others, an axial fluid-attenuated inversion recovery
(FLAIR) sequence, as well as a high-resolution contrast-enhanced T1-weighted (CE
T1w) sequence.

2. The advanced MRI (advMRI) protocol for clinical routine diagnosis of brain tumors
was extended by axial diffusion-weighted imaging (DWI; b values 0 and 1000 s/mm2)
sequence and a gradient echo dynamic susceptibility contrast (GE-DSC) perfusion
MRI sequence, which was performed using 60 dynamic measurements during admin-
istration of 0.1 mmol/kg-bodyweight gadoterate meglumine.

2.4. Workflow
2.4.1. Basic Imports

In Python, we imported fundamental libraries for scientific computing, data manipula-
tion (NumPy and Pandas), machine learning (TensorFlow), and data visualization (Seaborn
and Matplotlib).

2.4.2. Image Data Processing

The BrainMet Image Dataset, consisting of three subfolders: TRAIN, TEST, and VAL,
is stored in the cloud on Google Drive. For training, the train_path is used; for testing, the
test_path is used; and for validation, the valid_path is used. The train subfolder contains
2865 MRI brain metastasis images, with 2083 images of regression class ‘1’ and 782 images of
progression class ‘0’. The test subfolder contains 874 images, with 230 images of regression
class ‘1’ and 85 images of progression class ‘0’. The val subfolder contains 14 images, with
7 images of regression class ‘1’ and 7 images of progression class ‘0’.



Diagnostics 2023, 13, 2853 7 of 21

Techniques to Overcome Insufficient Data from our Image Database

As discussed in Section 1, Introduction, data augmentation is a technique to artificially
increase the size of a dataset by applying image augmentation methods to the existing
training data. Its use is crucial when dealing with small imaging databases, as it improves
the model’s training ability by subjecting the data to various image processing techniques.
This increases the model’s accuracy and enhances its capability to predict cases. In the
medical image recognition field, data augmentation plays a vital role by applying small
transformations to existing data. This approach is especially important to address privacy
regulations that may limit the sharing of medical data.

Transfer learning is another alternative approach that utilizes pre-trained state-of-the-
art CNN models, like those trained on the ImageNet dataset. It is known to achieve higher
performance compared to training CNNs from scratch (full-training) [30,31].

In the following material, you will find Table 1, with the splitting of the BrainMet
image dataset in TRAIN, TEST, VAL sets, and the number of images belonging to the two
classes: PROGRESSION—class 0, and REGRESSION—class 1.

Table 1. The splitting of the BrainMet image dataset in TRAIN, TEST, VAL and the number of images
belonging to the two classes.

TRAIN Set TEST Set VALIDATION Set

2865 315 14

Progression 782 85 7

Regression 2083 230 7

Addressing the Unbalanced Dataset Issue Which Is Present in This Study

Class weights are typically used in the calculation of the loss function. The loss
function is a measure of the difference between the predicted values and the actual values,
and is used to update the model’s parameters during training. By assigning higher weights
to the minority class, the loss function places more emphasis on correctly classifying these
samples. The class weights can be manually specified or automatically computed, based on
the class frequencies in the training data.

Our image dataset is highly unbalanced, with 2320 images from the regression class ‘1’
and only 874 from the progression class ‘0.’ To address this issue, we use class weighting
(see Section 1, Introduction, for details).

Class weighting is a technique in deep learning that adjusts the contribution of dif-
ferent classes in the loss function during training. In classification tasks with imbalanced
classes, the model may become biased towards the majority class, leading to poor perfor-
mance regarding the minority class. To overcome this, class weights are assigned to give
more importance to the minority class during training. In our study, the regression class
receives less weight (0.69) compared to the progression class (1.83), as illustrated in the
following output:

{0: 1.83, 1: 0.69}
Class weights are typically used in the loss function calculation, which measures the

difference between predicted and actual values and guides the model’s parameter updates
during training. By giving higher weights to the minority class, the loss function focuses
more on correctly classifying these samples. Class weights can be manually specified or
automatically computed, based on the class frequencies in the training data.

2.4.3. Model-1: Convolutional Neural Network Model from Scratch (CNN_Model)

A convolutional neural network (CNN) is a variant of multi-layer perceptrons (MLPs)
designed for 2-D imaging tasks. It comprises three layers: convolutional, subsampling,
and output. The convolutional layer passes results to the next layer through convolution,
function expression, and feature maps. Subsampling layers follow convolutional layers,
reducing feature map size while preserving information between features.



Diagnostics 2023, 13, 2853 8 of 21

We will briefly discuss the use of the CNN approach in addressing the problem of
early response prediction of brain metastases.

** Feature Learning from Images: ** CNNs are particularly effective in image anal-
ysis tasks due to their ability to automatically learn hierarchical features from raw pixel
values. In the context of brain metastases prediction, CNNs can learn to identify patterns,
textures, and shapes that are indicative of early metastatic growth. This feature learn-
ing process reduces the need for manual feature engineering, which can be complex and
time-consuming.

** End-to-End Learning: ** CNNs enable end-to-end learning, meaning that the
model learns a mapping directly from input images in order to make predictions. This is
advantageous because it optimizes the entire pipeline simultaneously, without requiring
intermediate steps. For the early response prediction of brain metastases, this end-to-end
approach allows the model to learn complex relationships between image features and the
likelihood of progression or stagnation.

** Transfer Learning: ** Transfer learning involves using pre-trained models on large
datasets and fine-tuning them for specific tasks. The use of a modified ResNet152V2
architecture, previously trained on colored images, illustrates this advantage. Leveraging
a pre-trained model speeds up the convergence process and allows the model to capture
general image features that could be relevant to brain metastases prediction.

** Availability of Labeled Data: ** CNNs can perform well with a moderate amount
of labeled data. In medical imaging, acquiring large datasets with accurate labels can be
challenging due to the need for expert annotations. CNNs can still yield meaningful results,
even with relatively smaller datasets, making them suitable for medical applications in
which data availability might be limited.

** Robustness to Variability: ** CNNs are designed to handle various levels of vari-
ability in images, including changes in lighting, orientation, and scale. In the case of brain
metastases, images can exhibit variations in terms of image quality, patient positioning,
etc. The hierarchical features learned by CNNs allow them to capture relevant information,
despite these variations.

** Interpretability and Visualization: ** CNNs can provide insights into their decision-
making process through techniques like feature visualization and heatmaps. This inter-
pretability can be crucial in medical applications in which understanding why a model
makes a particular prediction is important for gaining trust and clinical acceptance.

Accordingly, the main model in this project is a CNN network designed from scratch.
The network uses convolution, max pooling, and dense layers, and it is trained based on
input weights (images).

The process starts with a lower filter size and gradually increases layer-wise. The
kernel/filter size is [3X3], and ReLU is used as the activation function. The input shape
represents the dimensions of the MRI image (height, width, and color channel). Although
MRI images are in grayscale, we assume a color channel of “3” because the network used
(ResNet152V2) was previously trained on colored images. One could also choose 1 as the
color channel for grayscale images.

After each convolution layer, a [2X2] max pooling layer is added to decrease data
size and processing time. The network consists of three blocks: Block-1, with a 1X16
Conv2D layer and one MaxPooling2D layer; Block-2, with 2X32 Conv2D layers and two
MaxPooling2D layers after each convolution layer; and Block-3, with 2X64 Conv2D layers
and two MaxPooling2D layers after each convolution layer.

The final layer is a flatten layer, followed by dense layers for classification/prediction.
The sigmoid function is used in the last layer, since the problem is a binary classification
(stagnation or progression),with one output unit.

To compile the model, three main parameters are required: (1) learning rate (optimizer),
(2) loss function (binary_crossentropy), and (3) metrics (accuracy) to evaluate the training
and validation sets’ loss and accuracy. The Adam optimizer is mainly used in this case, as
it provides adaptive learning rates for different parameters.
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The model architecture we use is a convolutional neural network (CNN) based on the
ResNet152V2 architecture, which we are adapting for the task of early response prediction
of brain metastases using MRI images. Our model selection, loss function, training strategy,
and other relevant aspects, are broken down as follows:

** Model Architecture: ** We are using a modified ResNet152V2 architecture, which is
a deep CNN architecture known for its strong performance for various computer vision
tasks. By customizing the architecture to our specific problem, we are leveraging the
hierarchical feature extraction capabilities of the CNN layers. The gradual increase in
filter size and the introduction of max pooling layers help to capture increasingly complex
features from the MRI images.

** Loss Function: ** Binary cross-entropy loss (binary_crossentropy) is a suitable
choice for binary classification tasks like ours (regression or progression). It quantifies
the difference between predicted probabilities and true labels, encouraging the model to
produce higher probabilities for the correct class and lower probabilities for the incorrect
class. This loss function is widely used in binary classification scenarios.

** Training Strategy: ** Our training strategy involves using the Adam optimizer, with
a specified learning rate. Adam is an adaptive optimization algorithm that adjusts the
learning rates for each parameter based on the historical gradients. This can help the model
converge faster and find a good set of weights. Additionally, we are using accuracy as
a metric to evaluate the model’s performance on both training and validation sets. It is
important to monitor not only the training accuracy, but also the validation accuracy to
detect overfitting, as we did.

** Model Layers and Activation Function: ** The use of ReLU activation functions after
each convolutional layer is a common practice. ReLU helps introduce non-linearity into
the model and can improve the network’s ability to capture complex relationships in the
data. Max pooling layers after each convolutional layer reduce the spatial dimensions of
the feature maps, helping to decrease the computational load and retain essential features.

** Flatten and Dense Layers: ** The final layers include a flatten layer, followed by
dense layers for classification. This is a typical setup in which the spatial information is
flattened and then passed through fully connected layers for classification. Using a sigmoid
activation function in the last layer is appropriate for binary classification, as it produces an
output in the range of [0, 1], representing the probability of the positive class.

Overall, our model architecture, loss function, training strategy, and other design
choices seem reasonable for the task of early response prediction of brain metastases using
MRI images.

The word “parameters” refers to the count of weights learned during our training
process. These parameters play a crucial role in the model’s predictive power, as they are up-
dated layer-wise using the back propagation method, driven by the optimization technique,
which is Adam learning, in this case. As seen in Table 2, we have three columns: (1) Layer
(type), (2) Output Shape, and (3) Param #, which represents the parameters. For each layer,
the parameters are calculated and generated. The input layer, which is just an assigned
input image shape, is not listed in the table and does not have learnable parameters.

Table 2. Parameters in the first model, CNN model from scratch. Model: “sequential”.

Layer (Type) Output Shape Param #

conv2d (Conv2D) (None, 222, 222, 16) 448

max_pooling2d (MaxPooling2D) (None, 111, 111, 16) 0

conv2d_1 (Conv2D) (None, 109, 109, 32) 4640

max_pooling2d_1 (MaxPooling2 (None, 54, 54, 32) 0

conv2d_2 (Conv2D) (None, 52, 52, 32) 9248

max_pooling2d_2 (MaxPooling2 (None, 26, 26, 32) 0
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Table 2. Cont.

Layer (Type) Output Shape Param #

conv2d_3 (Conv2D) (None, 24, 24, 64) 18,496

max_pooling2d_3 (MaxPooling2 (None, 12, 12, 64) 0

conv2d_4 (Conv2D) (None, 10, 10, 64) 36,928

max_pooling2d_4 (MaxPooling2 (None, 5, 5, 64) 0

flatten (Flatten) (None, 1600) 0

dense (Dense) (None, 128) 204,928

dense_1 (Dense) (None, 64) 8256

dense_2 (Dense) (None, 1) 65
Total params: 283,009; trainable params: 283,009; non-trainable params: 0.

Fitting and Evaluating the Model (CNN_Model)

In Figure 2, the plot of the training and validation and the loss and accuracy curves,
along with the learning rate (see the legend) for the CNN_model from scratch, is displayed.
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The accuracy of the CNN_model:
The testing accuracy is: 98.41269850730896%.
The confusion matrix of the CNN_model:
In Figure 3, the confusion matrix for the CNN_model from scratch can be seen.
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From the confusion matrix for the CNN_model from scratch, we can see that from the
85 progression cases, the model predicted 85 cases correctly. From the 230 regression cases,
the model predicted 225 cases correctly, making only 5 mistakes, predicting progression for
cases actually belonging to the regression class (false negatives). The classification report
for the CNN_model from scratch is depicted in Table 3.

Table 3. Classification report for the CNN_model from scratch.

Precision Recall F1-Score Support

Progression 0.94 1.00 0.97 85

Regression 1.00 0.98 0.99 230

Accuracy - - 0.98 315

Macro avg 0.97 0.99 0.98 315

Weighted avg 0.99 0.98 0.98 315

In Figure 4, images showing actual cases versus the predicted cases, with the probabil-
ity of prediction, for the CNN_model from scratch on unseen images, are presented.
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2.4.4. Model-2: Transfer Learning (TL_Model)

In our study, we employed transfer learning (TL) using a pretrained model (see
Table 4), specifically ResNet152V2, which was pretrained on the ImageNet dataset.
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Table 4. Parameters of the second model, TL model.

Layer (Type) Output Shape Param #

input_1 (InputLayer) [(None, 224, 224, 3)] 0

resnet152v2 (Functional) (None, 7, 7, 2048) 58,331,648

global_average_pooling2d (Gl) (None, 2048) 0

dense (Dense) (None, 128) 262,272

dense_1 (Dense) (None, 64) 8256

dense_2 (Dense) (None, 1) 65
Total params: 58,602,241; trainable params: 270,593; non-trainable params: 58,331,648.

Residual network (ResNet) networks are deep networks that avoid vanishing gra-
dient issues through “skip connection”. ResNet has different models with varying num-
bers of layers, such as ResNet50, ResNet50V2, ResNet101, ResNet101V2, ResNet152, and
ResNet152V2.

In ResNet, convolution layers and other methods are used, but the key is the “skip
connection” that adds the original input to the output of the convolution block. This skips
some layers, preventing the gradient from vanishing.

Weights download for the ResNet model:
234545216/234545216 [==============================]—2 s 0 us/step
As the featured learning layers are frozen, the parameters of these layers are also

predetermined. Finally, the classified layer parameters are obtained by the retrained layer.
All the parameter rules and formulas are similar to those mentioned in Model-1.

Fitting and Evaluating the Model (TL_Model)

In Figure 5, the plot of the training and validation and the loss and accuracy curves,
along with the learning rate (see the legend) for TL_model, is shown.
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The accuracy of the TL_model
The testing accuracy is: 91.74603223800659%.
The prediction of the TL_model timestamp
10/10 [==============================]—5 s 219 ms/step
The confusion matrix of the TL_model:
In Figure 6, the confusion matrix for the TL_model from scratch can be seen.
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From the confusion matrix for the TL_model, we can see that from the 85 progression
cases, the model predicted 83 cases correctly, making only 2 mistakes, predicting regression
for cases actually belonging to progression class (false positives). From the 230 regression
cases, the model predicted 206 cases correctly, making only 24 mistakes, predicting progres-
sion for cases actually belonging to the regression class (false negatives). Also, check the
results in the classification report (Table 5).

Table 5. Classification report for the TL_model.

Precision Recall F1-Score Support

Progression 0.78 0.98 0.86 85

Regression 0.99 0.90 0.94 230

Accuracy - - 0.92 315

Macro avg 0.88 0.94 0.90 315

Weighted avg 0.93 0.92 0.92 315

In Figure 7, images showing actual cases versus the predicted cases, with the probabil-
ity of prediction, for the TL_model on unseen images, are presented.



Diagnostics 2023, 13, 2853 14 of 21

Diagnostics 2023, 13, x FOR PEER REVIEW 15 of 23 
 

 

 Precision Recall F1-Score Support 
Progression 0.78 0.98 0.86  85 
Regression 0.99 0.90 0.94 230 
Accuracy - - 0.92 315 

Macro avg 0.88 0.94 0.90 315 
Weighted avg 0.93 0.92 0.92 315 

 

In Figure 7, images showing actual cases versus the predicted cases, with the proba-
bility of prediction, for the TL_model on unseen images, are presented. 

 
Figure 7. Images showing actual cases versus the predicted cases, with probability of prediction, for 
the TL_model on unseen images. 

2.4.5. Model-3: Fine Tuning (FT) 
The fine tuning technique is the third type of approach for solving this problem. FT 

is the most efficient and accurate technique because of its flexibility. In this model, every 
aspect is similar to those in the TL model (Model-2); the only change is the unfreezing of 
the last few layers of the feature extraction step; all other aspects remain the same. This 
small change will bring a beneficial results regarding the model prediction because of the 
retraining the last few layers of the feature learning layers. The pretrained model is also 
the same as that used in Model-2, which is Resnet152V2 (see Table 6). 

Table 6. Parameters of the third model, FT model. 

Layer (Type) Output Shape Param # 
input_1 (InputLayer) [(None, 224, 224, 3)] 0 

resnet152v2 (Functional) (None, 7, 7, 2048) 58,331,648 

Figure 7. Images showing actual cases versus the predicted cases, with probability of prediction, for
the TL_model on unseen images.

2.4.5. Model-3: Fine Tuning (FT)

The fine tuning technique is the third type of approach for solving this problem. FT
is the most efficient and accurate technique because of its flexibility. In this model, every
aspect is similar to those in the TL model (Model-2); the only change is the unfreezing of
the last few layers of the feature extraction step; all other aspects remain the same. This
small change will bring a beneficial results regarding the model prediction because of the
retraining the last few layers of the feature learning layers. The pretrained model is also
the same as that used in Model-2, which is Resnet152V2 (see Table 6).

Table 6. Parameters of the third model, FT model.

Layer (Type) Output Shape Param #

input_1 (InputLayer) [(None, 224, 224, 3)] 0

resnet152v2 (Functional) (None, 7, 7, 2048) 58,331,648

global_average_pooling2d (Gl) (None, 2048) 0

dense (Dense) (None, 128) 262,272

dense_1 (Dense) (None, 64) 8256

dense_2 (Dense) (None, 1) 65
Total params: 58,602,241. Trainable params: 5,789,953. Non-trainable params: 52,812,288.

Calculation of parameters for FT Technique: The Model-3 summary of layers will be the
same as for Model-2 because they both employ the same layers up to this point; however, in
this technique, the last 15 layers are unfrozen. Due to this change, the number of trainable
and non-trainable parameters in this model will also change. It should be noted that
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the parameters of the dense layers do not change. The total trainable parameters in this
technique are 5,789,953, whereas in Model-2, they are 270,593.

Fitting and Evaluating the Model (FT)

In Figure 8, a plot of the training and validation and loss and accuracy curves, along
with the learning rate (see the legend) for the FT_model, is shown.
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Figure 8. Plot of the training and validation and loss and accuracy curves, along with the learning
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The accuracy of the FT_model:
The testing accuracy is: 83.17460417747498%
The prediction of the FT_model timestamp
10/10 [==============================]—5 s 214 ms/step
The confusion matrix of the FT_model:
In Figure 9, the confusion matrix for the FT_model from scratch can be seen.
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From the confusion matrix for the FT_model, we can see that from the 85 progres-
sion cases, the model predicted 85 cases correctly. From the 230 regression cases, the
model predicted 177 cases correctly, making 53 mistakes, predicting progression for cases
actually belonging to the regression class (false negatives). Please check Table 7 for the
classification report.
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Table 7. Classification report for the FT_model.

Precision Recall F1-Score Support

Progression 0.62 1.00 0.76 85

Regression 1.00 0.77 0.87 230

Accuracy - - 0.83 315

Macro avg 0.81 0.88 0.82 315

Weighted avg 0.90 0.83 0.84 315

In Figure 10, images showing actual cases versus the predicted cases, with probability
of prediction, for the FT_model on unseen images, are presented.
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2.4.6. Final Accuracy, ROC Curve, and AUC of Model-1 (CNN Model from Scratch),
Model-2 (TL) and Model-3 (FT)

1. The testing accuracy of Model-1 (CNN model from scratch) is: 98.41%.
2. The testing accuracy of Model-2 (transfer learning) is: 91.75%.
3. The testing accuracy of Model-3 (fine tuning) is: 83.17%.

The receiver operating characteristic (ROC) curve is a graphical representation of a
binary classifier’s performance as the discrimination threshold varies. It plots the true
positive rate (TPR) against the false positive rate (FPR) at different thresholds.

The area under the ROC curve (AUC) quantifies the binary classifier’s performance
over all possible thresholds. It ranges from 0 to 1, with 0.5 indicating random guessing and
1 indicating perfect classification.

To calculate the ROC curve and the AUC, we followed these steps:
Predictions: First, the deep learning model makes predictions for each instance in the

dataset. These predictions are often in the form of probability scores for the positive class.
Sorting: Sort the instances based on their predicted scores in descending order.
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Threshold Variation: Start with a threshold of 0 (considering all instances as negative)
and gradually increase the threshold. At each threshold, calculate the TPR and FPR.

True Positive Rate (TPR) = True Positives/(True Positives + False Negatives).
False Positive Rate (FPR) = False Positives/(False Positives + True Negatives).
Plotting the ROC Curve: Plot the calculated TPR values on the y-axis against the FPR

values on the x-axis to create the ROC curve.
Calculating the AUC: The AUC is calculated by computing the integral of the ROC

curve. This can be done using numerical integration techniques or more simply by summing
the areas of the trapezoids formed between adjacent points on the curve.

ROC and AUC are used for:
Robustness to class imbalance: ROC and AUC are less affected by class imbalance than

metrics such as accuracy. They provide a comprehensive view of a model’s performance
across various classification thresholds.

Threshold Selection: ROC curves help in choosing an appropriate classification thresh-
old based on the desired trade-off between sensitivity and specificity for the specific problem.

Model Comparison: AUC provides an easy way to compare the performance of
different models without needing to consider multiple thresholds. A higher AUC generally
indicates better discrimination ability.

Insight into Model Behavior: ROC curves reveal how well a model performs at
different levels of false positives, which can be important in many real-world applications.

In summary, ROC and AUC are valuable tools for assessing the performance of
classification models, especially in situations where class distribution is imbalanced or
where different operating points are of interest.

Let us analyze the ROC curve and AUC for the three models used (see Figure 11).
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Figure 11. ROC curve and AUC for the three models. AUC of Model-1 (CNN model from scratch),
Model-2 (TF), and Model-3 (FT).

The first model, the CNN_model from scratch, achieved an AUC of 0.989, indicating
excellent accuracy in distinguishing between positive and negative instances.

The second model, the TL_model, scored 0.936, still performing well, but scoring slightly
lower than the first model in distinguishing between positive and negative instances.

The third model, the FT_model, obtained an AUC of 0.885, the lowest among the three
models, suggesting that it may not perform as well in distinguishing between positive and
negative instances.

Overall, the CNN_model from scratch is the best performer, followed by the TL_model,
and then the FT_model. It is important to consider other metrics like precision, recall, and
F1-score when evaluating the performance of a binary classification model.
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3. Discussion and Conclusions

In this paper, we used deep learning techniques to analyze imaging data from patients
with stage-treated metastases who underwent Gamma Knife radiosurgery. Our results show
that deep learning algorithms accurately predict metastases evolution post-treatment [32].

However, our study has limitations, including a relatively small sample size, a single-center
design, and a retrospective nature, potentially introducing biases and confounding factors.

Despite these limitations, our work provides essential insights into using deep learn-
ing techniques to predict treatment outcomes in metastases patients, with clinical im-
plications for treatment decision making and patient outcomes. Future studies should
validate our models in larger patient cohorts and explore deep learning algorithms in other
clinical contexts.

Radiomics, an image analysis technique used in oncology, enhances diagnosis, prog-
nosis, and clinical decision making for precision medicine. In brain metastases, radiomics
identifies smaller metastases, defines multiple larger ones, predicts local response post-
radiosurgery, and distinguishes radiation injury from metastasis recurrence. Radiomics
approaches achieve high diagnostic accuracies of 80–90% [32].

Notable papers related to radiomics and machine learning applications in stereotactic
radiosurgery include a comprehensive review discussing brain tumor diagnostics, image
segmentation, and distinguishing radiation injury from metastasis relapse [32]. Studies
regarding predicting the response after radiosurgery reveal potential, with features like the
presence of a necrotic core, the fraction of contrast-enhancing tumor tissue, and the extent
of perifocal edema [33–38].

The advances in radiomics and deep learning hold promise for precision medicine in
brain metastases treatment, enabling precise diagnoses, prognoses, and treatment response
monitoring [39].

Randomized trials demonstrate the benefits of SRS as a standalone treatment for
brain metastases, without significant decrease in survival. However, SRS alone associates
with higher local failure rates, warranting identification of high-risk patients. Radiomics
analyses show potential for predicting local failure and SRS response [40–48].

Quantitative imaging features correlate with outcomes after radiation therapy, enhanc-
ing personalized cancer care. A multidisciplinary approach integrating radiomics and deep
learning is essential in the medical decision-making and radiation therapy workflow for
bone metastasis [48].

Studies by Huang et al. and others explore significant radiomic features related to core
volume and sphericity, predicting local tumor control after GKRS [49]. Machine learning
processes predict the brain metastasis response to GKRS, with promising accuracy [50].

Cha et al. developed a radiomics model based on a convolutional neural network to
predict the response to SRT for brain metastases, achieving promising results with ensemble
models [37].

In conclusion, our deep learning approach accurately predicts metastases evolution.
Radiomics and machine learning are promising tools for improving brain metastases
treatment. Validation studies and improved integration in clinical workflows are needed to
maximize their potential [32–51].

Computational software related to applied fractal analysis used in this study was
initiated and then successfully developed in the articles of some of the authors mentioned
in the bibliography [51–55].

Classification reports (Tables 3, 5 and 7) for three different deep learning models
(CNN_model, TL_model, and FT_model) present performance metrics for a binary classifi-
cation problem with two classes: “progression” and “regression”.

CNN_model:

• “Progression” class: Precision = 0.94, Recall = 1.00, F1-score = 0.97, Accuracy = 0.98.
• “Regression” class: Precision = 1.00, Recall = 0.98, F1-score = 0.99, Accuracy = 0.98.

Overall, the CNN_model performed very well, with high precision, recall, and F1-scores
for both classes.
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TL_model:

• “Progression” class: Precision = 0.78, Recall = 0.98, F1-score = 0.86, Accuracy = 0.92.
• “Regression” class: Precision = 0.99, Recall = 0.90, F1-score = 0.94, Accuracy = 0.92.

The TL_model performed well, with high recall for the “progression” class, but its
precision could be improved.

FT_model:

• “Progression” class: Precision = 0.62, Recall = 1.00, F1-score = 0.76, Accuracy = 0.83.
• “Regression” class: Precision = 1.00, Recall = 0.77, F1-score = 0.87, Accuracy = 0.83.

The FT_model showed high precision for the “regression” class and high recall for the
“progression” class. However, there may be some misclassification in these cases, and
the F1-scores indicate a tradeoff between precision and recall.

In summary, all three models demonstrated good to very good performance, but there
is room for improvement in certain aspects. Further analysis, such as examining the confu-
sion matrix, may provide additional insights into the models’ strengths and weaknesses.
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