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Abstract: Background: Numerous mortality prediction tools are currently available to assist patients
with moderate to severe traumatic brain injury (TBI). However, an algorithm that utilizes various
machine learning methods and employs diverse combinations of features to identify the most
suitable predicting outcomes of brain injury patients in the intensive care unit (ICU) has not yet been
well-established. Method: Between January 2016 and December 2021, we retrospectively collected
data from the electronic medical records of Chi Mei Medical Center, comprising 2260 TBI patients
admitted to the ICU. A total of 42 features were incorporated into the analysis using four different
machine learning models, which were then segmented into various feature combinations. The
predictive performance was assessed using the area under the curve (AUC) of the receiver operating
characteristic (ROC) curve and validated using the Delong test. Result: The AUC for each model
under different feature combinations ranged from 0.877 (logistic regression with 14 features) to
0.921 (random forest with 22 features). The Delong test indicated that the predictive performance of
the machine learning models is better than that of traditional tools such as APACHE II and SOFA
scores. Conclusion: Our machine learning training demonstrated that the predictive accuracy of the
LightGBM is better than that of APACHE II and SOFA scores. These features are readily available
on the first day of patient admission to the ICU. By integrating this model into the clinical platform,
we can offer clinicians an immediate prognosis for the patient, thereby establishing a bridge for
educating and communicating with family members.

Keywords: artificial intelligence; machine learning; traumatic brain injury; mortality; intensive care
unit; computer-assisted system

1. Introduction

Traumatic brain injury is a global issue that not only impacts patients’ health but
also imposes a significant burden on social, economic, and medical resources [1]. The
age-adjusted mortality rate in Europe is 11.7 per 100,000 and 17.0 per 100,000 in the
US [2,3]. In contrast to Western countries, where TBI is often associated with war, Asia
experiences TBI due to falls and road traffic injuries [4]. As low- to middle-income countries
undergo industrial transformation leading to increased mechanization and urbanization,
the incidence of brain injuries is gradually rising. However, the slow growth of medical
resources in these countries results in more severe disabilities compared to developed
nations [4].
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Survivors of TBI typically face neurological deficits and disabilities. Those with severe
TBI receive treatment in the intensive care unit (ICU). Various efforts have been made to
predict the prognosis of TBI patients, exploring factors such as Glasgow Coma Scale (GCS),
age, pupillary reactivity, injury severity, and clinical condition (e.g., hypoxia, respiratory
distress, and hypotension) in numerous studies. The evaluation of brain injury extent and
classification using CT scans is also closely linked to mortality [5–8].

A previous retrospective study found variability in the use of a single predictive
model across populations [9]. Although studies of IMPACT and CRASH are widely
known, they may not be applicable to each individual patient [10]. The SOFA (Sequential
Organ Failure Assessment), introduced in 1996, is designed to describe the progression
of complications in critically ill patients and an elevated SOFA score is associated with
a higher likelihood of mortality [11,12]. APACHE II relies on 12 physiological variables
measured within the first 24 h of ICU admission to predict ICU patient outcomes [13].
However, the use of APACHE II and SOFA has only shown marginal improvement in
prognostic performance [14]. Therefore, we need to seek more accurate predictive models
for prognosis and mortality in ICU settings.

Machine learning (ML) approaches require more input and output data for analy-
sis, but they excel at handling complex interrelationships. Compared to classical linear
regression statistics, machine learning processes data directly, resulting in more accurate
predictions [15]. However, the “black-box” nature of AI, characterized by its lack of ex-
planation, is still the main reason for the low clinical application. In order to improve the
predictive explanation of AI models, Explanatory Artificial Intelligence (XAI) techniques
have been introduced, with SHAP (SHapley Additive exPlanations) being the most widely
used XAI technique for explaining which clinical features are important for predicting
various diseases or patient prognosis. Therefore, it is very important to use XAI to better
interpret how each feature contributes to the associated outcome in the AI prediction
model [16].

Courville E et al. reported a systematic view and meta-analysis (2013–2020) demon-
strating that much of this literature discusses in-hospital mortality and poor prognosis,
but lacks a more specific focus on the ICU population to understand the predictive power
of AIs in TBI patients [17]. In the last three years, there have been several reports on
the prognosis and mortality risk of brain injury using ML techniques. However, some of
these studies may not have selected different combinations of features based on clinical
importance, lacked comparisons with traditional tools, or were not conducted in an ICU
setting. Therefore, further investigation is needed to clarify this point [18–21].

Our goal is to use machine learning algorithms to analyze the vast amount of ICU
data to predict mortality risk after TBI, which is more tailored to patients in our country.
Additionally, it is essential to compare these ML models with the existing APACHE II
and SOFA scores. We also use the SHAP technique to explain which clinical features are
important for predicting various diseases or patient outcomes.

2. Materials and Methods
2.1. Ethics

This research received ethical approval (revision: 11106-013) from the institutional
review board at Chi Mei Medical Center in Tainan, Taiwan. The authors conducted the
study in accordance with appropriate guidelines and regulations. Since the study was
retrospective in nature, the Ethics Committee waived the requirement for informed consent.

2.2. Flow Chart and AI Device of Current Study

Our study followed the guidelines specified in the Transparent Reporting of a Mul-
tivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) standard.
Figure 1 illustrates the flowchart detailing the ML training process and its integration
into the hospital system. The ML model was trained using a total of 42 selected features
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identified based on their statistically significant differences (p-value < 0.05) between the
mortality and non-mortality groups.
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Figure 1. Workflow diagram for data collection and machine learning model training.

To assess model performance, a 70% training dataset was used, while the remaining
30% formed the test set via random splitting. As a result, four models were developed to
predict mortality risk.

Statistical analysis involved t-tests for numerical variables and Chi-square tests for
categorical variables. Additionally, Spearman correlation analysis was conducted to evalu-
ate the strength of the correlation between each feature and the outcome. Recognizing the
imbalanced outcome classes, particularly in mortality cases, we employed the synthetic mi-
nority oversampling technique (SMOTE) [22]. This oversampling technique was applied to
balance the number of positive outcome cases (mortality) with the negative cases (survival)
during the final model training with each machine learning algorithm.

Figure 2 illustrates the utilization of the hospital backend system to collect data from
various assessment modules, including the ICU evaluation module, vital signs module,
health status module, and medical history module. These modules provide input to the
central computer for integrated processing, and the data are then fed into the ML training
model for simulation.
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2.3. Patient Selection

From January 2016 to December 2021, a retrospective collection of patients aged
20 years and older who were diagnosed with TBI and admitted to the ICU was conducted
using the electronic medical records of Chi Mei Medical Center. The inclusion crite-
ria included neurosurgical patients who have been admitted to the ICU with the fol-
lowing diagnostic codes. ICD-9: 800*–804*, 850*–854*, 959.0, 959.01, and 959.8–959.9;
ICD-10: S00*-T07*. Patients with missing or ambiguous values were excluded.

2.4. Feature Selection and Model Building

Under the consensus of several neurosurgeons and intensive care physicians, we
identified parameters that met the following criteria: (1) representation of the clinical
status of traumatic brain injury patients, (2) objective assessability, and (3) generalizability.
Subsequently, we employed univariate filter methods for feature selection, considering
both continuous and categorical variables. A significance level of 0.05 or lower was used
for selection. Additionally, Spearman’s correlation coefficient and expert opinions were
considered during the finalization of the feature selection process. The study utilized
42 features, as listed in Table 1. We employed four machine learning algorithms, including
Logistic Regression [23], Random Forest [24], LightGBM [25], and XGBoost [26], to construct
predictive models for mortality in ICU. To reduce concerns of overfitting that might arise
from a small dataset, we utilized the cross-validation technique to build the models.

Table 1. Characteristics and significance of traumatic brain injury patients.

Feature Overall
n = 2260

Non-Mortality
n = 2020

Mortality
n = 240 p-Value

Female, n (%) 813 (35.97) 735 (36.39) 78 (32.50)
0.265male, n (%) 1447 (64.03) 1285 (63.61) 162 (67.50)

Age, mean (SD) 63.89 (17.74) 63.26 (17.76) 69.22 (16.65) <0.001
height, mean (SD) 162.74 (11.24) 162.75 (10.95) 162.60 (13.43) 0.862
weight, mean (SD) 63.00 (14.16) 63.24 (14.23) 61.00 (13.42) 0.016

Systolic blood pressure (SBP), mean (SD) 142.36 (29.41) 143.33 (28.40) 134.22 (35.86) <0.001
Diastolic blood pressure (DBP), mean (SD) 78.02 (17.02) 78.72 (16.36) 72.13 (20.90) <0.001
Mean Arterial Pressure (MAP), mean (SD) 100.04 (20.67) 100.99 (19.86) 92.06 (25.24) <0.001

Body temperature (BT), mean (SD) 36.55 (0.63) 36.57 (0.56) 36.39 (1.01) 0.005
pulse, mean (SD) 86.48 (16.95) 85.93 (15.90) 91.10 (23.57) 0.001

Respiratory rate (RR), mean (SD) 17.67 (4.06) 17.73 (3.95) 17.10 (4.83) 0.054
Glasgow Coma Scale_eye opening (GCS_E), mean (SD) 3.13 (1.26) 3.31 (1.15) 1.69 (1.18) <0.001

Glasgow Coma Scale_verbal response (GCS_V), mean (SD) 3.52 (1.75) 3.75 (1.66) 1.65 (1.30) <0.001
Glasgow Coma Scale_motor response (GCS_M), mean (SD) 4.99 (1.77) 5.21 (1.60) 3.08 (1.97) <0.001

Glasgow Coma Scale (GCS), mean (SD) 11.64 (4.48) 12.27 (4.11) 6.41 (4.03) <0.001
Left Pupil

Pupil reflex (−), n (%) 230 (10.18) 104 (5.15) 126 (52.50)
<0.001Pupil reflex (+), n (%) 2030 (89.82) 1916 (94.85) 114 (47.50)

Pupil size (L), mean (SD) 3.23 (0.99) 3.10 (0.77) 4.29 (1.70) <0.001
Right Pupil

Pupil reflex (−), n (%) 231 (10.22) 103 (5.10) 128 (53.33)
<0.001Pupil reflex (+), n (%) 2029 (89.78) 1917 (94.90) 112 (46.67)

Pupil size (R), mean (SD) 3.22 (0.99) 3.09 (0.76) 4.34 (1.74) <0.001
Muscle power_left upper extremity (Muscle_LUE), mean (SD) 3.03 (1.66) 3.24 (1.54) 1.30 (1.59) <0.001
Muscle power_left lower extremity (Muscle_LLEE), mean (SD) 2.93 (1.67) 3.13 (1.58) 1.24 (1.48) <0.001
Muscle power_right upper extremity (Muscle_RUE), mean (SD) 3.04 (1.66) 3.25 (1.54) 1.30 (1.57) <0.001
Muscle power_right lower extremity (Muscle_RLE), mean (SD) 2.94 (1.67) 3.14 (1.58) 1.22 (1.46) <0.001

Inspired fraction of oxygen (FiO2), mean (SD) 27.80 (11.52) 26.49 (9.08) 38.84 (20.50) <0.001
APACHE II, mean (SD) 12.92 (7.44) 11.71 (6.44) 23.10 (7.49) <0.001

Sequential Organ Failure Assessment (SOFA score), mean (SD) 3.10 (2.72) 2.64 (2.26) 6.94 (3.17) <0.001
Endotracheal tube (Endo)

No, n (%) 1283 (56.77) 1229 (60.84) 54 (22.50)
<0.001Yes, n (%) 977 (43.23) 791 (39.16) 186 (77.50)

External ventricular drain (EVD)
No, n (%) 2045 (90.49) 1823 (90.25) 222 (92.50)

0.313Yes, n (%) 215 (9.51) 197 (9.75) 18 (7.50)
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Table 1. Cont.

Feature Overall
n = 2260

Non-Mortality
n = 2020

Mortality
n = 240 p-Value

Intracranial pressure (ICP), n (%)
No, n (%) 2025 (89.60) 1835 (90.84) 190 (79.17)

<0.001Yes, n (%) 235 (10.40) 185 (9.16) 50 (20.83)
Cerebral perfusion pressure (CPP), n (%)

No, n (%) 2025 (89.60) 1835 (90.84) 190 (79.17)
<0.001Yes, n (%) 235 (10.40) 185 (9.16) 50 (20.83)

surgery, n (%) 310 (13.72) 247 (12.23) 63 (26.25) <0.001
Drugs

vasopressors, n (%) 293 (12.96) 157 (7.77) 136 (56.67) <0.001
sedative_hypnotic, n (%) 950 (42.04) 787 (38.96) 163 (67.92) <0.001

Perdipine, n (%) 354 (15.66) 295 (14.60) 59 (24.58) <0.001
Underlying disease
Hypertension, n (%) 954 (42.21) 829 (41.04) 125 (52.08) 0.001

Diabetes mellitus, n (%) 581 (25.71) 510 (25.25) 71 (29.58) 0.169
heart disease, n (%) 363 (16.06) 320 (15.84) 43 (17.92) 0.462

Cerebrovascular disease, n (%) 206 (9.12) 181 (8.96) 25 (10.42) 0.534
Gastrointestinal disease, n (%) 168 (7.43) 151 (7.48) 17 (7.08) 0.929

Liver Disease, n (%) 161 (7.12) 135 (6.68) 26 (10.83) 0.026
kidney disease, n (%) 133 (5.88) 100 (4.95) 33 (13.75) <0.001

cancer, n (%) 110 (4.87) 97 (4.80) 13 (5.42) 0.795
Thyroid disease, n (%) 55 (2.43) 53 (2.62) 2 (0.83) 0.139

epilepsy, n (%) 45 (1.99) 40 (1.98) 5 (2.08) 0.809
asthma, n (%) 41 (1.81) 39 (1.93) 2 (0.83) 0.310

pneumonia, n (%) 38 (1.68) 32 (1.58) 6 (2.50) 0.286

Note. A t-test was used for numerical variables and the Chi-square test was used for categorical variables.
Surgical procedures are as follows: decompressive craniectomy, acute epidural hematoma removal, acute sub-
dural hematoma removal, acute intracerebral hematoma removal, and intracranial pressure monitor placement.
A patient who undergoes one of the above five surgical procedures is said to have undergone surgery.

2.5. Model Performance Measurement

In this study, we evaluated the performance of the machine learning models using
accuracy, sensitivity, specificity, and area under the curve (AUC) of the receiver operating
characteristic curve (ROC).

Specificity is an important metric to assess the ability of a test or diagnostic method to
correctly identify normal results (non-patients), while sensitivity evaluates the ability to
correctly identify positive outcomes (patients). These metrics are mutually influencing and
should be considered comprehensively in research [27].

Accuracy measures the correctness of predictions made by a classification model or
testing method and represents the proportion of correct predictions among all predictions
made. However, in certain imbalanced datasets, accuracy can be misleading and lead to
poor prediction performance for minority classes [28].

The AUC, representing the area under the ROC curve, which represents the trade-off
between sensitivity and specificity (false positive rate) at different thresholds, serves as an
effective “summary” of the ROC curves’ performance [29,30].

To assess the superiority of each machine learning model compared to traditional
tools, we specifically used the DeLong test [31].

3. Results
3.1. Characteristics and Clinical Presentations of Individuals with Traumatic Brain Injury

A total of 2260 patients were retrospectively included from the electronic medical
records system of Chi-Mei Hospital. Among them, there were 1447 males (64.03%) and
813 females (35.97%). The average age was approximately 63.89 ± 17.74 (mean ± SD)
years old. The characteristics of the patients are listed in Table 1, comprising 42 features,
including vital signs, coma scale, pupillary reflex, intubation status, external ventricular
drainage, and comorbidities. Among these, 29 features showed a significant difference in
relation to mortality (p-value < 0.05).
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3.2. The Correlation between Factors and Mortality (Spearman Correlation Coefficient)

To accurately quantify the impact of each factor on prediction within the ML model,
we conducted an analysis using the Spearman correlation coefficient. Among the factors,
22 had coefficients greater than 0.1 (italic) and showed a significant correlation with mortal-
ity, indicating their substantial influence on prediction. Moreover, among these features,
14 had coefficients greater than 0.2 (bold) and demonstrated a significant correlation with
mortality (Table 2). The top five variables exhibiting high correlation coefficients include
pupil_reflex + (R), pupil_reflex + (L), vasopressors, GCS_M, and GCS_E. Notably, while
SOFA and APACHE II were employed to compare predictive performances with the AI
model, they were not utilized as features in the AI model itself.

Table 2. The Spearman correlation coefficient for each factor.

Feature Mortality Feature Mortality

Gender 0.025 FiO2 0.294
Age 0.108 APACHE II 0.397

Hight 0.008 SOFA 0.398
Weight −0.045 Endo 0.238

SBP −0.066 EVD −0.024
DBP −0.108 ICP 0.118
MAP −0.110 CPP 0.118

BT −0.088 surgery 0.126
pulse 0.079 vasopressors 0.448

RR −0.066 Sedative−hypnotic
drugs 0.181

GCS_E −0.371 Perdipine 0.085
GCS_V −0.348 Hypertension 0.069
GCS_M −0.398 Diabetes mellitus 0.031

GCS −0.363 Cerebrovascular
disease 0.016

pupil_reflex + (L) −0.483 heart disease 0.017
pupil_size(L) 0.235 asthma −0.025

pupil_reflex + (R) −0.491 pneumonia 0.022

pupil_size(R) 0.241 Gastrointestinal
disease −0.005

Muscle_LUE −0.325 cancer 0.009
Muscle_LLEE −0.326 Liver Disease 0.050
Muscle_RUE −0.328 epilepsy 0.002
Muscle_RLE −0.331 kidney disease 0.115

Thyroid disease −0.036
Note. Italicized text: absolute value greater than 0.1; Bold text: absolute value greater than 0.2.

3.3. Predictive Models with Different Features Combinations

Table 3 presents the predictive outcomes obtained from various feature combinations
and artificial intelligence learning. Initially, there were 42 features, which were then catego-
rized based on their significant difference with mortality and their Spearman correlation
coefficient. This resulted in three groups: 29 features significantly correlated with mortal-
ity, 22 features with a Spearman correlation coefficient greater than 0.1, and 14 features
with a Spearman correlation coefficient greater than 0.2. It should be noted that the orig-
inal 15-feature model includes four features: GCS_E, GCS_V, GCS_M, and GCS. Since
GCS is the sum of GCS_E, GCS_V, and GCS_M, we therefore excluded the GCS feature
and built the 14-feature model. The results show that the impact on the model’s quality is
not significant.
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Table 3. Model performance with different feature combinations.

Algorithm Accuracy Sensitivity Specificity AUC

42 features

Logistic
Regression 0.799 0.806 0.799 0.901

Random Forest 0.829 0.833 0.828 0.914
LightGBM 0.832 0.833 0.832 0.916

XGBoost 0.794 0.806 0.792 0.900

29 significant features

Logistic
Regression 0.771 0.833 0.764 0.895

Random Forest 0.844 0.847 0.843 0.918

LightGBM 0.835 0.833 0.835 0.913

XGBoost 0.783 0.792 0.782 0.901

22 significant features and Spearman correlation coefficient > 0.1

Logistic
Regression 0.833 0.819 0.835 0.919

Random Forest 0.830 0.833 0.830 0.921

LightGBM 0.851 0.819 0.855 0.909

XGBoost 0.785 0.806 0.782 0.896

14 significant features and Spearman correlation coefficient > 0.2

Logistic
Regression 0.814 0.819 0.814 0.877

Random Forest 0.832 0.833 0.832 0.902

LightGBM 0.878 0.806 0.886 0.914

XGBoost 0.794 0.806 0.794 0.897
Note. AUC = Area under receiver operating characteristic curve. Algorithms in bold indicate the model with the
highest AUC.

Each feature combination was assessed across four different machine learning models,
and the performance of each model was evaluated using the AUC of the ROC curve to
determine the best predictive model. Regardless of the feature combination, the best-
performing machine learning model achieved an AUC greater than 0.9.

Among the 42 features, the LightGBM model performed the best with an AUC of 0.916.
In the combination of 29 features, the Random Forest model achieved the highest AUC
of 0.918. For the 22-feature combination, the Random Forest model again outperformed
others with an AUC of 0.921. Lastly, in the combination of 14 features, the LightGBM model
had the highest AUC of 0.914 (Figure 3a–d).

3.4. Comparing the Best-Performing Model with Traditional ICU Assessment Tools in Different
Feature Combinations

In the DeLong test, no significant differences (>0.05) were observed in any of the
feature combinations when compared to the combination of 42 features and the LightGBM
model. For the sake of clinical convenience, we believe that using a combination of
14 features is easier to execute. When compared to APACHE II and SOFA scores, the
p-values obtained were 0.0180 and 0.0156, respectively, indicating significant differences
(Table 4).
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XGBoost (pink) using the 14 feature variables.
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Table 4. The DeLong test of ML models with different feature combinations and conventional tools
(APACH II and SOFA scores).

Algorithm Accuracy Sensitivity Specificity AUC Delong Test

Feature = 42 (LightGBM) 0.832 0.833 0.832 0.916 -
Feature = 29 (Random Forest) 0.844 0.847 0.843 0.918 0.8376
Feature = 22 (Random Forest) 0.830 0.833 0.830 0.921 0.5641

Feature = 14 (LightGBM) 0.878 0.806 0.886 0.914 0.8198
APACH II 0.768 0.847 0.759 0.872 0.0180

SOFA 0.801 0.778 0.804 0.853 0.0156

3.5. Feature Importance of AI Algorithm LightGBM Using 14 Feature Variables

Feature importance was used to rank the most important attributes that significantly
contribute to the accuracy of the final prediction models [32]. To better interpret how each
feature contributes to the associated outcome, we performed SHAP (SHapley Additive
exPlanations) [33].

We ranked the significance of all variables in the LightGBM model to comprehend
the role of each better (Figure 4). In Figure 4a, the color of the SHAP plot represents the
size of the original feature values, with red indicating positive variable values and blue
indicating negative ones. The SHAP value signifies the degree of a feature’s impact on
the outcome (a positive SHAP value indicates a positive effect). A wider Feature SHAP
value suggests a more extensive influence on the outcome. As depicted, patients using
vasopressors (represented by red dots) have an increased risk of death (SHAP value is
positive), whereas the impact of GCS_M and GCS_V is the opposite. Figure 4b displays the
ranking of features’ influence on the outcome based on the absolute values of the SHAP
values. The figure shows that the top five influential feature variables are vasopressors,
GCS_M, GCS_V, pupil reflex + (R), and Muscle_RLE.
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Based on the contribution of each predictor to the machine learning method, it can be
presented in the form of feature importance (Figure 4).

3.6. Integration and Application of AI with Clinical Systems

After a series of analyses, we concluded that the LightGBM model with a combination
of 14 features was more lightweight. Therefore, we integrated it into the hospital system to
assist clinical doctors and nurses in treatment and facilitate communication with patients’
families. The “Original” column represents data for current status. Currently, it displays
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data from the time of admission to the ICU. The “Adjust” column allows the observer to
adjust the values of each feature to understand the effect of each feature on the risk of
mortality as a reference for treatment. (Figure 5).
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4. Discussion

This is the first study to demonstrate the mortality risk of TBI in ICU using a machine
learning model and compare it to the present prediction model. The novelty of the current
study is as follows. The simplified model using 14 features with the LightGBM algorithm
for mortality prediction proved to be the most practical and excellent, achieving an AUC
of 0.914. The study made significant achievements in several aspects: (a) specialized ICU
parameters improved the credibility of prediction results; (b) different feature combinations
were chosen based on clinical importance and correlation with mortality significance;
(c) a comparison was made between ML techniques and commonly used ICU prognostic
indicators and mortality assessment tools, such as APACHE II and SOFA scores (4). The
observer can adjust the values of each feature to understand the effect of each feature on
the risk of mortality as a reference for treatment.

This study employed artificial intelligence (AI) for data analysis, offering numerous
advantages. ML can handle complex interactions in vast datasets, leading to more accurate
outcome predictions. However, ML models require a larger number of input-output pair-
ings for training, and interpretability may be sacrificed compared to standard statistics [18].
In this study, we utilized AI to identify suitable models and clinically examine the mortality
of patients with brain injury admitted to the ICU.

The data from 2260 patients, including electronic medical records, clinical physiological
values, and laboratory tests, were collected and analyzed. Initially, 42 features were
included, but not all of them showed a correlation with mortality. Therefore, we performed
a direct analysis of the features and mortality, comparing their significance, and found that
29 parameters exhibited a significant difference in relation to mortality as Table 1 shows.
Further analysis involved considering Spearman’s correlation coefficient values, which led
us to identify 14 features from LightGBM that still possessed a high AUC, making it the
most accurate prediction model. Utilizing the mortality risk provided by AI, clinicians can
be assisted in making informed medical decisions.

At our hospital, we primarily use the APACHE II and SOFA assessment tools to assist
with clinical decision-making and effectively communicate with patients and their families
to explain their medical condition in the ICU. Despite the existence of more precise and
updated versions such as APACHE III and IV, APACHE II continues to be the predominant
severity grading system and mortality risk in use [34]. The SOFA score is also widely
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used by critical-care physicians due to its ability to provide rapid and accurate mortality
predictions [35]. To compare the AI models with APACHE II and SOFA scores, we employed
the DeLong test. The results revealed that the ML models generally outperformed the
traditional tools. This finding suggests the potential clinical utility of AI in this study. For
ease of clinical practice and completeness of data acquisition, we chose to use a 14-feature
LightGBM predictive model for clinical use.

Figure 4 shows that the use of vasopressors predominated and significantly influenced
the mortality risk in the LightGBM model. Maintaining the stability of mean arterial pres-
sure and cerebral perfusion pressure (CPP) has always been crucial in brain injury care. The
judicious use of vasopressors helps balance intracranial pressure and maintain a constant
CPP [36]. For intubated patients, motor evaluation was relatively more important due to
the inability to assess verbal function. The focus was primarily on the unaffected side’s
functionality to determine the patient’s prognosis [37]. A GCS score below 8 indicates
severe brain injury, often requiring intubation to protect the airway. According to the study
by Hsu SD et al., not only GCS but also systolic blood pressure (SBP) is an important prog-
nostic factor. In the emergency department, if a patient has a GCS < 6 or an SBP < 84 mmHg,
immediate life-saving measures need to be taken [19,38]. Monitoring blood pressure and
tracking changes in the GCS can be beneficial for predicting prognosis. However, in Hsu
SD’s study [19], they utilized features from the emergency department, whereas we utilized
features from the ICU, where patients have already received treatment. Consequently, the
mortality risk prediction based on ICU features tends to be more accurate at that stage.

Table 5 presents the literature comparison we conducted. In comparison to other
literature, our study examines the impact of different feature combinations on mortality
risk prediction and suggests that the predictive capability of the machine learning model
outperforms traditional tools (APACH II, and SOFA scores). In addition, the model is
currently being applied in ICU. We believe that this model can serve as an alternative
choice for routine assessment in the ICU.

Table 5. A comparative analysis of the mortality rate among patients with brain injury over the past
five years, as reviewed in our study.

Study Current Study,
2023

Abujaber et al.
[18], 2020

Hsu et al. [19],
2021

Wang et al. [20],
2022

Wu et al. [21],
2023

Setting ICU In-hospital In-hospital In-hospital In-hospital
Patient number 2260 1620 3331 368 2804
Study models Four ML models Two ML models Seven ML models Two ML models 4 ML models

Features
Different features

(42, 29, 22, 14)
combination

20 8 21 26

Outcome Mortality Mortality Mortality Mortality Mortality
Testing result

(AUC) 0.915 0.96 0.82 0.955 0.87

Comparing with other
prediction models

APACHE II score,
SOFA score Nil. Nil. Nil. IMPACT,

CRASH

The best prediction model LightGBM
(14 features) SVM J48 XGBoost XGBoost

Generally, IMPACT and CRASH are commonly used prognostic tools for predicting
outcomes and mortality in clinical TBI cases [39,40]. In Han J et al.’s report, these two
traditional tools were found to have an AUC of 0.86 and 0.87, which is significantly lower
compared to our ML approach [41]. Wu X et al. compared XGBoost, a machine learning
algorithm, with traditional prediction tools such as IMPACT and CRASH. The results
demonstrated that machine learning (ML), specifically XGBoost, outperformed IMPACT
and CRASH the traditional tools in terms of predictive accuracy [21]. In Table 5, our AUC
is greater than Wu’s model, indicating that our model is more suitable for clinical use.
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Moreover, the AI predictive tool we propose is intended as a clinical aid, not a replace-
ment for a doctor’s judgment. Before implementing policies based on AI predictions, it is
essential to conduct comprehensive evaluations in terms of ethics, society, and policy. For
example, protecting patients’ data privacy and rights and ensuring they are not treated
unfairly because of AI predictions.

Despite the robust ML algorithms demonstrating promising predictive performance,
this study still has some limitations. First, it is a retrospective study, and prospective
research is needed to validate the experimental results. Second, the diagnosis of brain
injuries relies on Taiwan’s National Health Insurance regulations, which may have a small
number of miscoded diagnosis codes. However, the impact of these miscodings is relatively
minor in terms of overall influence. Third, imaging parameters such as midline shift and
presence/absence of brain ventricles have not been quantitatively incorporated into our
ML model. Fourth, the potential confounding effects of the numerous features utilized
require further exploration. Fifth, additional confounding variables such as smoking,
alcohol intake, shifts in treatment guidelines, and emerging medical practices could not
be comprehensively assessed due to the constraints of the retrospective database. Last,
the current ML training is limited to various medical centers and laboratories, and due to
differences in treatment guidelines, the generalization of ML from a single center to other
regions is not yet possible. However, we provide the logical framework for ML, and the
iterative process validates the effectiveness and value of such predictive models. Based on
this foundation, further research can be conducted to improve upon these findings.

5. Conclusions

Our research primarily focuses on training AI using ICU data and utilizing various
feature combinations to identify suitable ML models. In the end, we obtained 14 feature
combinations (with a significant correlation to mortality and Spearman > 0.2), among
which LightGBM performed exceptionally well. Not only does it demonstrate mortality
prediction capabilities on par with models using more features but it also outperforms
traditional models. These research findings can be applied in critical clinical settings to
assist physicians in assessing patients’ conditions and providing more data-driven explana-
tions during communication with family members. In the future, we advocate for more
studies that focus on incorporating additional variables to enhance model performance.
The application of AI predictions in other healthcare settings, such as emergency care and
long-term care, warrants deeper exploration.
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