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Abstract: Aim: The overall aim of this proposal is to ameliorate the care of rotator cuff (RC) tear
patients by applying an innovative machine learning approach for outcome prediction after arthro-
scopic repair. Materials and Methods: We applied state-of-the-art machine learning algorithms to
evaluate the best predictors of the outcome, and 100 RC patients were evaluated at baseline (T0), after
1 month (T1), 3 months (T2), 6 months (T3), and 1 year (T4) from surgical intervention. The outcome
measure was the Costant–Murley Shoulder Score, whereas age, sex, BMI, the 36-Item Short-Form
Survey, the Simple Shoulder Test, the Hospital Anxiety and Depression Scale, the American Shoulder
and Elbow Surgeons Score, the Oxford Shoulder Score, and the Shoulder Pain and Disability Index
were considered as predictive factors. Support vector machine (SVM), k-nearest neighbors (k-NN),
naïve Bayes (NB), and random forest (RF) algorithms were employed. Results: Across all sessions, the
classifiers demonstrated suboptimal performance when using both the complete and shrunken sets of
features. Specifically, the logistic regression (LR) classifier achieved a mean accuracy of 46.5% ± 6%,
while the random forest (RF) classifier achieved 51.25% ± 4%. For the shrunken set of features, LR
obtained a mean accuracy of 48.5% ± 6%, and RF achieved 45.5% ± 4.5%. No statistical differences
were found when comparing the performance metrics of ML algorithms. Conclusions: This study
underlines the importance of extending the application of AI methods to new predictors, such as
neuroimaging and kinematic data, in order to better record significant shifts in RC patients’ prognosis.
Limitations: The data quality within the cohort could represent a limitation, since certain variables,
such as smoking, diabetes, and work injury, are known to have an impact on the outcome.

Keywords: rotator cuff; outcome predictors; machine learning; ensemble of classifiers

1. Introduction

The most common etiology of shoulder discomfort is rotator cuff (RC) disease, which
may account for up to 70% of all consultations involving the shoulder [1–3]. It has been
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demonstrated that RC tears result in substantial discomfort and impairment, as well as
reduced performance in daily living tasks [3,4]. Even though surgery is widely accepted
around the world [5,6], the possibility of re-tearing is still a significant postoperative
obstacle [5–9]. A re-tear is considered a significant risk according to the age, the extent of
the first lesion, and the fatty degeneration of the patient [10,11].

About 25% of patients with RCTs experience anxiety or depression, and psychological
health may be a key indicator of how well a patient will recover from arthroscopic rota-
tor cuff surgery [12]. Nonetheless, in medical care, the functional assessment frequently
focuses on the objective aspects of the illness, such as measuring range of motion (ROM)
and strength [12,13]. In light of this, orthopedic research has progressed, and the creation
of well-established, patient-oriented metrics has offered clinical outcome evaluation a
new perspective, in addition to objective measurements [14]. Patient-Reported Outcome
Measures (PROMs) are frequently employed to assess the patients’ wellness [15]. Bypass-
ing the clinician’s evaluation, PROMs are subjective patient-reported scales designed to
offer clinical status outcomes [16,17]. Insufficient pain alleviation for patients with shoul-
der discomfort may lead to the development of mental health issues such as depression
and anxiety [18,19]. These psychological disorders represent strong predictors of worse
postoperative functional outcomes [20,21]. An example of PROM used as a screening
tool to evaluate individuals with musculoskeletal disorders’ psychological health is the
Hospital Anxiety and Depression Scale (HADS) [22,23]. The HADS is designed to detect
depression and anxiety among non-psychiatric ward patients [24]. Physical symptoms of
emotional distress including headaches, weight loss, and insomnia are not included in this
questionnaire since they may be the outcome of a medical illness rather than emotional
distress itself [25]. The Shoulder Pain and Disability Index (SPADI), on the other hand, was
one of the first PROMs to be established specifically for patients with shoulder diseases,
to assess pain and impairment [26,27]. Due to its proven test–re-test reliability [28] and
change sensitivity, it is commonly used in orthopedic clinical practice [29]. Accordingly,
the Simple Shoulder Test (SST) appears to share the same assets [30]. The SST was created
to determine the functional limitations of the diseased shoulder in relation to the patient’s
day-to-day activities [31]. Again, the 36-Item Short-Form Health Survey (SF-36) is a 36-item
questionnaire that is widely included in orthopedics research and represents a valid ap-
proach for assessing health-related quality of life [32,33]. It examines the social, emotional,
and physical functioning of the patient [34]. The SF-36 is frequently correlated with the
Oxford Shoulder Score (OSS) [35]. The latter is a 12-item, subjective questionnaire, based
precisely on the parameters of pain and function of the injured shoulder [36]. The OSS
consistency, repeatability, and validity have all been established [37]. Finally, the American
Shoulder and Elbow Surgeons (ASES) score was designed to evaluate shoulder discomfort
and functional limitations in adults with musculoskeletal disorders [38]. The American
Academy of Orthopedic Surgeons and the ASES Value Committee have recognized it as an
outcome instrument that should be utilized for all shoulder pathology patients due to its
applicability [39–41].

According to the studies carried out to date, the ASES, DASH, SPADI, OSS, and SST
are the most employed questionnaires for the evaluation of the general health of orthopedic
patients in both the preoperative and postoperative settings [42]. However, in the current
literature, there is no investigation of the reliability of these measures as predictors of
outcome in RC patients. The aim of this study was to apply state-of-the-art machine
learning algorithms to evaluate the validity of these scales to predict the outcome after
arthroscopic repair in RC patients. Longitudinal evaluations at 1, 3, 6, and 12 months from
surgical intervention were calculated.

2. Materials and Methods
2.1. Population

We conducted a prospective cohort study enrolling patients admitted to the outpatient
department of Orthopedics from October 2021 to April 2023. Here, 100 patients who under-
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went arthroscopic rotator cuff repair for rotator cuff tears of any grade were consecutively
enrolled. For each patient, demographic information and comorbidities were collected at
study entry, as reported in Table 1. Moreover, patients underwent clinical assessment on ad-
mission (T0) and after one month (T1), three months (T2), and six months (T3) at discharge,
whereas the outcome variable was assessed after twelve months at discharge (T4).

Table 1. Demographic information and clinical characteristics of the patients.

Predictors RC (n = 102)

Age (years) 60.21 ± 7.77
Sex 40 F/60 M

Height (cm) 169.61 ± 8.09
Weight (kg) 76.38 ± 10.93

Smoking 20 Yes/80 No
Arterial Hypertension 52 Yes/48 No

Goutallier Grade of Rotator Cuff Muscle Degeneration (%)

Stage 0 0%
Stage 1 72%
Stage 2 27%
Stage 3 0%
Stage 4 1%

Informed consent was obtained for all the enrolled patients. The study was conducted
according to the guidelines of the Declaration of Helsinki and approved by the Institutional
Review Board of Campus Bio-Medico University of Rome (COSMO study, protocol number:
78/18 OSS ComEt CBM, 16/10/18). The study was developed following the Good Clinical
Practice (GCP) guidelines.

2.2. Proposed Approach

As an outcome measure, we used the Costant–Murley Shoulder Score, which is a 100-
point scale recommended by the European Society for Shoulder and Elbow Surgery (ESSES)
to assess shoulder function. It evaluates four subscales related to shoulder pathology:
pain, daily living activities, strength, and range of motion [43]. The higher the score, the
better the quality of the function. Then, to make prediction easier for the machine learning
algorithms, the outcome variable was divided into four classes (poor, fair, good, and very
good), as explained in Table 2.

Table 2. Conversion between Constant-Murley Score and corresponding qualitative classes.

Constant–Murley Score Conversion

Range Class

86–100 Very Good

71–85 Good

56–70 Fair

<56 Poor

By converting the continuous Constant–Murley Score into categorical values, only
three classes were obtained, that is poor, fair, and good. No very good class was found
(Figure 1).
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2.2.1. Predictors’ Selection

As previously mentioned, several clinical scales were tested as predictors of the
outcome variable at admission (T0) and during follow-up (T1–T3):

• 36-Item Short-Form Survey (SF-36): A short-form, patient-reported assessment that
provides an eight-scale profile of scores for both physical and mental health [44].

• Simple Shoulder Test (SST): A shoulder-specific scale that assesses the affected shoul-
der’s functional limits in people with shoulder disorders [45]. It includes 12 questions
in a dichotomous (yes/no) style, with scores ranging from 0 (worst) to 12 (best).

• Hospital Anxiety and Depression Scale (HADS): A self-reported questionnaire for
detecting states of anxiety and depression in a non-psychiatric setting. The anxiety
and depression subscales are evaluated using seven questions each, on a four-point
(0–3) response scale [46] (Table 3).

Table 3. Hospital Anxiety and Depression Scale (HADS) Scoring and Classification.

Score Anxious and Depressive State

8–10 Mild
11–14 Moderate
15–21 Severe

• American Shoulder and Elbow Surgeons Score (ASES): A 100-point scale that estimates
two dimensions of shoulder function—pain and performance—in activities of daily
living. The ASES score allocates 50 points for measuring function and 50 points for
pain [47].
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• Oxford Shoulder Score (OSS): A 12-item, patient-reported scale created especially for
evaluating shoulder surgery results. Each of the 12 questions can be scored from
1 (best) to 5 (worst), so the final score ranges from 12 to 60 [48].

• Shoulder Pain And Disability Index (SPADI): A patient-reported score aimed at quan-
tifying pain and disability in patients with a shoulder injury. It includes 13 items, and
there are 2 subscales: pain and disability. The pain subscale has five items, whereas
the disability scale consists of eight items. The total score is computed by averaging
the 2 subscale scores, thus ranging from 0 to 100 [49].

• Additional demographic and clinical variables, such as age, sex, weight, height, and
the Goutallier grade, were also considered potential predictors (Table 1). The Goutallier
classification was used to quantify the amount of fatty degeneration of the rotator
cuff musculature. It has five stages, starting from Stage 0, meaning normal muscle, to
Stage 4, where fat is more present than muscle [50].

The features were chosen based on their proven use in orthopedic patient assessment
and their potential to reflect various aspects of patient well-being, pain, and functional
ability. We aimed to incorporate a balanced combination of established clinical metrics
and additional variables that could contribute to the prediction of the outcome. The afore-
mentioned metrics capture different facets of patient well-being and functional limitations,
making them plausible candidates for predicting the outcome.

2.2.2. Statistical Analysis

In this research, we used a ML approach to predict clinical outcomes based on data
collected at different times (T0–T3).

Since the variables were not normally distributed, they were compared at admission
and during follow-up using the Friedman test, and the Durbin–Conover test for post-hoc
pairwise comparison. The Friedman test is suitable for repeated measure data, examining
the null hypothesis that there are no differences in the distributions of the variables between
the timepoints. The statistical analysis was conducted using the Jamovi statistical software
(version 2.3.19.0). We set the significance level (α) at α = 0.05 to determine statistical
significance. Table 4 explains the results of the preliminary statistical analysis and the
average ± standard deviation of each variable throughout the sessions. The results were
highly significant for all variables, with p-values consistently lower than 0.001.

Table 4. Clinical scales of the patients at admission and during follow-up sessions.

Variable µ(SD) T0 µ(SD) T1 µ(SD) T2 µ(SD) T3
Friedman

Test
(p-Value)

SF-36 100.34 ± 6.92 97.87 ± 7.59 103.24 ± 6.61 103.61 ± 6.12 <0.001

SST 3.80 ± 2.74 1.95 ± 2.22 6.82 ± 2.59 8.18 ± 2.86 <0.001

HADS 10.06 ± 7.47 7.76 ± 6.32 7.61 ± 7.68 8.59 ± 8.34 <0.001

ASES 36.34 ± 17.14 37.72 ± 13.62 64.33 ± 16.34 71.95 ± 10.26 <0.001

OSS 33.85 ± 10.39 39.87 ± 9.44 23.10 ± 8.06 18.40 ± 5.75 <0.001

SPADI 78.15 ± 26.41 88.75 ± 26.47 41.80 ± 23.39 31.88 ± 18.57 <0.01

2.2.3. Machine Learning Approach

At first, considering the limited number of features provided, all the features were
selected as input of various canonical machine learning classifiers, including support vector
machine (SVM), k-nearest neighbors (k-NN), naïve Bayes (NB), and random forest (RF), in
addiction to logistic regression (LR). All the classifiers were tested separately among each
session (T0–T3) to assess their ability to predict the output at one year from discharge.

Additionally, after extensive testing, we discovered that the LR and RF classifiers
performed better than the others, offering the best predicting performances as well as
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additional benefits for our specific objective. In particular, LR is a linear classifier that
employs a logistic function to model the relationship between the input features and output
classes. Its clarity and interpretability fit the need to comprehend the importance of various
factors in making predictions about the course of rotator cuff disease. RF, on the other
hand, is an ensemble method that builds a number of decision trees and combines their
predictions to reach a decision. The RF classifier was preferred to a simple decision tree (DT)
classifier because it mitigates overfitting and captures complex relationships in the data.
Furthermore, the ensemble nature of RF further improves its robustness and predictive
accuracy, making it suitable for our objective of precise outcome prediction.

Later, correlations between features were computed, keeping only those variables
that were highly correlated with the output and poorly correlated with other features.
Moreover, a statistical-based feature selection method (Chi-squared test) was performed to
both reduce the computational cost of modeling and to assess whether the performances
improved with the shrunken set of features. This step aimed at eliminating redundant or
irrelevant features, focusing on those with stronger predictive power. All these steps were
performed using Python 3 on the Jupyter Notebook platform.

The data preprocessing was firstly performed to treat missing data and scale variables,
ensuring the effectiveness of the predictive models. Missing values were replaced with
the median value of the predictor. All the variables were then standardized using the
RobustScaler module provided in the scikit-learn library, which removes the median value
and scales the data according to the quantile range [51], mitigating the effect of outliers.

For each session and for each machine learning model, we employed the nested cross-
validation (Nested CV), a procedure for model hyperparameters’ optimization and for
preventing overfitting problems. After defining the hyperparameter space, the procedure
involves two loops:

• The outer loop uses K-fold cross-validation (K-fold CV) to divide the dataset into
training set and test sets, assessing the quality of the model trained on the inner loop.

• The inner loop performs hyperparameter tuning by using K-fold CV on the training set.

The strength of this procedure is that it does not use the same data to model parameters
and estimate the performance of the model, reducing the risk of overfitting associated,
instead, with traditional cross-validation techniques. The two k values for the inner and
outer loops were set to balance the computational cost of the procedure and to provide an
unbiased and reliable estimate of the performance. In this direction, we selected a value
equal to 10 for the outer loop and 3 for the inner loop [52].

Accuracy was provided as the score of the estimator for each run of the cross-validation.
Classification performances were then assessed as mean ± standard deviation across
the folds.

For each run of the cross-validation, the estimator’s scores were provided as accuracy,
precision, recall, F1-score, and AUC. By calculating recall metrics for each severity category
(poor, fair, good), we extended our analysis. This refinement shed light on the model’s
proficiency in identifying patients at various severity levels.

Classification performances were then assessed as mean ± standard deviation across
the folds (Tables 5 and 6). This approach provided a thorough understanding of the
models’ predictive abilities across various sessions and spotted any potential changes in
performance over time.
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Table 5. Overview of the performance metrics obtained from the application of the logistic regres-
sion (LR) and random forest (RF) classifiers using Nested CV across multiple sessions (T0–T3).
Results are reported as percentage mean, along with the corresponding standard deviation, of the
classifiers’ performance.

Full Dataset Classification Model

Session Metric (%) Severity LR RF

T0

Accuracy Overall 39 ± 12 46 ± 7
Precision Overall 46 ± 23 59 ± 13

Recall

Overall 39 ± 12 46 ± 7
Poor 5 ± 15 0 ± 0
Fair 61 ± 28 77 ± 16

Good 37 ± 15 38 ± 19
F1-Score Overall 34 ± 11 39 ± 6

AUC Overall 53 ± 16 57 ± 13

T1

Accuracy Overall 49 ± 13 51 ± 10
Precision Overall 58 ± 16 61 ± 19

Recall

Overall 49 ± 13 51 ± 10
Poor 5 ± 15 0 ± 0
Fair 62 ± 22 75 ± 23

Good 62 ± 23 57 ± 25
F1-Score Overall 44 ± 12 44 ± 9

AUC Overall 62 ± 10 67 ± 8

T2

Accuracy Overall 45 ± 15 54 ± 14
Precision Overall 47 ± 18 59 ± 16

Recall

Overall 45 ± 15 54 ± 14
Poor 38 ± 21 48 ± 24
Fair 52 ± 27 55 ± 30

Good 43 ± 22 58 ± 26
F1-Score Overall 44 ± 15 52 ± 15

AUC Overall 60 ± 16 69 ± 7

T3

Accuracy Overall 53 ± 13 54 ± 14
Precision Overall 60 ± 15 57 ± 17

Recall

Overall 53 ± 13 54 ± 14
Poor 53 ± 28 45 ± 36
Fair 57 ± 24 52 ± 27

Good 51 ± 19 65 ± 23
F1-Score Overall 52 ± 12 51 ± 17

AUC Overall 69 ± 10 72 ± 12

Table 6. Overview of the performance metrics obtained from the application of the logistic regression
(LR) and random forest (RF) classifiers using Nested CV across multiple sessions (T0–T3) after
feature selection. Results are reported as percentage accuracy, along with the corresponding standard
deviation, of the classifiers’ performance.

Shrunken
Dataset Classification Model

Session Metric (%) Severity LR RF

T0

Accuracy Overall 48 ± 7 45 ± 7
Precision Overall 62 ± 15 56 ± 13

Recall

Overall 48 ± 7 45 ± 7
Poor 5 ± 15 5 ± 15
Fair 82 ± 15 71 ± 27

Good 36 ± 12 41 ± 12
F1-Score Overall 42 ± 7 39 ± 5

AUC Overall 60 ± 13 61 ± 13
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Table 6. Cont.

Shrunken
Dataset Classification Model

Session Metric (%) Severity LR RF

T1

Accuracy Overall 51 ± 8 46 ± 12
Precision Overall 66 ± 13 55 ± 19

Recall

Overall 51 ± 8 46 ± 12
Poor 0 ± 0 5 ± 15
Fair 71 ± 18 56 ± 24

Good 59 ± 29 62 ± 25
F1-Score Overall 43 ± 9 40 ± 11

AUC Overall 63 ± 13 59 ± 13

T2

Accuracy Overall 40 ± 10 40 ± 14
Precision Overall 56 ± 14 43 ± 19

Recall

Overall 40 ± 10 40 ± 14
Poor 17 ± 21 48 ± 28
Fair 62 ± 29 39 ± 32

Good 32 ± 33 39 ± 24
F1-Score Overall 33 ± 13 37 ± 16

AUC Overall 62 ± 15 59 ± 11

T3

Accuracy Overall 55 ± 11 51 ± 14
Precision Overall 61 ± 11 57 ± 13

Recall

Overall 55 ± 11 51 ± 14
Poor 33 ± 32 38 ± 37
Fair 58 ± 18 46 ± 25

Good 71 ± 22 67 ± 25
F1-Score Overall 53 ± 13 57 ± 17

AUC Overall 76 ± 9 74 ± 10

2.2.4. Feature Selection

A statistical feature selection method was also applied to each session to reduce data
dimensionality and explore whether models’ performances improved. Specifically, the
ANOVA F-value was computed to evaluate the relationship between each input variable
and the output, obtaining a score. The higher the score, the more output-dependent the
variable is.

The optimal subset of features was obtained by defining a breakpoint as the highest
difference between consecutive scores and selecting only the predictors with a score greater
than it. Figure 2 displays the scores obtained for each session and the features selected by
implementing the previous procedure.

Before performing feature selection, a correlation matrix was extracted to quantify
the association between pairs of variables. OOS, SPADI, and SST features were highly
correlated (rho > 0.8) during each session, which is not surprising since they all provide
insight about the level of shoulder pain perceived by the patient. In order to prevent
multicollinearity problems, we decided to keep only the variable that correlated the most
with the output, which was the SST scale.
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3. Results

No good performances were obtained for any of the classifiers during any of the
sessions by using all the features, as detailed in Table 5. An accuracy greater than 50% was
not achieved by any classifier across the sessions (Figure 3), resulting in a bad predictive
capability of the ML models.
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Following experimentation with various machine learning models it was observed
that their performance remained comparable to that of the simplest logistic regression
model. Consequently, we decided to present results solely for the logistic regression and
random forest classifiers, the latter of which achieved superior overall accuracy.

We found the same results after performing feature selection, obtaining an accuracy of
less than 55% for all sessions (Table 6). Notably, no increasing performances were obtained
by using the shrunken set of features, as displayed in Figure 3.

Considering the obtained results, we conducted a Mann–Whitney U test to directly
compare the accuracy of the two classifiers, namely, logistic regression and random forest.
No statistically significant differences in the performance were found between the two
models, as shown in Figure 3. Despite extensive exploration of various classifiers and
feature sets, the models struggled to surpass a certain accuracy threshold, highlighting the
challenges faced in achieving satisfactory predictive capabilities.

4. Discussion

Artificial intelligence (AI) has the ability to completely transform the practice of
medicine by increasing precision and effectiveness, cutting costs, and delivering individu-
alized treatment regimens [53]. In the orthopedic field, AI is being used to develop clinical
prediction models for orthopedic patients that can help doctors make more informed de-
cisions about patient care. Algorithms have been used to predict the outcomes of total
joint replacement surgery [54], to predict fracture risk in orthopedic patients [55], and to
diagnose orthopedic conditions such as osteoarthritis and spinal stenosis. To reach this
performance level, AI algorithms need to analyze multidimensional patient data, such as
age, medical history, motion, pain levels, medication therapy, bone density, and medical
images such as X-rays and MRI scans, in order to recognize patients at higher risk for
complications or poor outcomes after surgery.

In this study, we demonstrated that clinical data alone are not useful to reach a
robust outcome prediction. Indeed, by using demographic information, comorbidities, and
clinical metric scores, we were able to train a classifier with 55% accuracy at most in the
third session.

According to the literature, another important function of ML approaches in the clinical
setting appears to be the diagnostic one. This is confirmed by Ho et al. [56], who evaluated
194 ultrasound images of RCTs by fine-tuning pre-trained deep models in order to analyze
and classify the RCTs. Among them, DenseNet121 demonstrated the best classification
performance, with 88.2% accuracy, 93.8% sensitivity, 83.6% specificity, and an AUC score of
0.832. Kim et al. [57] developed a deep learning algorithm to rule out significant RCT based
on conventional shoulder radiographs in 1095 shoulders suspected of RCT. The sensitivity
of this approach was 97.3%, and it could rule out significant RCT with a negative likelihood
ratio of 0.06 and a negative predictive value of 96.6%.

Concerning the reliability of clinical data as outcome measures of orthopedic surgical
interventions, recently, Martin et al. [58] combined datasets from the Norwegian and
Danish knee ligament registers in order to create an algorithm that can predict outcomes
after primary anterior cruciate ligament reconstruction (ACLR). Using clinical data from
63,000 patients, ML analysis enabled prediction of the ACLR risk with moderate accuracy
(68%). However, other publications found in the current literature positively identified
significant clinical predictors. In fact, the research conducted by Li et al. [59] reported
that ML models, in particular the XGBoost model, successfully recognized important
clinical variables for the prediction of outcomes of 417 patients with RCTs. The most
statistically significant values for prediction were the Jobe test, Bear hug test, and the
age of the patients, with mean Shapley additive explanation (SHAP) values of 1.458,
0.950, and 0.790, respectively. Similarly, Dong et al. [60] studied a cohort of 1967 patients
through a human–computer interactive Electronic Medical System (EMS) and demonstrated
the presence of predictors of RC calcific tendinitis stratified according to the patients’
sex: women diagnosed with diabetes mellitus and men diagnosed with hyperlipidemia,
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diabetes mellitus, and hypothyroidism showed a higher risk of developing RC calcific
tendinitis. Clinical factors such as age and sex were investigated in both articles, similarly
to this paper. However, in the present paper, these features did not represent significant
outcome predictors.

On the other hand, the most common functional outcomes reviewed as clinical out-
come predictors by other articles in the current literatures were ASES, Visual Analog Scale
(VAS), University of California Los Angeles (UCLA) Shoulder Score, CMS, and ROM.
This is illustrated by Potty et al. [61] and Kumar et al. [62]. The former [61] applied the
XGBoost algorithm to 631 patients undergoing arthroscopic RC repair to produce an ex-
pected post-operative ASES score. The anticipated improvement in the ASES score was
within the Minimal Clinical Important Difference (MCID) value, indicating that ASES, even
though the predictions did not exactly correspond to the actual results, along with BMI,
age, and tendon quality, is a key predictor of clinical outcomes [9]. The latter [62], aiming to
quantify the accuracy of prediction of postoperative ASES, UCLA, CMS, VAS, and ROM on
6210 patients, employed 3 different ML approaches: linear regression, XGBoost, and Wide
and Deep. The Wide and Deep technique was associated with the smallest mean absolute
error and predicted the postoperative ASES score to ±10.1 to 11.3 points, the UCLA score
to ±2.5 to 3.4, the CMS to ±7.3 to 7.9, and the VAS pain score to ±1.2 to 1.4, demonstrating
that preoperatively recognizing which patient characteristics may be predictive of a worse
clinical outcome and issues of major clinical benefit improvement allows ML approaches to
accurately risk-stratify patients. Moreover, the study by Vassalou et al. [63] demonstrated
the validity of XGboost, which achieved an AUC of 69.2% (95%CI from 54.5% to 83.8%)
for the prediction of complete resolution of pain at 1 year for 100 patients undergoing
ultrasound-guided percutaneous irrigation of calcific tendinopathy of RC. Age, VAS, and
the size of the calcification were found to be the three most important variables for the
classification performance.

The present study evaluated various clinical scales, such as the SST, HADS, SF-36,
OSS, and SPADI, which were not found in other publications on the same topic. However,
it also assessed the ASES score, which was common to Potty et al. [61] and Kumar et al.’s
publications [62]. Nonetheless, differently from the other articles, this paper did not find
important predictive values of the ASES score, nor of the other clinical scales and clinical
factors proposed.

The potential application of a predictive model based on subjective clinical scales such
as the SST, HADS, SF-36, OSS, SPADI, and ASES would allow a deeper understanding of
the patients’ current own health perception and allow the clinicians to better organize the
treatment plan.

The lack of a significant application of AI algorithms to clinical prediction of RC
patients could be dependent on several factors. The main limitation concerning the present
paper is the small number of the cohort. However, it is important to note that research
with similar inclusion and exclusion criteria is scarce within the existing literature. On
the other hand, the data quality within the cohort poses additional limitations. Certain
variables, such as smoking, diabetes, and work injury, are known to have an impact on
the outcome. However, due to the nature of data collection, it was not feasible to include
all relevant variables in the database. Moreover, some variables within the dataset have
inherent uncertainties. For instance, the Goutallier grade, used to assess a specific aspect of
the data, exhibits poor interrater reliability. The lack of consensus among raters regarding
the Goutallier grade introduces ambiguity and inconsistency, which can adversely affect
the performance of algorithms employed for predictions. In addition, we did not record
other relevant clinical indicators such as diagnosis, implant type, ROM, and radiographic
findings [64]. Another limitation is due to the fact that the three classes were not well
balanced (Figure 1), which can cause the estimator to incorrectly discern the classes. Finally,
the type of predictors, such as continuous and categorized (operator-dependent) variables,
and the lack of objective biological high-dimensional data (i.e., neuroimaging, genetics),
might have also limited the performance of our ML approach with respect to other studies.
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5. Conclusions

We found that ML algorithms are not able to predict outcomes of patients with RC
with sufficient accuracy using only clinical data. In fact, utilizing demographic data,
comorbidities, and well-known clinical metrics, we were able to train a classifier session
with a maximum accuracy of 55%. Despite that AI application in orthopedic surgery is in
its relative infancy, our negative findings highlight the need to consider metrics capturing
dynamic changes in prognosis, extending the current models with new objective predictors,
such as kinematic and neuroimaging data. Computer-aided diagnostics may improve
doctors’ ability to correctly identify musculoskeletal disorders and enhance the patients’
overall experience.

Finally, this study lays solid foundations for future studies to be carried out with
greater cohorts and additional clinical scales.
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