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Abstract: Background and Objectives: Burn injuries range from minor medical issues to severe,
life-threatening conditions. The severity and location of the burn dictate its treatment; while minor
burns might be treatable at home, severe burns necessitate medical intervention, sometimes in spe-
cialized burn centers with extended follow-up care. This study aims to leverage artificial intelligence
(AI)/machine learning (ML) to forecast potential adverse effects in burn patients. Methods: This
retrospective analysis considered burn patients admitted to Chi Mei Medical Center from 2010 to 2019.
The study employed 14 features, comprising supplementary information like prior comorbidities
and laboratory results, for building models for predicting graft surgery, a prolonged hospital stay,
and overall adverse effects. Overall, 70% of the data set trained the AI models, with the remaining
30% reserved for testing. Three ML algorithms of random forest, LightGBM, and logistic regression
were employed with evaluation metrics of accuracy, sensitivity, specificity, and the area under the
receiver operating characteristic curve (AUC). Results: In this research, out of 224 patients assessed,
the random forest model yielded the highest AUC for predictions related to prolonged hospital stays
(>14 days) at 81.1%, followed by the XGBoost (79.9%) and LightGBM (79.5%) models. Besides, the
random forest model of the need for a skin graft showed the highest AUC (78.8%), while the random
forest model and XGBoost model of the occurrence of adverse complications both demonstrated
the highest AUC (87.2%) as well. Based on the best models with the highest AUC values, an AI
prediction system is designed and integrated into hospital information systems to assist physicians
in the decision-making process. Conclusions: AI techniques showcased exceptional capabilities for
predicting a prolonged hospital stay, the need for a skin graft, and the occurrence of overall adverse
complications for burn patients. The insights from our study fuel optimism for the inception of
a novel predictive model that can seamlessly meld with hospital information systems, enhancing
clinical decisions and bolstering physician–patient dialogues.

Keywords: burn patient; prognosis; prolonged hospital stay; skin graft needed; adverse complications;
artificial intelligence; machine learning; hospital information systems

1. Introduction

A burn injury refers to the damage to the skin or underlying tissues caused by exposure
to heat, fire, chemicals, electricity, or radiation. Burn injuries can vary in severity, ranging
from mild superficial burns to severe deep burns that can be life-threatening [1,2].

Burns are typically classified into different degrees based on their depth and severity:
First-degree burns: These are superficial burns that only affect the outer layer of the

skin (epidermis). They usually result in redness, pain, and minor swelling, but do not
typically cause blistering.

Second-degree burns: These burns affect both the outer layer of the skin (epidermis)
and the underlying layer (dermis). They are characterized by blistering, severe pain, redness,
and swelling.
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Third-degree burns: These burns extend through all layers of the skin, damaging nerve
endings and underlying tissues. They may appear white, charred, leathery, or blackened.
Third-degree burns often result in numbness due to nerve damage and may require surgical
intervention for treatment [3–5].

The severity of a burn injury can also be assessed using the “Rule of Nines”, which
divides the body into different regions, each accounting for a specific percentage of the total
body surface area (TBSA). This helps in estimating the extent of the burn and determining
the need for specialized care [6].

Immediate first aid for burns typically involves removing the source of heat, cooling
the burn with running cool (not cold) water, and covering it with a clean cloth or dressing.
However, for more severe burns or burns involving critical areas such as the face, hands,
feet, or genitals, immediate medical attention is essential.

Treatment for burn injuries often includes wound cleaning, the application of topical
medications, pain management, and, in some cases, surgical procedures like skin grafting to
promote healing [4]. Additionally, rehabilitation and long-term care may be necessary for in-
dividuals with extensive burns to regain functionality and manage potential complications
such as scarring, contractures, and emotional trauma [7,8]. Furthermore, burns occurring
in specific delicate regions, such as the eyelids or penis, pose significant challenges for
healthcare practitioners in terms of both treatment and care [9].

However, the hospital faces limitations in its resources to effectively treat burns and
scalds. This becomes particularly challenging when dealing with a diverse range of burn
patients, including those who have been affected by indoor fires and outdoor dust storms,
such as the colored power fire. Therefore, it is crucial to determine the severity of each
individual’s condition and allocate appropriate medical resources accordingly. To address
this urgency, the Baux score, also referred to as the “Baux index”, was developed by Dr.
Jean Baux in 1960 [10].

The Baux score takes into account the patient’s age and the percentage of total body
surface area (TBSA) affected by burns. It is calculated using the following formula:

Baux score = age (years) + burned area (%)

rBaux score = age (years) + burned area (%) + (17 × I)

In which: I = 1 if the patient suffered inhalation injury; and I = 0 if patients did not
suffer inhalation injury.

For example, for a 35-year-old burn patient who suffered burns covering 20% of their
total body surface area (TBSA), his/her Baux score and rBaux are:

Baux score = age + burned area = 35 + 20 = 55

rBaux score = age + burned area + (17 × I) = 35 + 20 + (17 × 1) = 35 + 20 + 17 = 72

The rBaux score ranges from 0 to 216. A higher Baux score indicates a greater risk
of mortality. The score is used as a prognostic tool to assess the severity of burn injuries
and help guide treatment decisions. Scoring systems like the Baux score and its variations
provide a standardized method for assessing burn severity and predicting outcomes [11].

The rBaux scoring system has been widely and extensively utilized in clinical set-
tings, garnering widespread acceptance for its effectiveness in predicting the likelihood
of mortality in patients suffering from burns and scalds. According to Lam et al. [12], the
revised Baux score has been found to be more accurate than the Baux score. However, they
recommend its application solely for prognosis purposes in adult and elderly burn patients
within developing countries [13,14]. Nevertheless, there have been studies indicating that
the predictive power of the Baux score is limited, suggesting its inadequacy in accurately
predicting burn outcomes. One such study conducted by Roberts et al. [15] (2012) found
that the Baux score had a low sensitivity and specificity in predicting mortality in a cohort
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of burn patients in the US. Similarly, a study by Kirimi et al. [16] (2013) demonstrated that
the Baux score exhibited poor discrimination in predicting complications such as infections
and organ dysfunction.

Furthermore, alternative scoring systems, such as the Anesthesiologists Physical Status
(ASA PS) Score [17] and body mass index (BMI) [18], are employed to forecast mortality in
cases of burn injuries.

However, the aforementioned scoring methods can only provide limited clinical
predictive information and may not effectively handle the variability of changing medical
conditions and the diverse consultation requests from patients and their families, leading
to a communication and information gap between healthcare providers and patients.

Moreover, the condition of severely burned patients typically exhibits rapid fluctu-
ations, sometimes even on the scale of hours or minutes. Therefore, acquiring real-time
clinical data, such as the information provided by Volumeview [19], and effectively in-
tegrating and interpreting these data, pose significant challenges and are of paramount
importance. Consequently, we seek to harness the power of AI/ML to fully leverage this
invaluable information, thereby making a valuable contribution to the enhancement of
clinical care quality.

In view of this, it is urgent and necessary to develop more real-time and high-quality
burn prediction tools to meet the requirements of modern precision medicine. Therefore,
our study aims to develop a prediction model for high-risk burn patients and identify the
factors that potentially increase the risk for mortalities and complications using AI/ML
approaches based on a large database of burn patients in a Taiwanese center. We made a
comparison of the prediction quality with the Baux score, and a prediction system based
on our best model was implemented into practice as well.

2. Materials and Methods
2.1. Study Design, Setting, and Samples

All inpatients with burn of any degree (ICD-9: 948.XX or ICD-10: T31.XX) in the
first 6 diagnosis codes from 1 January 2010 to 31 December 2019 were included, but those
aged ≤6 years old (5 cases) were excluded. Overall, 348 raw cases were used in the study.
Figure 1 shows our research flow.
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The study was approved by the Institutional Review Board of the Chi Mei Medical
Center (IRB Serial No.: 11206-014). All methods were carried out following relevant guide-
lines and regulations. Informed consent from patients was waived due to the retrospective
nature of the study.

2.2. Feature and Outcome Variables

We chose three outcome variables for the prediction models: (1) graft surgery (opera-
tion code 62015), (2) prolonged hospital stay (hospitalization days >14 days), and (3) overall
adverse effects (sepsis, use of respirator, pneumonia, chronic kidney disease (CKD), mortal-
ity, and prolonged hospital stay).

Furthermore, we chose 12 feature variables, based on literature review and clinical
experience, for building these prediction models:

(1) Basic information: gender, age, body mass index (BMI), smoking history, and
escharotomy;

(2) Burn data: burn area, burn site—perineum, and burn site—extremities;
(3) Lab information: white blood cell (WBC), hemoglobin, creatinine, and glutamate

pyruvate transaminase (GPT).

2.3. Model Building and Performance Evaluation

We used all the variables to build the prediction models to maximize model perfor-
mance without performing any feature selection preprocessing. The data were randomly
stratified into a training dataset (70%) and a testing dataset (30%). The SMOTE method
(synthetic minority oversampling technique) [20] was used to deal with the data imbalance
due to the fewer related positive classes (outcomes to be predicted, such as mortality) in the
training dataset. The model of each outcome was built with 4 machine-learning algorithms,
including (1) logistic regression, (2) random forest, (3) LightGBM, and (4) XGBoost.

We used a grid search with 5-fold cross-validation to build the best models based on
the training dataset. We, then, used the testing dataset to evaluate the performance of the
built models with indicators of accuracy, sensitivity, specificity, and AUC (area under the
receiver operating characteristic curve).

2.4. Implementation and Deployment of the Best Models

The models with the highest AUCs were judged as the best and were used to im-
plement a web-based prediction application and deployed into practice for physicians’
decision making. The web-based predictive application was developed with the Microsoft
Visual Studio® tool (v 17.7).

3. Results
3.1. Demographics

From 1 January 2010 to 31 December 2019, a total of 384 burn inpatients who are above
6 years old were enrolled in the study. After data cleaning and missing-value deletion,
224 cases underwent analysis. Overall, 70% of the data were randomly split for model
training, and 30% for model evaluating.

Tables 1–3 show the demographics and characteristics of the patients with graft surgery,
prolonged hospital stay (>14 days), and overall adverse effects, respectively. In total, the
mean age was 45.8, and most patients were males (66.1%); about 50.4% of them were
categorized as the least mild condition of burned area rank 1, while 18.8% of them were
categorized as the most severe condition of burned area rank 4. The mean Baux score
was 69.2.
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Table 1. Demographics—patients with graft surgery.

Feature
Overall

Graft Surgery

p-ValueNo Yes

N = 224 N = 124 N = 100

Age, mean (SD) 45.8 (20.3) 46.1 (20.8) 45.4 (19.9) 0.813

Gender_Female, n (%) 76 (33.9) 42 (33.9) 34 (34.0)
1Gender_male, n (%) 148 (66.1) 82 (66.1) 66 (66.0)

Burned area rank 1 (area <10%), n (%) 113 (50.4) 90 (72.6) 23 (23.0)

<0.001
Burned area rank 2 (area 10–19%), n (%) 24 (10.7) 4 (3.2) 20 (20.0)
Burned area rank 3 (area 20–29%), n (%) 45 (20.1) 19 (15.3) 26 (26.0)
Burned area rank 4 (area >30%), n (%) 42 (18.8) 11 (8.9) 31 (31.0)

BMI (body mass index), mean (SD) 24.5 (4.8) 24.3 (4.4) 24.7 (5.3) 0.546
GPT (glutamate pyruvate transaminase),

mean (SD) 38.7 (95.2) 43.0 (124.6) 33.2 (32.5) 0.4

WBC (white blood cell), mean (SD) 11.5 (6.3) 10.3 (5.0) 12.9 (7.5) 0.003
Hemoglobin, mean (SD) 14.4 (1.8) 14.2 (1.7) 14.6 (1.9) 0.081
Creatinine, mean (SD) 1.1 (1.1) 1.1 (1.2) 1.1 (0.9) 0.988

Smoking, n (%) 32 (14.3) 16 (12.9) 16 (16.0) 0.641
Burned perineum, n (%) 37 (16.5) 22 (17.7) 15 (15.0) 0.713

Burned limb, n (%) 62 (27.7) 42 (33.9) 20 (20.0) 0.031
Underwent escharotomy, n (%) 27 (12.1) 7 (5.6) 20 (20.0) 0.002

Baux score, mean (SD) 69.2 (27.7) 64.2 (28.5) 75.4 (25.4) 0.002
Note. Significance testing approaches (p value): Chi-square test for categorical variables; t-test for continu-
ous variables.

Table 2. Demographics—patients with prolonged hospital stay.

Feature
Overall

Prolonged Hospital Stay

p-ValueNo Yes

N = 224 N = 95 N = 129

Age, mean (SD) 45.8 (20.3) 45.8 (20.5) 45.8 (20.3) 0.994

Gender_Female, n (%) 76 (33.9) 36 (37.9) 40 (31.0)
0.351Gender_male, n (%) 148 (66.1) 59 (62.1) 89 (69.0)

Burned area rank 1 (area <10%), n (%) 113 (50.4) 77 (81.1) 36 (27.9)

<0.001
Burned area rank 2 (area 10–19%), n (%) 24 (10.7) 3 (3.2) 21 (16.3)
Burned area rank 3 (area 20–29%), n (%) 45 (20.1) 7 (7.4) 38 (29.5)
Burned area rank 4 (area >30%), n (%) 42 (18.8) 8 (8.4) 34 (26.4)

BMI (body mass index), mean (SD) 24.5 (4.8) 23.8 (4.0) 25.0 (5.3) 0.044
GPT (glutamate pyruvate transaminase),

mean (SD) 38.7 (95.2) 42.1 (139.7) 36.1 (37.7) 0.687

WBC (white blood cell), mean (SD) 11.5 (6.3) 10.1 (5.1) 12.5 (6.9) 0.002
Hemoglobin, mean (SD) 14.4 (1.8) 14.2 (1.6) 14.5 (1.9) 0.219
Creatinine, mean (SD) 1.1 (1.1) 1.0 (0.2) 1.2 (1.4) 0.033

Smoking, n (%) 32 (14.3) 12 (12.6) 20 (15.5) 0.679
Burned perineum, n (%) 37 (16.5) 16 (16.8) 21 (16.3) 1

Burned limb, n (%) 62 (27.7) 33 (34.7) 29 (22.5) 0.061
Underwent escharotomy, n (%) 27 (12.1) 5 (5.3) 22 (17.1) 0.013

Baux score, mean (SD) 69.2 (27.7) 62.6 (30.1) 74.1 (24.9) 0.003
Note. Significance testing approaches (p value): Chi-square test for categorical variables; t-test for continu-
ous variables.
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Table 3. Demographics—patients with overall adverse effects.

Feature
Overall

Overall Adverse

p-ValueNo Yes

N = 224 N = 86 N = 138

Age, mean (SD) 45.8 (20.3) 44.4 (20.4) 46.6 (20.3) 0.439

Gender_Female, n (%) 76 (33.9) 33 (38.4) 43 (31.2)
0.335Gender_male, n (%) 148 (66.1) 53 (61.6) 95 (68.8)

Burned area rank 1 (area <10%), n (%) 113 (50.4) 76 (88.4) 37 (26.8)

<0.001
Burned area rank 2 (area 10–19%), n (%) 24 (10.7) 3 (3.5) 21 (15.2)
Burned area rank 3 (area 20–29%), n (%) 45 (20.1) 6 (7.0) 39 (28.3)
Burned area rank 4 (area >30%), n (%) 42 (18.8) 1 (1.2) 41 (29.7)

BMI, mean (SD) 24.5 (4.8) 23.6 (4.0) 25.0 (5.2) 0.027
GPT, mean (SD) 38.7 (95.2) 28.4 (17.9) 45.1 (120.1) 0.111
WBC, mean (SD) 11.5 (6.3) 9.3 (4.0) 12.8 (7.1) <0.001

Hemoglobin, mean (SD) 14.4 (1.8) 14.1 (1.5) 14.5 (1.9) 0.091
Creatinine, mean (SD) 1.1 (1.1) 0.9 (0.2) 1.2 (1.3) 0.014

Smoking, n (%) 32 (14.3) 11 (12.8) 21 (15.2) 0.758
Burned perineum, n (%) 37 (16.5) 14 (16.3) 23 (16.7) 1

Burned limb, n (%) 62 (27.7) 33 (38.4) 29 (21.0) 0.008
Underwent escharotomy, n (%) 27 (12.1) 1 (1.2) 26 (18.8) <0.001

Baux score, mean (SD) 69.2 (27.7) 56.2 (22.8) 77.3 (27.5) <0.001
Note. Significance testing approaches (p value): Chi-square test for categorical variables; t-test for continu-
ous variables.

3.2. Machine-Learning Modeling Results

The model performance of each predicted outcome was summarized in Table 4. In
model of graft surgery, the highest AUC was found in the random forest model with a value
of 0.757, followed by the logistic regression model, LightGBM model, and XGBoost model
with values of 0.755, 0.745, and 0.738, respectively. In the model of prolonged hospital stay,
the highest AUC was found in the XGBoost model with a value of 0.815, followed by the
random forest model, LightGBM model, and logistic regression model with values of 0.801,
0.797, and 0.720, respectively (see Table 4). Finally, in the model of overall adverse effects,
the highest AUC was found in the LightGBM model with a value of 0.845, followed by the
logistic regression model, random forest model, and XGBoost model with values of 0.832,
0.822, and 0.816, respectively.

Table 4. Model performance.

Model Algorithm Accuracy Sensitivity Specificity AUC AUC 95%CI

Graft surgery Random forest 0.765 0.833 0.711 0.756 0.639–0.874
Logistic regression 0.706 0.7 0.711 0.755 0.638–0.873

LightGBM 0.706 0.733 0.684 0.745 0.625–0.864
XGBoost 0.721 0.733 0.711 0.738 0.616–0.859

Model Algorithm Accuracy Sensitivity Specificity AUC AUC 95%CI

Prolonged hospital stay XGBoost 0.779 0.795 0.759 0.815 0.710–0.920
Random forest 0.794 0.795 0.793 0.801 0.690–0.912

LightGBM 0.706 0.769 0.621 0.797 0.688–0.905
Logistic regression 0.676 0.718 0.621 0.720 0.595–0.844

Model Algorithm Accuracy Sensitivity Specificity AUC AUC 95%CI

Overall adverse effects LightGBM 0.779 0.786 0.769 0.845 0.751–0.939
Logistic regression 0.765 0.714 0.846 0.832 0.734–0.929

XGBoost 0.765 0.786 0.731 0.822 0.724–0.921
Random forest 0.765 0.738 0.808 0.816 0.716–0.916
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3.3. Interpreting the Feature Importance

Furthermore, for a better interpretation of how each feature contributes to the associ-
ated outcome, we performed a SHAP (SHapley Additive exPlanations) [21] analysis for
each best AI model. In the SHAP global explanation plot, dots in red and blue indicate
higher and lower feature values, respectively. A dot distribution to the left of the horizontal
axis point 0 represents a negative correlation to the outcome, while a distribution to the
right represents a positive correlation. The y-axis indicates the feature name, in order
of importance from the top to the bottom of the plot. The wider the dots of the feature
distributed, the greater the influence of the feature on the outcome. Figures 2 and 3 depict
global explanations of the best models and mean absolute SHAP values, respectively. As
shown in Figure 2A, the x-axis represents the SHAP values of each of the features by which
the model predicts the graft surgery. The interpretation of the summary plot shows that
a higher burn area rank (higher values visible in red on the horizontal bar) implies an
increase in the predicted outcome; conversely, a smaller burn area rank (visible in blue) is
associated with a decrease in the predicted outcome. The feature of burn area rank was
similarly explained in predicting a prolonged hospital stay and adverse effects. The same
interpretation can be applied to the rest of the features.

Figure 3 shows the absolute SHAP value of each feature, presenting its importance
on the associated outcome. It can be interpreted that the top three critical features on graft
surgery are burned area rank, WBC, and GPT; the top three critical features on a prolonged
hospital stay are burned area rank, BMI, and creatinine; and the top three critical features
on overall adverse effects are burned area rank, WBC, and age.

3.4. Performance Comparison of AI Model and Baux Score

We compared the best AI-based model with the Baux score by the performance
indicators. For this, we first calculated the indicators of accuracy, sensitivity, specificity,
and AUC for AI models and Baux score models. We, then, performed the DeLong test
for figuring out the significance of the model difference. As shown in Table 5, AI models
have higher values for all indicators than Baux score models. AI models of prolonged
hospital stay and overall adverse effects outperformed Baux score models in a statistically
significant manner (p < 0.05).

Table 5. Comparisons of AI models and Baux score models.

Outcome Model Accuracy Sensitivity Specificity AUC AUC95%CI DeLong Test (p)

Graft surgery AI model
(random forest) 0.765 0.833 0.711 0.756 0.639–0.874 0.206

Baux score 0.574 0.433 0.684 0.641 0.509–0.774

Prolonged
hospital stay

AI model
(XGBoost) 0.779 0.795 0.759 0.815 0.710–0.920 0.023

Baux score 0.588 0.487 0.724 0.657 0.515–0.800

Overall adverse
effects

AI model
(LightGBM) 0.779 0.786 0.769 0.845 0.751–0.939 0.008

Baux score 0.559 0.524 0.615 0.619 0.484–0.754

3.5. Clinical Prediction Application Development and Deployment and User
Preliminary Evaluation

For clarifying the feasibility and acceptance of our AI models, we developed an AI
risk prediction system based on the three best models and deployed it in a burn critical care
center for assisting with the physician’s decisions. Figure 4 showed a snapshot of the AI
system (a probability ≥50% indicates a high probability of causing the adverse outcome).
Models were built in the Python programming language and the Web-based interface was
built in MS Visual Studio® with VB (v 17.7).
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Figure 4. A snapshot of the prediction system.

We, then, demonstrated the AI system to the pilot burn care staff (three nurses and
two physicians) and received positive feedback. They see this as a useful tool for the timely
identification of high-risk burn patients. According to the risk probability, care staff can
consider appropriate treatment plans to optimize the utilization of medical resources. It
can greatly improve the quality and efficiency of burn patient care.

4. Discussion

In this study, we collected and analyzed a comprehensive set of laboratory data and
clinical information to gain valuable insights. Our research encompassed crucial factors
such as body mass index, gender, age, blood pressure, body temperature (BT), total body
surface area (TBSA), hemoglobin levels, alanine transaminase levels, glucose levels, platelet
count, blood urea nitrogen levels, creatinine levels, and more.

By including these significant parameters in our analysis, we aimed to capture a holistic
view of the subjects and their health profiles. The diverse range of data points allowed us
to explore the relationships between various variables and draw meaningful conclusions.

In summary, our study employed a robust dataset consisting of crucial laboratory
measurements and clinical information. By considering these factors, we aimed to enhance
the depth and accuracy of our findings, providing a comprehensive understanding of the
subject population.

Moreover, we took into consideration several prevalent and significant comorbidities,
including diabetes, hypertension, and cardiovascular disease. These conditions play a
crucial role in determining patient outcomes.

We utilized all the aforementioned features to develop predictive models for various
outcomes, such as in-hospital mortality, acute respiratory failure during hospitalization,
ventilator dependence, renal failure, a prolonged hospital stay, and the need for skin graft-
ing. To obtain the necessary data, we primarily relied on the routine emergency department
(ED) charts and regular medical records. This approach eliminated the need for additional
examinations while ensuring we had an ample amount of relevant data at our disposal.

By leveraging these readily available sources, we were able to capture a comprehensive
range of information essential for our analysis. This streamlined approach allowed us to
focus on utilizing the existing data to develop robust predictive models, saving time and
resources without compromising the quality of our study.

This study stands out as one of the rare tools that aim to predict the severity of burn
injuries in patients by leveraging diverse clinical characteristic data. By employing various
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statistical models and machine-learning approaches (i.e., logistic regression, random forest,
SVM, KNN, LightGBM, ML, and Xgboost), we successfully achieved positive predictive
outcomes. These results were anticipated, and we firmly believe that they hold significant
value in terms of predicting and managing patients’ conditions effectively.

In the context of predicting the necessity of skin graft surgery using a machine-
learning model (random forest), Figures 2A and 3A indicate that the total body surface
area (TBSA) has the most significant impact on the requirement for skin graft surgery,
followed by the white blood cell count (WBC) and GPT (a liver enzyme), whereas gender
has minimal influence. Higher values in the burn area rank correlate with an increased risk
of undergoing skin graft surgery, indicating a greater likelihood of needing the procedure.
Similarly, WBC levels also influence the risk of requiring skin graft surgery. Therefore, early
and adequate fluid resuscitation is crucial in reducing the necessity of surgery.

Figures 2B and 3B reveal that the total body surface area (TBSA) has the most signif-
icant impact on prolonged hospitalization, followed by the body mass index (BMI) and
creatinine levels. The location of the burn or scald and gender have minimal influence.
Higher TBSA values indicate a higher risk of prolonged hospitalization (exceeding 14 days).
This suggests that obesity and impaired renal function are both risk factors associated with
prolonged hospital stays.

Figures 2C and 3C highlight the factors influencing different complications during
hospitalization, as indicated by the LightGBM model. Notably, the total body surface area
(TBSA) exhibits the most significant impact on overall adverse outcomes, followed by white
blood cell count (WBC) and age. On the other hand, the location of the burn or scald and
gender have minimal influence. Higher values in TBSA, WBC, and age are associated with
an increased risk of overall adverse outcomes. These findings emphasize the importance of
implementing specific preventive measures for elderly patients with extensive burn areas
and a heightened risk of dehydration.

In Table 5, we compared the predictive results of the ML models we utilized (random
forest, XGBoost, and LightGBM) with the Baux scoring in predicting the necessity of
surgery, prolonged hospitalization, and the occurrence of complications. The ML models
demonstrate superior performance over the Baux score in terms of accuracy, sensitivity,
specificity, and AUC. Notably, the results for prolonged hospitalization and occurrence of
complications exhibit significant differences based on the DeLong test.

The Baux score has traditionally been commonly employed to primarily predict the
mortality probability of burn patients, while also implying the severity of the burn injury,
with the result that it is of significant reference value and sees widespread use. However, our
model, when compared to the Baux score, demonstrates superior performance in predicting
prolonged hospital stays and complications. Consequently, it is expected to complement
the shortcomings of the Baux score in clinical settings, thus offering a synergistic effect.

Next, we conducted a thorough review of several relevant and comparable studies.
In Stylianou et al. [22]’s study, an established logistic mortality model was compared to
machine-learning methods (artificial neural network, support vector machine, random
forests, and naive Bayes) using a population-based (England and Wales) case-cohort reg-
istry. They presented the following findings: Random forests were marginally better
for a high positive predictive value and reasonable sensitivity. Neural networks yielded
slightly better prediction overall. Logistic regression gives an optimal mix of performance
and interpretability.

Liu and colleagues [23] reviewed several databases such as MEDLINE, the Cochrane
Database of Systematic Reviews, and ScienceDirect, and performed a citation review of
relevant primary and review articles—the databases were searched for studies involving
burn care/research and machine learning in the year 2015. The review conducted by Liu
and colleagues highlighted the potential of machine-learning techniques in burn care
and research. The studies reviewed in 2015 demonstrated the effectiveness of machine-
learning algorithms in various aspects of burn care, including diagnosis, treatment planning,
prognostic prediction, and wound assessment. The findings underscore the importance of
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continued research and development in this area, as the integration of machine learning
holds great promise for enhancing patient outcomes and improving the overall quality of
burn care.

A few years later, Huang et al. [24] conducted a systemic review in which thirty
articles were included. Nine studies used machine learning and automation to estimate the
percent total body surface area (%TBSA) burned, four calculated fluid estimations, nineteen
estimated the burn depth, five estimated the need for surgery, and two evaluated scarring.
In their conclusion, the utilization of machine learning as an adjunct for evaluating burn
wound severity has demonstrated promising results in improving diagnostic accuracy.
These techniques provide an objective approach by leveraging diverse data points to
enhance the assessment process. However, it is crucial to conduct further research to
validate and refine existing models, ensuring their clinical feasibility and applicability.
The integration of machine learning into burn wound evaluation has the potential to
advance the field, empowering clinicians with valuable insights and, ultimately, enhancing
patient care.

We summarized the comparison of these works in Table 6.

Table 6. A comparison with related studies.

Study This Study [22] [23] [24]
Sample size 224 66,611 6059 3264

Types of samples
High-risk patient

admitted to our burn
center

Population-based
(England and Wales)
case-cohort registry

Image in majority
Patient data in minority

Image
Animal models

Simulated patient data

Outcome

Prolonged hospital stay
(>14 days)

Skin graft needed
Adverse complications

including mortality

Mortality

(%TBSA)
Fluid estimations

Burn depth
Need for surgery

Scarring

(%TBSA)
Fluid requirements

Burn depth
Surgical candidacy

Study method Seven machine-leaning
methods

Four machine-leaning
methods Systemic review Systemic review

Real-world
implementation

Yes
A predictive

application with AI
models was

implemented and
integrated into the

existing HIS

N/A N/A N/A

Input data

Fourteen patient
demographic features,

TBSA, burned part,
vital signs, laboratory
results, comorbidities

Age, TBSA, type of
burn, comorbidities

Vital signs
Burn photos

TBSA
Inhalation

TBSA

Simulated patient data
2D image

Animal models

Testing results (AUC)

Prolonged hospital stay
(>14 days)

(0.795–0.811)
Mortality (0.945) Burn depth

(0.83)
Burn depth

(0.662–0.925)

Skin graft needed
(0.788)

Surgery determination
(0.793–1.000)

Occurrence of adverse
complications

(0.872)
Year 2023 2015 2015 2021

In recent years, global scholars have extensively utilized machine learning to aid in
judgment and decision making by utilizing various sources of information, such as burn
wound photos [25–27], patient demographics, vital signs, underlying diseases, total burn
areas, and more [28,29]. Furthermore, the utilization of animal models for comparative predic-
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tion is extensively practiced across numerous prominent research institutions [30,31]. These
advancements have significantly contributed to both basic research and clinical applications.

Moreover, we conducted a comprehensive comparison of our study with other similar
research endeavors, which we have succinctly summarized in Table 7.

Table 7. A comparison with similar studies.

Study This Study [28] [32]
Patient number 224 1585 1080

Types of patient origin High-risk patient admitted to
our burn center

Burn center inpatient in a
medical center in the US

A regional burn center
inpatient

Outcome

Prolonged hospital stay
(>14 days)

Skin graft needed
Adverse complications

including mortality

LOS (length of hospital stay)
Survival LOS (length of hospital stay)

Study method Seven machine-leaning
methods An artificial neural network Two machine-leaning

methods

Real-world implementation

Yes
A predictive application with
AI models was implemented

and integrated into the
existing HIS

N/A N/A

Input data

Fourteen patient demographic
features, TBSA, burned part,
vital signs, laboratory results,

comorbidities

TBSA, burned part, type of
transportation, burn

mechanism

Sixteen patient demographic
features, TBSA, burned part,
vital signs, laboratory results,

comorbidities, operation,
burn depth

Testing results (AUC)

Prolonged hospital stay
(>14 days)

(0.795–0.811)

LOS (length of hospital stay)
(0.72)

LOS (length of hospital stay)
(0.487–0.718)

Occurrence of adverse
complications including

mortality
(0.872)

Survival
(0.98)

Skin graft needed
(0.788)

Year 2023 1996 2010

Based on the above comparison, it can be observed that our predictive model performs
better in estimating the extended length of hospital stays. However, when it comes to pre-
dicting mortality/survival and complications, both our predictive method and Frye et al.’s
method [28] have their own merits. This difference in estimation is likely due to slight
variations in the extraction of clinical information and analysis methods.

In accordance with the achievements of previous studies, we have envisioned extract-
ing a wider range of patient data and have employed seven machine-learning methods to
generate more detailed predictions for various outcomes. By integrating this approach with
the hospital information system (HIS) [32], our research not only assists clinical healthcare
professionals in their decision-making processes but also provides objective references for
explaining medical conditions to and predicting outcomes for patients and their families.

The clinical advantages of integrating our system with the hospital information sys-
tem (HIS) lie in the enhanced convenience and efficiency of medical record and nursing
record management. This integration enables the direct retrieval of computational results
and medical staff–patient communication logs, effectively reducing the time spent on
documentation tasks. Consequently, it leads to improved operational efficiency.

We acknowledge that our study is subject to certain limitations that warrant careful
consideration. Firstly, the data for our analysis were exclusively sourced from a singular
burn care unit located in Tainan, Taiwan. To enhance the robustness and generalizability
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of our findings, it is imperative that subsequent investigations incorporate data from a
broader range of medical facilities. Secondly, it is plausible that certain granular data points
may not have been collected in their entirety, underscoring the potential for additional
insights. Thus, it becomes evident that further endeavors are essential to refine this model
and elevate its overall performance.

5. Conclusions

This study aimed to develop a versatile machine-learning model to aid physicians
in diagnosing disease progression and predicting the risk of death for burn patients. The
model utilized a combination of patients’ basic health indicators, comorbidity indicators,
and specific laboratory data as features. Additionally, we have successfully implemented
and seamlessly integrated a web-based predictive application into the existing hospital
information system (HIS) without requiring complex computational operations. This in-
tegration was well-received by physicians during the initial usage phase, indicating a
high level of acceptance. We firmly believe that utilizing machine-learning algorithms to
predict adverse outcomes in burn patients is a promising research approach that can assist
physicians in promptly assessing disease severity following hospital admission. This early
assessment enables them to select the most suitable and personalized treatment strategies,
thereby improving patient prognosis.

Furthermore, in addressing the dynamic fluctuations in injury conditions, we can
harness objective data acquisition to facilitate AI assistance in comprehensively interpreting
information and subsequently delivering it to clinical caregivers and patients. This ap-
proach enables us to respond more promptly to changes in the patient’s medical condition.

For future studies, researchers can consider incorporating additional potential vari-
ables and conducting a feature selection process to enhance the quality of the models. With
the continual emergence of novel physiological monitoring tools and laboratory diagnostic
instruments, we anticipate the ability to gather a greater volume of valuable data for uti-
lization. Simultaneously, the accumulation of clinical cases through real-world usage will
further enhance the system’s performance in future operations.

Author Contributions: Conceptualization, C.-C.Y. and C.-F.L.; methodology, Y.-S.L. and C.-F.L.;
formal analysis, C.-F.L.; writing—original draft preparation, C.-C.Y. and C.-F.L.; writing—review and
editing, C.-C.Y., Y.-S.L., C.-C.C. and C.-F.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of Chi Mei Medical Center
(IRB No. 11206-014; 5 July 2023).

Informed Consent Statement: Informed consent from patients was waived due to the retrospective
nature of the study.

Data Availability Statement: The dataset used for this study is available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Artz, C.P. The burn injury—A summary. J. Trauma 1966, 6, 420–421. [CrossRef] [PubMed]
2. Wang, Y.; Beekman, J.; Hew, J.; Jackson, S.; Issler-Fisher, A.C.; Parungao, R.; Lajevardi, S.S.; Li, Z.; Maitz, P.K.M. Burn injury:

Challenges and advances in burn wound healing, infection, pain and scarring. Adv. Drug Deliv. Rev. 2018, 123, 3–17. [CrossRef]
[PubMed]

3. Brodie, N. Plastic reconstruction following third degree burn of forearm. Am. J. Surg. 1947, 74, 834–837. [CrossRef]
4. Davis, S.C.; Mertz, P.M.; Bilevich, E.D.; Cazzaniga, A.L.; Eaglstein, W.H. Early debridement of second-degree burn wounds

enhances the rate of epithelization--an animal model to evaluate burn wound therapies. J. Burn Care Rehabil. 1996, 17, 558–561.
[CrossRef] [PubMed]

5. Pencle, F.J.; Mowery, M.L.; Zulfiqar, H. First Degree Burn; StatPearls: Treasure Island, FL, USA, 2023.

https://doi.org/10.1097/00005373-196605000-00011
https://www.ncbi.nlm.nih.gov/pubmed/5934284
https://doi.org/10.1016/j.addr.2017.09.018
https://www.ncbi.nlm.nih.gov/pubmed/28941987
https://doi.org/10.1016/0002-9610(47)90406-6
https://doi.org/10.1097/00004630-199611000-00014
https://www.ncbi.nlm.nih.gov/pubmed/8951545


Diagnostics 2023, 13, 2984 16 of 17

6. Hahn, B.; Roh, S.A.; Price, C.; Fu, W.; Dibello, J.; Berwald, N.; Greenstein, J.; Chacko, J. Estimates of Total Burned Surface Area by
Emergency Department Clinicians and Burn Specialists. Cureus 2020, 12, e9362. [CrossRef]

7. Miri, S.; Mobayen, M.; Aboutaleb, E.; Ezzati, K.; Feizkhah, A.; Karkhah, S. Exercise as a rehabilitation intervention for severe burn
survivors: Benefits & barriers. Burns 2022, 48, 1269–1270. [CrossRef] [PubMed]

8. Zal, M.; Deldar, K.; Froutan, R.; Ahmadabadi, A.; Mazlom, S.R. Rehabilitation of Burn Victims: Improving Quality of Life in
Victims With Face and Neck Burn Through an Augmented Reality Coupled Pamphlet. J. Burn Care Res. 2023, 44, 311–319.
[CrossRef] [PubMed]

9. Yeh, C.C.; Lin, Y.S.; Huang, K.F. Resurfacing of total penile full-thickness burn managed with the Versajet hydrosurgery system.
J. Burn Care Res. 2010, 31, 361–364. [CrossRef] [PubMed]

10. Christofides, C.; Moore, R.; Nel, M. Baux Score as a Predictor of Mortality at the CHBAH Adult Burns Unit. J. Surg. Res. 2020,
251, 53–62. [CrossRef] [PubMed]

11. Heng, J.S.; Clancy, O.; Atkins, J.; Leon-Villapalos, J.; Williams, A.J.; Keays, R.; Hayes, M.; Takata, M.; Jones, I.; Vizcaychipi, M.P.
Revised Baux Score and updated Charlson comorbidity index are independently associated with mortality in burns intensive
care patients. Burns 2015, 41, 1420–1427. [CrossRef] [PubMed]

12. Lam, N.N.; Hung, N.T.; Duc, N.M. Prognosis value of revised Baux score among burn patients in developing country. Int. J. Burn.
Trauma 2021, 11, 197–201.

13. Osler, T.; Glance, L.G.; Hosmer, D.W. Simplified estimates of the probability of death after burn injuries: Extending and updating
the baux score. J. Trauma 2010, 68, 690–697. [CrossRef] [PubMed]

14. Dokter, J.; Meijs, J.; Oen, I.M.; van Baar, M.E.; van der Vlies, C.H.; Boxma, H. External validation of the revised Baux score for the
prediction of mortality in patients with acute burn injury. J. Trauma Acute Care Surg. 2014, 76, 840–845. [CrossRef]

15. Roberts, G.; Lloyd, M.; Parker, M.; Martin, R.; Philp, B.; Shelley, O.; Dziewulski, P. The Baux score is dead. Long live the Baux
score: A 27-year retrospective cohort study of mortality at a regional burns service. J. Trauma Acute Care Surg. 2012, 72, 251–256.
[CrossRef] [PubMed]

16. Karimi, H.; Motevalian, S.A.; Rabbani, A.; Motabar, A.R.; Vasigh, M.; Sabzeparvar, M.; Mobayen, M. Prediction of mortality in
pediatric burn injuries: R-baux score to be applied in children (pediatrics-baux score). Iran. J. Pediatr. 2013, 23, 165–170. [PubMed]

17. Choi, K.J.; Pham, C.H.; Collier, Z.J.; Mert, M.; Ota, R.K.; Li, R.; Yenikomshian, H.A.; Singh, M.; Gillenwater, T.J.; Kuza, C.M. The
Predictive Capacity of American Society of Anesthesiologists Physical Status (ASA PS) Score in Burn Patients. J. Burn Care Res.
2020, 41, 803–808. [CrossRef] [PubMed]

18. Saadat, G.H.; Toor, R.; Mazhar, F.; Bajani, F.; Tatebe, L.; Schlanser, V.; Kaminsky, M.; Messer, T.; Starr, F.; Dennis, A.; et al. Severe
burn injury: Body Mass Index and the Baux score. Burns 2021, 47, 72–77. [CrossRef] [PubMed]

19. Bendjelid, K.; Giraud, R.; Siegenthaler, N.; Michard, F. Validation of a new transpulmonary thermodilution system to assess
global end-diastolic volume and extravascular lung water. Crit. Care 2010, 14, R209. [CrossRef] [PubMed]

20. Chawla, N.V.B.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

21. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Red Hook, NY, USA, 4 December 2017; pp. 4768–4777.

22. Stylianou, N.; Akbarov, A.; Kontopantelis, E.; Buchan, I.; Dunn, K.W. Mortality risk prediction in burn injury: Comparison of
logistic regression with machine learning approaches. Burns 2015, 41, 925–934. [CrossRef] [PubMed]

23. Liu, N.T.; Salinas, J. Machine learning in burn care and research: A systematic review of the literature. Burns 2015, 41, 1636–1641.
[CrossRef] [PubMed]

24. Huang, S.; Dang, J.; Sheckter, C.C.; Yenikomshian, H.A.; Gillenwater, J. A systematic review of machine learning and automation
in burn wound evaluation: A promising but developing frontier. Burns 2021, 47, 1691–1704. [CrossRef] [PubMed]

25. Serrano, C.; Acha, B.; Gomez-Cia, T.; Acha, J.I.; Roa, L.M. A computer assisted diagnosis tool for the classification of burns by
depth of injury. Burns 2005, 31, 275–281. [CrossRef]

26. Acha, B.; Serrano, C.; Acha, J.I.; Roa, L.M. Segmentation and classification of burn images by color and texture information.
J. Biomed. Opt. 2005, 10, 034014. [CrossRef] [PubMed]

27. Ganapathy, P.; Tamminedi, T.; Qin, Y.; Nanney, L.; Cardwell, N.; Pollins, A.; Sexton, K.; Yadegar, J. Dual-imaging system for burn
depth diagnosis. Burns 2014, 40, 67–81. [CrossRef] [PubMed]

28. Frye, K.E.; Izenberg, S.D.; Williams, M.D.; Luterman, A. Simulated biologic intelligence used to predict length of stay and survival
of burns. J. Burn Care Rehabil. 1996, 17, 540–546. [CrossRef] [PubMed]

29. Estahbanati, H.K.; Bouduhi, N. Role of artificial neural networks in prediction of survival of burn patients-a new approach. Burns
2002, 28, 579–586. [CrossRef] [PubMed]

30. Iyoho, A.; Ng, L.; Chan, P. The Development of a Probabilistic Dose-Response for a Burn Injury Model. Mil. Med. 2017,
182, 202–209. [CrossRef] [PubMed]

https://doi.org/10.7759/cureus.9362
https://doi.org/10.1016/j.burns.2022.04.016
https://www.ncbi.nlm.nih.gov/pubmed/35527087
https://doi.org/10.1093/jbcr/irac070
https://www.ncbi.nlm.nih.gov/pubmed/35603694
https://doi.org/10.1097/BCR.0b013e3181d0f4f1
https://www.ncbi.nlm.nih.gov/pubmed/20182375
https://doi.org/10.1016/j.jss.2020.01.018
https://www.ncbi.nlm.nih.gov/pubmed/32113038
https://doi.org/10.1016/j.burns.2015.06.009
https://www.ncbi.nlm.nih.gov/pubmed/26187055
https://doi.org/10.1097/TA.0b013e3181c453b3
https://www.ncbi.nlm.nih.gov/pubmed/20038856
https://doi.org/10.1097/TA.0000000000000124
https://doi.org/10.1097/TA.0b013e31824052bb
https://www.ncbi.nlm.nih.gov/pubmed/22310134
https://www.ncbi.nlm.nih.gov/pubmed/23724177
https://doi.org/10.1093/jbcr/iraa060
https://www.ncbi.nlm.nih.gov/pubmed/32285103
https://doi.org/10.1016/j.burns.2020.10.017
https://www.ncbi.nlm.nih.gov/pubmed/33234365
https://doi.org/10.1186/cc9332
https://www.ncbi.nlm.nih.gov/pubmed/21092252
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.burns.2015.03.016
https://www.ncbi.nlm.nih.gov/pubmed/25931158
https://doi.org/10.1016/j.burns.2015.07.001
https://www.ncbi.nlm.nih.gov/pubmed/26233900
https://doi.org/10.1016/j.burns.2021.07.007
https://www.ncbi.nlm.nih.gov/pubmed/34419331
https://doi.org/10.1016/j.burns.2004.11.019
https://doi.org/10.1117/1.1921227
https://www.ncbi.nlm.nih.gov/pubmed/16229658
https://doi.org/10.1016/j.burns.2013.05.004
https://www.ncbi.nlm.nih.gov/pubmed/23790396
https://doi.org/10.1097/00004630-199611000-00011
https://www.ncbi.nlm.nih.gov/pubmed/8951542
https://doi.org/10.1016/S0305-4179(02)00045-1
https://www.ncbi.nlm.nih.gov/pubmed/12220917
https://doi.org/10.7205/MILMED-D-16-00235
https://www.ncbi.nlm.nih.gov/pubmed/28291474


Diagnostics 2023, 13, 2984 17 of 17

31. Rowland, R.; Ponticorvo, A.; Baldado, M.; Kennedy, G.T.; Burmeister, D.M.; Christy, R.J.; Bernal, N.P.; Durkin, A.J. Burn wound
classification model using spatial frequency-domain imaging and machine learning. J. Biomed. Opt. 2019, 24, 056007. [CrossRef]

32. Yang, C.S.; Wei, C.P.; Yuan, C.C.; Schoung, J.Y. Predicting the length of hospital stay of burn patients: Comparisons of prediction
accuracy among different clinical stages. Decis. Support. Syst. 2010, 50, 325–335. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1117/1.JBO.24.5.056007
https://doi.org/10.1016/j.dss.2010.09.001

	Introduction 
	Materials and Methods 
	Study Design, Setting, and Samples 
	Feature and Outcome Variables 
	Model Building and Performance Evaluation 
	Implementation and Deployment of the Best Models 

	Results 
	Demographics 
	Machine-Learning Modeling Results 
	Interpreting the Feature Importance 
	Performance Comparison of AI Model and Baux Score 
	Clinical Prediction Application Development and Deployment and User Preliminary Evaluation 

	Discussion 
	Conclusions 
	References

