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Abstract: Although wireless capsule endoscopy (WCE) detects small bowel diseases effectively, it
has some limitations. For example, the reading process can be time consuming due to the numerous
images generated per case and the lesion detection accuracy may rely on the operators’ skills and
experiences. Hence, many researchers have recently developed deep-learning-based methods to
address these limitations. However, they tend to select only a portion of the images from a given
WCE video and analyze each image individually. In this study, we note that more information can be
extracted from the unused frames and the temporal relations of sequential frames. Specifically, to
increase the accuracy of lesion detection without depending on experts’ frame selection skills, we
suggest using whole video frames as the input to the deep learning system. Thus, we propose a new
Transformer-architecture-based neural encoder that takes the entire video as the input, exploiting the
power of the Transformer architecture to extract long-term global correlation within and between
the input frames. Subsequently, we can capture the temporal context of the input frames and the
attentional features within a frame. Tests on benchmark datasets of four WCE videos showed 95.1%
sensitivity and 83.4% specificity. These results may significantly advance automated lesion detection
techniques for WCE images.

Keywords: artificial intelligence; transformer; capsule endoscopy; video-analysis

1. Introduction

With the introduction of wireless capsule endoscopy (WCE) for the first time in 2000,
there has been a paradigm shift in small bowel examination [1,2]. After the patient swallows
the capsule, it moves along the digestive tract from the mouth to the anus without user
manipulation. Indeed, WCE is essential for monitoring Crohn’s disease, small bowel
bleeding, small bowel tumors, and inherited polyp syndrome, and it also has the advantage
of being noninvasive and convenient for patients compared with wired endoscopy [3,4].
However, due to the location and length of the small bowel, WCE captures images for more
than eight hours, generating more than 50,000 images for each examination.

Thus, even an experienced gastroenterologist would need more than two hours to
review all of the small bowel images and detect any lesions [5]. This long evaluation
time is the main limitation of traditional methods, resulting in high fatigue in physicians.
To overcome this limitation and exploit recently developed deep learning methods for
automated lesion detection, convolutional neural network (CNN)-based models have
been proposed, which have been shown to effectively detect lesions such as bleeding,
inflammation, vascular, and polyps among WCE images [6–9].
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Although current CNN-based image-reading models have demonstrated high accu-
racy in detecting lesions for a given frame, they have limitations in that only one still-shot
image is used to detect lesions; thus, they do not benefit from sequential images containing
more information. As shown in Figure 1, sequential images offer temporal continuity,
which can provide additional information about the lesions. Furthermore, these images
possess redundancy, which can help in avoiding false negatives, unlike still-shot images.
In the real world, WCE images are stored and displayed as videos, where each frame is
captured at an appropriate rate [10]. In addition, if a lesion is suspected during reading, the
gastroenterologist not only judges the still-shot image but also refers to its adjacent frames
together. Therefore, deep learning models that can consider whole frames of WCE videos
are required.

Figure 1. Difference between human-selected still-shot images and sequential images as the inputs to
the lesion detection systems. Still-shot images do not have continuity between images, so temporal
information cannot be used. Using the whole frames of the video has advantages in that more
information can be used and that the temporal changes within the frames can provide valuable cues
for detecting lesions.

Although CNNs are sufficiently effective at extracting features within a region of an
image, they have limited receptive fields, such that their attention is limited to a local area.
On the other hand, the recently developed Transformer architecture is known to have ad-
vantages over CNNs, particularly in that the Transformer is designed to extract long-term
global attention [11]. The Transformer was initially developed for natural language mod-
eling, which achieved significant performance gains over the preceding neural networks.
Furthermore, the vision Transformer (ViT), a model that modified the original transformer
for computer vision, has also performed well in image classification [12]. Because ViT
performs well in computer vision tasks, some studies have employed the transformer
architecture to analyze WCE images [13–15].

The characteristics of continuous WCE images share significantly more similarities
with natural language processing (NLP) tasks than single-image processing tasks. WCE
images are not in a single form; instead, they are in a sequential type with continuity.
Continuous data have contextual associations. In NLP tasks, the meanings of words are
understood differently by other words in the sentence. The recognition process of words is
interdependent. In other words, words affect each other. Recurrent neural network (RNN)
or long short-term memory (LSTM) architectures are designed to solve problems caused by
long-range dependencies by modeling sequential data [16,17]. Similarly, images in video
have the same characteristics as words in NLP. In video understanding tasks, other images
influence the understanding of one image. For example, if an object that was difficult to
distinguish because it was blurry in a specific image is clearly visible in another image and
can be distinguished, it becomes possible to accurately distinguish the object even though
there is an image in which the object appeared blurry. For this reason, there have been
attempts in video tasks to learn by making temporal information into features, such as 3D
convolution [18–20]. Furthermore, since WCE videos contain relatively many low-quality
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images compared with other videos, the impact of other images on understanding images
is more important. Therefore, it can be expected that the Transformer-based long-range
self-attention model would be more effective for WCE video analysis [21].

In this paper, we propose a novel video Transformer model that utilizes the self-
attention of images and video information to detect small bowel disease. Unlike the
traditional image-level analysis that relies on human-selected images as the input, we
conduct a video-level analysis using our proposed video wireless capsule endoscopic
network (VWCE-Net). Our code is available at https://github.com/syupoh/VWCE-Net.
git (accessed on 7 April 2023). Specifically, our method performs video-level analysis by
considering all frames of the video as the input. This model performs video analysis based
on spatiotemporal self-attention information obtained from sequential images rather than
one still-shot image, as in conventional methods. In the experiments, we compare the
proposed method with well-known image-based models such as the YOLOv4 and Xception
models [19,20].

2. Materials and Methods
2.1. Data Acquisition (Data Characteristics)

A total of 260 WCE (MiroCam MC1600, Intromedic Co., Ltd., Seoul, Republic of Korea)
cases performed at Dongguk University Ilsan Hospital between 2002 and 2022 were
used to train the proposed Transformer model. All WCE image frames are stored in
JPEG format with dimensions of 320 × 320 and a frame rate of 3 fps using MiroView
4.0 (Intromedic Co., Ltd., Seoul, Republic of Korea). Our study was conducted with
the approval of the Institutional Review Board of Dongguk University Ilsan Hospital
(DUIH 2018-10-009-010).

2.2. Data Preparation

Two gastroenterologists specializing in capsule endoscopy (Oh DJ and Lim YJ from
Dongguk University Ilsan Hospital) independently performed image labeling for lesion
detection. After manually reviewing and categorizing the entire WCE case images as
normal, bleeding, inflammation, vascular, and polyp tissues, they cross-checked their
findings to ensure accuracy. Labels were assigned to each image individually, and a clip is
only used for training if all images in the clip have the same label. For example, if a clip
contains images with lesions and images without lesions, the clip is not used for training.
Therefore, the number of images used for training changes when the clip unit changes. The
40 labeled case datasets are then classified into training (36 cases, 90%) and test (4 cases,
10%) sets. The datasets were composed of clip units rather than still-shot images. Each
clip consisted of four sequential images. The reason for setting the unit of one clip as
four sequential images is discussed in Section 3.2. The training set consists of 1,291,004
(322,751), 140,788 (35,197), 10,912 (2728), 2328 (582), and 14,832 (3708) images (clips) for
normal, bleeding, inflammation, vascular, and polyp tissues, respectively. The test set
consists of 172,820 (43,205), 4200 (1050), 304 (76), 892 (223), and 24 (6) images (clips) for
normal, bleeding, inflammation, vascular, and polyp tissues, respectively (Table 1).

Table 1. Dataset specifications.

Whole Dataset Training Dataset Test Dataset
Classes Clips Images Clips Images Clips Images

Normal 365,956 1,463,824 322,751 1,291,004 43,205 172,820
Bleeding 36,247 144,988 35,197 140,788 1050 4200

Inflammation 2804 11,216 2728 10,912 76 304
Vascular 805 3220 582 2328 223 892

Polyp 3714 14,856 3708 14,832 6 24

Cases 40 36 4

https://github.com/syupoh/VWCE-Net.git
https://github.com/syupoh/VWCE-Net.git
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In previous studies, labeling was traditionally conducted on an individual basis to
identify the presence of lesions. However, in this study, we aim to reduce manual labor costs
by implementing a simultaneous labeling approach for sequential images, as depicted in
Figure 2. Nonetheless, utilizing sequential images as a dataset presents certain limitations.
The details of the limitations of the data will be covered in the Discussion section.

Figure 2. Video data labeling form with abnormal segment display. Because abnormal images in
videos tend to occur continuously, they are labeled in sequential images units rather than individual
image units.

2.3. Study Design

Our method is implemented using the PyTorch codebase MMAction2 [21]. Figure 3
shows a flow chart of the proposed VWCE-Net. First, the sequential input images are
converted into clips comprising several images. Next, the clips are placed into the model
and the lesion is detected in each clip.

Figure 3. Flowchart of the proposed VWCE-Net. The input sequence is divided into smaller clips
and the model then analyzes each clip to determine if it contains a lesion.
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In this study, we set the clip size to 4 (i.e., four consecutive frames constituted a clip).
The size of each frame was 320 pixels in width and height; however, we resized them to
224 pixels. Unlike ViT [12], which takes a single image as input, our method’s input is a
clip containing multiple images. Hence, the dimensions of the input are also different from
conventional methods, precisely 4 × 224 × 224 × 3 [18], where 4 represents the number of
images in the clip. Specifically, the input sequence of VWCE-Net is x ∈ R4×224×224×3 and,
as shown in Figure 4, one 224 × 224 image becomes 14× 14 (N = 196) patches, denoted
as xp ∈ R4×196×16×16×3, with a patch size of 16× 16. These patches are flattened into
x f p ∈ R4×196×768.

Figure 4. The process by which an input clip becomes an embedded feature. The input clips are
preprocessed by dividing them into 16 × 16 patches, flattening them, and concatenating them with
the clstoken. The clstoken is a token that detects the presence of lesions. The resulting vector is then
used as the feature for the model.

BERT is based on the Transformer architecture, which is a powerful language model
that can be used to solve a variety of NLP problems, such as question answering, natural
language inference, and text classification [22]. In BERT, clstoken is added to the first of all
features, used in classification tasks, and ignored in other tasks [22]. After passing through
all layers of the Transformer, the “clstoken” acquires the combined meaning of the token
sequence. In the classification task, you can pass through this clstoken to the classifier
to classify the entire sentence entered. In contrast to BERT, where the input data was in
word form, in this work, the input embedding is of the dimension x f p ∈ R4×196×768, so the
clstoken is represented as tcls ∈ R4×1×768. The clstoken tcls is concatenated to the flattened
patch x f p. Finally, the size of the embedding becomes R4×(196+1)×768. VWCE-Net learns
this clstoken to represent a sequence composed of 196 patched images so that it can operate
as a classification token that determines whether there is a lesion or not.

The transformer-based self-attention model does not compute convolution and does
not contain recurrence like LSTM. To use the order of sequence information, it is necessary
to mathematically model the relative or absolute position of the flatten patches.

vpos(t,i)

{
sin(t× wk), i f i = 2k
cos(t× wk), i f i = 2k + 1

wk =
1

100002k/d (d is dimension o f embedding)
(1)

where t is the position in the sequence and i is the index of the dimension representing the
position. Positional encoding vpos has a sinusoidal form. It has a pair value of sine and
cosine depending on the value of i. That is, the even-numbered dimension uses sin and the
odd-numbered dimension uses cos.
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vpos =




vpos(0,0) vpos(0,1) · · · vpos(0,767)
...

. . . . . .
...

vpos(196,0) vpos(196,1) · · · vpos(196,767)




=




sin(0) cos(0) · · · sin(0/10000)
sin(1) cos(1) · · · sin(1/10000)

...
. . . . . .

...
sin(196) cos(196) · · · sin(196/10000)




(2)

By this positional encoding, in NLP even the same word can have different embedding
values depending on the position used in the sentence [11]. In tasks such as text translate
and text generation, 1-dimensional positional encoding is calculated because the input
is a 1-dimensional word. In the task of this experiment to find a lesion in a given image,
since the input is a 2-dimensional image, 2-dimensional position encoding can be consid-
ered. To apply 2-dimensional position encoding, first divide embedding in half, set one
to X-embedding and the other to Y-embedding. Each size is set to d/2. By concatenating
X-embedding and Y-embedding, the final positional encoding value of the patch of the
corresponding position can be obtained. This work uses 1-dimensional positional encoding
instead of 2-dimensional positional encoding because there is little difference in perfor-
mance [12]. This means that the 2-dimensional positional relationship information between
coordinate of X and Y is sufficiently included in the 1-dimensional positional relationship
between the flattened patches.

Then, the embedded feature z ∈ R4×197×768 is created by adding the position em-
bedding vector vpos ∈ R4×197×768, which includes the spatial information of the patch.
Formally, the embedded feature z is represented as

z =
[
tcls

∣∣∣∣∣∣x f p

]
+ vpos (3)

where || represents the concatenation.
The embedded feature z ∈ R4×197×768 is projected as query q, key k, and value

v representations following the Transformer architecture [11]. This transformation is
achieved through linear operations using parameter matrices Wqkv ∈ R768×(768×3), which
are described as

q, k, v = zWqkv (4)

where the dimensions of the projected q, k, and v are equally 4× 197× 96. Each operation
of q, k, and v contains layer normalization of the embedded feature z.

As shown in Figure 5, the multi-head attention module performs several self-attention
operations in parallel. Each of these operations is referred to as a “Head,” following
the terminologies in [11]. In this paper, the number of “Heads,” denoted as A, is set
to 8. Because the feature dimension is 768, the dimension within the multi-head is 96.
Consequently, the q, k, and v vectors are converted into dimensions of 4× 8× 197× 96.

We perform matrix multiplication between q and k, followed by scaling with Dh,
where Dh = D/A, and then apply the softmax function as [23]

a = so f tmax
(

q⊗ kT
√

Dh

)
(5)

which is the self-attention coefficient. In this paper, we set Dh = 96. Then, the self-attention
value is obtained as

s = a⊗ v (6)
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⊗ denotes element-wise product. Multi-head attention heads are concatenated and
passed through the multi-layer perceptron (MLP). For each operation, residual connection
is used.

z′ = [s 1||s2||· · ·||sA] + z
z1 = MLP(LN(z′)) + z′ (7)

LN denotes layer normalization and MLP is a multi-layer perceptron consisting of
two hidden layers. In summary, clstoken tcls is concatenated to the flattened image patch
x f p and positional encoding vpos is added to obtain the embedded feature z. Then, z is
used to calculate multi-head attention to obtain self-attention s; s passes through MLP to
obtain z1 in the transformer layer. In this paper, we set the number of transformer layers to
12, so we calculate up to z11 by repeating the transformer operation. The first position of
z11 obtained through the entire Transformer layer is used to determine whether there is a
lesion or not.

Y = FC
(

LN
(

z11
(0)

))
(8)

FC denotes the fully connected layer ∈ R768→5. If the classification result is 0, it means
that there is no lesion; if it is more than 1, it means that there is a lesion. The reason why the
final output dimension is 5 is because the type of lesion is set to 4 when preparing the data.

Figure 5. Multi-head attention module overview. This module causes transformer architecture to
learn complex relationships between different parts of a sequence.

2.4. Implementation Detail

The basic network that makes the images into patches and passes them through the
transformer network is the same as the base ViT architecture [12]. Base ViT was pretrained
with ImageNet-21K [24], and in this experiment, 1,291,004 images were additionally trained
and fine-tuned. During training, the training images were flipped; the flip ratio was set to
0.5. The momentum was set to 0.9 and the weight decay was set to 0.0001. The learning
rate was set to 0.005 and the maximum epoch was set to 100.

To train the YOLOv4 object detection model, we manually labeled bounding boxes
around the lesion in the training images. When we evaluated the performance of the model
with test images, we evaluated only whether there was a lesion or not. We trained the
YOLOv4 object detection model with the following hyperparameters. The momentum
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was set to 0.949, the weight decay was set to 0.0005, the learning rate was set to 0.001,
and maximum iteration was set to 40,000. We used the default hyperparameters from the
timm [25] library to train the XceptionNet model. The momentum was set to 0.9, the weight
decay was set to 0.0001, the learning rate was set to 0.01, and maximum epoch was set
to 100.

3. Results
3.1. Comparison of Our Video-Level Analysis with Existing Still-Shot Image Analysis Methods

The results of the proposed video classification, image classification, and object de-
tection models are compared in Table 2. The model used for classification was Xception-
Net [26], and the model used for object detection was YOLOv4 [27]. XceptionNet is a
variant of CNN that is known for its effectiveness in image classification. YOLOv4 is a
powerful object detection algorithm that is well suited to real-time applications. It can
detect objects quickly and accurately, even in challenging conditions. Existing methods for
classification and object detection rely on image-level analysis [19,20], which involves only
human-selected images from the entire video. In contrast, we evaluate the entire video in
this experiment instead of relying on a human-selected subset.

Table 2. Comparison of the results of the VWCE-Net model based on video analysis with the results
of the YOLOV4 and XceptionNet models based on image analysis.

Model Sensitivity (%) Specificity (%)

XceptionNet [26] 43.2 90.4
YOLOV4 [27] 88.6 51.5
VWCE-Net 95.1 83.4

The sensitivity and specificity performances of the three models are compared with
the same full video test dataset. Table 2 shows that the classification model XceptionNet
has a low sensitivity rate and that the object detection model YOLOv4 has a low specificity
rate compared with the proposed VWCE-Net model.

3.2. Determining the Clip Length for the Video-Level Analyses

To investigate the impact of clip length in our video-level analysis, we conducted
experiments by dividing the clip length by 2, 4, 6, and 8. The results of these comparisons
are presented in Table 3. Surprisingly, we can see that the sensitivity and specificity are not
directly proportional to the clip length. Consequently, it is crucial to determine whether
to prioritize sensitivity or specificity in determining the optimal clip size. After careful
evaluation, we determined a clip size of 4 as being optimal; this clip size yields the highest
specificity while maintaining a sufficiently high sensitivity. Therefore, all the explanations
previously provided and the subsequent experiments are conducted based on a clip size
of 4.

Table 3. Comparative results based on clip length.

Clip Length Sensitivity (%) Specificity (%)

2 98.51 72.81
4 95.13 83.43
6 93.93 83.25
8 97.89 80.76

3.3. Sampling Strategy

To analyze the WCE images more accurately, sequential images were used as the
dataset instead of still-shot images. However, there are limitations to using sequential im-
ages as a dataset. Firstly, sequential images often exhibit similarities, particularly between
adjacent frames. The abundance of similar images poses a challenge to effective learning
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and increases the risk of overfitting. Secondly, the dataset suffers from an imbalance, with
a substantially larger number of normal images than abnormal ones. This imbalance nega-
tively impacts the model’s performance. To address these challenges, a sampling strategy
was employed to select only a portion of the WCE images as clips for training.

When studying a model for action recognition using video, it is common practice to
utilize only the clip in the center [28]. However, in this study, in addition to the center
sampling of the clip, random sampling was also performed to determine if there was
a difference depending on the sampling method. Figure 6 illustrates the scenarios of
center sampling and random sampling. A comparison of the random sampling and center
sampling approaches is shown in Table 4, which clearly indicates that center sampling
yields superior performance.

Figure 6. Sampling methods for video input. The upper image represents the center sampling
method, where only the center part of the video sequence is extracted as a clip. The lower image
demonstrates the random sampling method, where clips are randomly extracted from the entire
video sequence.

Table 4. Performance comparison: center sampling vs. random sampling (clip length: 4).

Sampling Strategy Sensitivity (%) Specificity (%)

center 95.13 83.43
random 72.84 89.62

4. Discussion

This study is the first to analyze complete video frames from capsule endoscopy using
a transformer network. This approach is motivated by the observation that gastroenterolo-
gists typically identify diseases not solely based on individual images but by considering a
sequence of images surrounding a suspected area [29]. However, in existing studies that
automatically detect symptoms using AI models, the inputs to the system are usually single
images as opposed to several consecutive images [19,30,31]. Therefore, it is necessary to
manipulate WCE images in a continuous manner to set up an environment similar to actual
disease detection.

The transformer is currently a state-of-the-art model for computer vision and NLP
tasks. As a result, recent works [13,15] have introduced the application of transformers for
processing and analyzing WCE images. These studies have demonstrated the effectiveness
of utilizing the transformer architecture in achieving high performance when applied to
WCE images.

In previous studies, image-level analysis was performed on data that were selected
by a human from the entire video, rather than on the entire video itself. In contrast, our
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experiment compares the sensitivity and specificity performances of the three models
using the same full-video test dataset. As a result, it is shown that the classification model
XceptionNet exhibits a low sensitivity rate, whereas the object detection model YOLOv4
exhibits a low specificity rate compared with the proposed VWCE-Net model. It can be
seen that our video-based method significantly outperforms the image-based methods in
terms of accuracy.

To accurately detect lesions within a clip, we obtained detection results by changing
the length of the clip. Additionally, the length of the clip was modified for each result to
ensure optimal detection. This is because when the clip is too long, the number of images
with lesions in the clip exceeds those without lesions. Hence, to achieve an exemplary
detection result, it is crucial to ensure an appropriate clip length that maintains continuity
without being too long. As demonstrated in Table 3, it is evident that a clip length of four
yields the best results. Accordingly, four images are concatenated into one clip to determine
whether there is a lesion in that clip. In addition, considering the considerable length of
capsule endoscopy videos, we sample only a portion of the images from the videos for
training. Two sampling strategies, center sampling and random sampling, were employed
in this process. As illustrated in Figure 6, the video is segmented into sequences whenever
the presence or absence of a lesion changes. The center sampling method extracts only the
central images from each sequence to form a clip, whereas the random sampling method
involves the random extraction of images, irrespective of their position within the sequence.

The center sampling method is widely utilized in video recognition tasks, as it assumes
that the images positioned at the center of the sequence are representative of the entire
sequence. Conversely, the images extracted through random sampling lack the same level
of representativeness. Consequently, incorporating randomly extracted images does not
significantly improve the model’s performance. As shown in Table 4, the model trained
with randomly extracted images has a lower false positive rate than the model trained
with center-extracted images. However, training with center-extracted images yields
higher sensitivity.

While randomly extracted images introduce redundant information that restricts the
model’s performance improvement, relying solely on center-extracted images is not con-
sidered optimal due to the limited information they provide. Therefore, striking a balance
between the two sampling methods is crucial to achieving better detection outcomes.

There are some limitations to utilize sequential images as a dataset. Firstly, the
presence of numerous similar images within a video sequence poses challenges to effective
learning. Learning from a dataset containing numerous similar images increases the risk
of overfitting, which can hinder the model’s generalization capability. Secondly, there is a
significant data imbalance between normal and abnormal images. The dataset primarily
comprises normal images, whereas the number of abnormal images is relatively low.
This data imbalance can negatively impact the performance of the model, leading to
suboptimal results.

5. Conclusions

In this paper, we have proposed a transformer-based neural network for lesion de-
tection in WCE data. Unlike conventional methods that analyze still-shot images, our
approach analyzes sets of consecutive images. We trained and tested our network using a
dataset of approximately 1.6 million WCE images that were categorized into five classes:
normal, bleeding, inflammation, vascular, and polyp. To evaluate the performance of our
model, we compared it with existing image-based methods, specifically the XceptionNet
and YOLOv4 models. The experimental results clearly demonstrate that our video-based
VWCE-Net model outperforms the image-based methods in terms of lesion detection
accuracy and effectiveness. By leveraging the power of transformer-based architecture
and analyzing WCE data using consecutive image sequences, our proposed approach
offers improved performance and holds promise for advancing lesion detection in WCE
examinations. To develop the performance of models that handle consecutive image se-
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quences, it is necessary to study automated preprocessing techniques that can remove
noise from sequence data before learning. This is because noise in consecutive images
can reduce learning efficiency and cause performance degradation in video models that
use consecutive images as a single clip. If the automated lesion detection model is further
developed, it can be used in practical settings. This would allow gastroenterologists to
diagnose patients more efficiently with the help of the automated lesion detection model,
reducing their fatigue and allowing more patients to receive high-quality medical care.
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