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Abstract: Medical diagnosis is the basis for treatment and management decisions in healthcare.
Conventional methods for medical diagnosis commonly use established clinical criteria and fixed
numerical thresholds. The limitations of such an approach may result in a failure to capture the
intricate relations between diagnostic tests and the varying prevalence of diseases. To explore this
further, we have developed a freely available specialized computational tool that employs Bayesian
inference to calculate the posterior probability of disease diagnosis. This novel software comprises
of three distinct modules, each designed to allow users to define and compare parametric and
nonparametric distributions effectively. The tool is equipped to analyze datasets generated from
two separate diagnostic tests, each performed on both diseased and nondiseased populations. We
demonstrate the utility of this software by analyzing fasting plasma glucose, and glycated hemoglobin
A1c data from the National Health and Nutrition Examination Survey. Our results are validated
using the oral glucose tolerance test as a reference standard, and we explore both parametric and
nonparametric distribution models for the Bayesian diagnosis of diabetes mellitus.

Keywords: Bayesian diagnosis; Bayesian inference; prior probability; posterior probability; likelihood;
parametric distribution; nonparametric distribution; copula distribution; kernel density estimator;
probability density function; diabetes mellitus

1. Introduction

Medical diagnosis is a critical process of accurately identifying pathological conditions
in patients. The term “diagnosis” has its etymological origins in the ancient Greek word
“διάγνωσις”, signifying “discernment” [1]. Traditionally, diagnostic tests are used to
divide individuals into two principal categories: those who are afflicted with a specific
disease and those who are not. Notably, the probability distributions associated with
quantitative diagnostic test outcomes often demonstrate some overlap between the diseased
and nondiseased groups. To address this, numerical diagnostic thresholds or cut-off
points have been formulated to provide a binary classification of these test outcomes [2].
Nevertheless, this introduces a certain measure of uncertainty into the diagnostic accuracy
of those tests [3]. This dichotomous method represents a significant shift in medical
decision-making by linking a continuum of evidence to binary clinical decisions such as to
treat or not to treat [4].

Despite the evident efficiency of traditional diagnostic methods, they sometimes fail
to capture the complexity and heterogeneity of disease presentations across diverse popu-
lations [5]. To address these limitations, our research focuses on implementing Bayesian
inference to calculate the posterior probabilities associated with disease diagnosis [6–9].
Within this Bayesian paradigm, prior probabilities of disease are integrated with distri-
butions of diagnostic measurands in both diseased and nondiseased populations. This
approach enables the evaluation of the information conveyed via diagnostic measurements
and the combination of data from multiple diagnostic tests, which may improve diag-
nostic accuracy and precision while introducing flexibility, adaptability, and versatility
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into the diagnostic process [10]. Furthermore, the Bayesian approach extends its utility
beyond the medical field by offering a robust framework for quantifying uncertainty in
various domains, thereby enriching its applicability in both diagnostic and prognostic
contexts [11,12].

A considerable challenge in integrating Bayesian inference into medical diagnosis
is the limited availability of literature detailing the statistical distributions of diagnostic
variables in both pathological and non-pathological states [13].

The ubiquitous application of the normal distribution in clinical laboratory indicators
is due, in part, to its mathematical simplicity, the foundational Central Limit Theorem,
and a rich collection of statistical methods designed for Gaussian data [14]. However, the
universal applicability of the normal distribution is subject to critique, especially when
dealing with clinical measurands that exhibit skewness, bimodality, or multimodality [15].
Hence, while the normal distribution remains invaluable in statistical modeling, critical
evaluation of its appropriateness for specific diagnostic measurands is necessary. This eval-
uation should be accompanied by an openness to adopt alternative statistical distributions
when needed [16].

This foundational data is crucial for Bayesian inference, establishing the essential
context against which new diagnostic measurements can be compared. The absence of
such normative data could potentially compromise the reliability and validity of Bayesian
diagnostic methods.

To address the complex issues related to Bayesian diagnosis and the selection of ap-
propriate statistical distributions for diagnostic variables, we have developed the Bayesian
Diagnosis program, an interactive software tool programmed in the Wolfram Language. This
tool allows users to explore and compare both parametric and nonparametric distributions
to calculate posterior probabilities for disease. It is designed to analyze datasets of mea-
surements of two distinct diagnostic tests, performed on both diseased and nondiseased
populations.

2. Methods
2.1. The Program

Bayesian Diagnosis was developed using Wolfram Mathematica® Ver. 13.3 (Wolfram
Research, Inc., Champaign, IL, USA (2023)). This interactive program consists of three
primary modules with eighteen submodules. It allows the calculation, plotting, and com-
parison of Bayesian posterior probabilities of disease for two diagnostic tests, assuming
two sets of alternative parametric and nonparametric distributions of the measurements
of those tests in diseased and nondiseased populations (refer to Figure 1 and to Supple-
mentary File S1). It is freely available as a Wolfram Notebook (.nb) (Supplementary File:
BayesianDiagnosis.nb). It can be run on Wolfram Player® or Wolfram Mathematica® (refer
to Appendix B).

Datasets

As datasets are considered tuples of data. Although the program includes four datasets
of measurements, one for each diagnostic test, applied to a diseased and a nondiseased
population, these can be replaced by other appropriate datasets selected by the user (refer to
Appendix B). Therefore, it can be used for any combination of diagnostic tests and diseases.

2.2. Computational Methods
2.2.1. Bayesian Diagnostic Approach

The Bayesian diagnostic approach is a cornerstone in statistical inference and particu-
larly useful in medical diagnosis [6,17,18]. The approach relies on Bayes’ theorem [7]. For
effective implementation of the Bayesian diagnostic method, knowledge concerning the
statistical distributions of the measurements of the diagnostic tests is essential [14].

Bayes theorem is presented in Appendix A.
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Figure 1. The flowchart of the Bayesian Diagnosis program.

2.2.2. Parametric Distributions

Parametric statistics assume that dataset data comes from a population that can be
adequately modeled with a probability distribution that has a fixed set of parameters [19].
The parametric distributions provided by the program are the following:

1. Normal Distribution

1.1 Univariate
1.2 Bivariate

2. Lognormal Distribution

2.1 Univariate
2.2 Bivariate

3. Gamma Distribution

3.1 Univariate
3.2 Bivariate

4. Copula Distributions

The copula distributions of the program are bivariate, with a bivariate normal distribu-
tion with correlation ρ as kernel, and univariate normal, lognormal and gamma marginals.

The probability density functions (PDFs) of the parametric distributions are mathe-
matically defined in Appendix A.
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2.2.3. Nonparametric Distributions

Conversely, nonparametric models were also employed, which do not make a priori
assumptions about the distribution’s mathematical form [20]. These are particularly useful
for exploratory data analysis and are implemented as shown in Appendix A.

Histograms

A histogram is the graphical representation of the distribution of a dataset as a series
of bins.

The program plots histograms of the provided datasets.

Kernel Density Estimators (KDEs)

In contrast to histograms, a KDE generates a continuous and smooth estimate of the
underlying PDF by summing the contributions of kernel functions centered at each data
point.

KDEs offer a flexible nonparametric approach to density estimation, allowing for a
better representation of the underlying distribution of the data.

The program provides univariate and bivariate Gaussian KDEs. The bivariate KDEs
use radial-type kernels.

2.3. Interface of the Program

The Bayesian Diagnosis program is equipped with an intuitive tabbed user interface
(refer to Figure 2). This design facilitates seamless navigation through its various modules
and submodules. Users have the capability to input and modify a range of parameters,
including prior probabilities and measurement parameters. Additionally, the interface
allows for the selection of both parametric distributions and KDEs pertinent to medical
diagnosis (refer to Appendix C and Supplementary File S1).

2.3.1. Input Parameters
Prior Probability

The user initiates the diagnostic evaluation by specifying the prior probability of
disease occurrence in the population under study. This serves as a foundational measure
for subsequent analyses.

Parametric Distributions

To facilitate a diagnostic model, the program allows for the definition of various
parametric distributions for both the diseased and nondiseased populations across two
diagnostic tests.

1. Distribution Selection: The user selects the type of distribution from a predefined list:

1.1 Normal Distribution.
1.2 Lognormal Distribution.
1.3 Gamma Distribution.

2. Statistical Parameters: For each chosen distribution, the user defines the mean µ and
standard deviation σ of the measurand in the respective population.

3. Correlation Coefficients: The user specifies the correlation coefficients ρ between the
measurands of the first and second diagnostic tests for both diseased and nondiseased
populations.

KDEs

Alternatively, the user can opt to define the KDEs for the measurands in both diseased
and nondiseased populations across the two tests:

1. Bandwidth Parameter: For each KDE, the user defines the bandwidth parameter h.
2. Correlation Coefficients: As with parametric distributions, the user defines the corre-

lation coefficients ρ between the measurands of the two diagnostic tests.
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2.3.2. Output Specifications
Visualizations

The program generates a series of plots designed to elucidate various diagnostic
metrics and statistics:

1. Posterior Probability of Disease: Plots are generated to show the posterior probability
of disease for each measurand and their combination.

2. PDFs: Univariate PDFs for each measurand and the bivariate PDF of their combination
are plotted. An option to overlay histograms on these plots is also provided.

3. Quantile–Quantile (Q–Q) Plots: These plots are produced for each measurand to
examine its distributional characteristics [21].

4. Probability–Probability (P–P) Plots: Similar to Q–Q plots, P–P plots are generated for
further assessment of the distribution of each measurand [21].

The descriptions of the Q–Q and P–P plots are presented in the Supplementary File S2.

Tables

1. Population Statistics: The program tabulates key statistical metrics such as mean,
median, standard deviation, skewness, kurtosis, and prior probability for each user-
defined distribution and dataset. For each bivariate distribution of the two mea-
surands in diseased and nondiseased populations, the correlation coefficients are
calculated and displayed.

2. Posterior Disease Probabilities: For a user-defined pair of test measurement values,
the program computes and presents the posterior probabilities for disease for each
measurand and their combination.

By providing this comprehensive set of input parameters and output specifications,
the program offers a robust platform for exploring the Bayesian diagnosis of disease using
either parametric distributions or KDEs of medical diagnostic measurands.

2.3.3. Illustrative Application

To demonstrate the application of the program, fasting plasma glucose (FPG) was used
as the first measurand and glycated hemoglobin A1c (HbA1c) as the second measurand for



Diagnostics 2023, 13, 3135 6 of 28

Bayesian diagnosis of diabetes mellitus. The oral glucose tolerance test (OGTT) was used
as the reference diagnostic method. A diagnosis of diabetes was confirmed if the plasma
glucose (PG) value was equal to or exceeded 200 mg/dL, measured two hours after oral
administration of 75 g of glucose [22], during an OGTT (2-h PG). It is noteworthy that the
study population was confined to individuals aged between 40 and 60 years, a decision
informed by the well-documented strong correlation between age and the prevalence of
diabetes [23].

National Health and Nutrition Examination Survey (NHANES) data from participants
was retrieved for the period from 2005 to 2016 [24] (n = 60,936). NHANES is a series of
studies designed to evaluate the health and nutritional status of adults and children in the
United States.

The inclusion criteria for participants were:

1. Age 40–60 years (n = 11,782);
2. Valid FPG, HbA1c, and OGTT measurements (n = 4015);
3. A negative response to NHANES question DIQ010 regarding a diabetes diagnosis [25]

(n = 3854);
4. Non-pregnancy status (n = 3854).

Participants with a 2-h PG measurement of ≥ 200 mg/dL were considered diabetic
(n = 211).

Descriptive statistics, including the mean, median, and standard deviation, were
computed for each dataset and correlation coefficients for their combination. Univariate
distributions were employed to model the distributions of FPG and HbA1c and bivariate
distributions to model the joint distribution of FPG and HbA1c. Likelihoods and posterior
probabilities were estimated for FPG, HbA1c and their combination.

The prior probability of diabetes was estimated as follows:

v =
211

3854
= 0.055

The statistics of the dataset are presented in Table 1.

Table 1. The descriptive statistics of FPG and HbA1c datasets.

Diabetic Patients Nondiabetic Patients

n 687 10,519
Measurand (Units) FPG (mg/dL) HbA1c (%) FPG (mg/dL) HbA1c (%)

Mean 141.3 6.67 99.9 5.47
Median 124.0 6.30 99.0 5.50

Standard Deviation 54.0 1.57 10.1 0.38
Skewness 2.375 2.201 0.576 −0.058
Kurtosis 9.037 8.377 4.213 3.615

Correlation Coefficient 0.914 0.320

3. Results

Using the settings of Table 2, the program generated the plots of Figures 3–13 and the
tables of Figures 14 and 15.

Table 2. The settings of the program for Figures 3–15.

Diabetic Patients Nondiabetic Patients

Measurand (Units) FPG (mg/dL) HbA1c (%) FPG (mg/dL) HbA1c (%)
Parametric Distribution Lognormal Lognormal Lognormal Lognormal

Parametric Distribution Mean 141.3 6.67 99.9 5.47
Parametric Distribution SD 54.0 1.57 10.1 0.38

KDE Smoothing Bandwidth (SD units) 0.32 0.34 0.34 0.35
Correlation Coefficient 0.914 0.320
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4. Discussion 

4.1. Reevaluation of Traditional Diagnostic Methods 

Figure 14. Descriptive statistics of the distributions of the measurands (FPG and HbA1c) in dis-
eased (diabetic patients) and nondiseased (nondiabetic patients), assuming parametric and KDE
distributions, and of the respective datasets (NHANES datasets), with the settings of the program in
Table 2.
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4. Discussion 

4.1. Reevaluation of Traditional Diagnostic Methods 

Figure 15. The prior and posterior probabilities of disease (diabetes) for values of the first measurand
(FPG) equal to 126 mg/dL and of the second measurand (HbA1c) equal to 6.5%, assuming parametric
and KDE distributions, with the settings of the program in Table 2.

The KDEs smoothing bandwidth was set to double that given with Silverman’s rule of
thumb [26,27].

Figures 3 and 4 show the plots of the posterior probability of diabetes versus FPG
and HbA1c, respectively. The curves of the parametric distributions are smooth double
sigmoidal, while the curves of the nonparametric distributions are multimodal.

Figure 5 shows the plot of the posterior probability of diabetes versus FPG and HbA1c
combined. The surface of the parametric distribution is smooth, while the surface of the
nonparametric distribution is multimodal.

Figures 6–9 show the PDF of FPG and HbA1c in diabetic and nondiabetic patients
and the histograms of the respective NHANES datasets. It is visually evident that the
nonparametric distributions fit the datasets better, especially in diabetic patients.

Figures 10–13 show the Q–Q plots of the parametric and KDE distributions of FPG
and HbA1c in diabetic and nondiabetic patients versus the respective NHANES datasets.
The plots show clearly that the nonparametric distributions fit the datasets better, especially
in diabetic patients.

Figure 14 shows a table with the descriptive statistics of FPG and HbA1c in diabetic
patients and nondiabetic patients, assuming parametric and KDE distributions, and of
the respective NHANES datasets. The data, including the loglikehood values, supports
the hypothesis that the nonparametric distributions fit the datasets better, especially in
diabetic patients.

Figure 15 shows a table of prior and posterior probabilities for disease (diabetes) for
values of FPG equal to 126 mg/dL and of HbA1c equal to 6.5%, the established thresholds
of the two measurands for the diagnosis of diabetes [22], assuming parametric and KDE
distributions.

4. Discussion
4.1. Reevaluation of Traditional Diagnostic Methods

The findings of the present study highlight the importance of considering incorporat-
ing Bayesian methods in medical diagnosis and management. Conventional approaches
based on rigid diagnostic criteria are often unable to account for the intricate relationships
between disease pathology and diagnostic procedures thus limiting personalized patient
care options. [28]. In stark contrast, Bayesian methodologies offer a framework that en-
hances diagnostic precision through a more comprehensive probabilistic assessment [5].
This Bayesian foundation, therefore, could serve as an enabler for tailored medical inter-
ventions, echoing similar arguments in existing literature advocating for individualized
medicine [29].
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The study population was confined to individuals aged between 40 and 60 years. This
restriction allowed for a more homogeneous prior probability, thereby reducing the impact
of age-specific variations in the prevalence of the condition under study.

Even though the KDEs from our illustrative application, as parameterized in Table 2,
provide only an approximate fit to the NHANES datasets for FPG and HbA1c measure-
ments, the posterior probabilities for diabetes delineated in Figure 15 suggest a limited
concordance between the classification criteria of diabetes derived from the OGTT, HbA1c,
and FPG tests [22], as found previously in existing literature [30].

4.2. Challenges and Considerations in Bayesian Analysis for Disease Diagnosis

Despite the evident merits of Bayesian analytics in medical diagnostics, it is paramount
to address the intrinsic challenges associated with this methodological shift. One such
issue resides in the limited availability of scholarly publications that provide a compre-
hensive statistical exploration of the measurands in both the diseased and nondiseased
populations [31].

4.2.1. Ramifications of Incomplete Information

1. Over-dependence on Prior Probabilities: The scarcity of empirically derived dis-
tributions amplifies reliance on prior probabilities, thereby inducing distortions in
the calculation of posterior probabilities. This could result in suboptimal clinical
judgments and potentially inaccurate diagnoses [32].

2. Elevated Uncertainty: Insufficient data contributes to broader confidence intervals
in the computed posterior probabilities, which, in turn, could exacerbate clinical
indecisiveness [33].

3. Risk of Bias: The introduction of systemic bias due to unrepresentative datasets could
compromise the fidelity of Bayesian calculations [7].

4. Imperative for Collaborative Research: More coordinated research is needed, includ-
ing multi-center studies, meta-analyses, and open-access databases—to accumulate
and disseminate data essential for effective Bayesian diagnosis [34].

5. Exploration of Alternative Methodologies: Given the lack of comprehensive data,
the utility of combining Bayesian methods with other statistical and computational
techniques or diagnostic modalities becomes increasingly pertinent [35,36].

4.2.2. Parametric Versus Nonparametric Bayesian Models

In the context of diagnosing diabetes mellitus through FPG and HbA1c levels, our
computational tool revealed that nonparametric Bayesian models typically produce a better
fit to data distributions, corroborating existing literature that emphasizes the robustness of
nonparametric techniques in capturing complex data distributions [26,37].

4.2.3. Multimodal Versus Double Sigmoidal Bayesian Probability of Disease Curve

The nonparametric Bayesian probabilities for disease exhibited multimodal patterns,
in contrast to the bimodal, double sigmoidal curves generated by parametric models.

Multimodal Curve

Potential Causes:

(a) Complex Pathophysiology: Multiple etiological pathways may influence the same
measurand in divergent ranges, adding layers of complexity to diagnostic pro-
cesses [13].

(b) Diagnostic Confounders: External variables affecting the measurand could compro-
mise its efficacy as a standalone diagnostic criterion [38].

(c) Population Subgroups: The existence of demographically or genetically distinct
subgroups within the studied population could also account for the observed multi-
modality [39].
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(d) Statistical Artifacts: Demographically or genetically distinct subgroups may be a
factor contributing to observed multimodal distributions [39].

Theoretical Implications:
Multimodal distributions present a clinical conundrum, compelling healthcare providers

to potentially employ additional diagnostic tests or even alternative methodologies [13].

Double Sigmoidal Curve

A curve composed of two mirrored sigmoid functions, one delineating the proba-
bility behavior for lower measurand values and the other for higher values— presents a
compelling intricacy in the realm of diagnostic statistics and medical decision-making.

Interpretation

(a) Two Zones of Risk: Such a curve suggests that the risk of the disease is heightened
both at low and high extremes of the measurand but reduced in a middle “safe zone.”

(b) Multifactorial Etiology: This might reflect a situation where both deficiency and excess
of a particular biological factor contribute to disease risk. For example, both low and
elevated levels of hormones may pose challenges to physiological homeostasis.

Clinical and Diagnostic Implications

(a) Threshold Decision-making: Unlike a single sigmoid curve, where one threshold may
be adequate for diagnosis, the double sigmoid may necessitate multiple thresholds,
defining a “safe zone” for the measurand.

(b) Treatment Strategies: Clinicians must be cautious when intervening based on such a
measurand, as moving the measurand too far in either direction could heighten risk.

(c) Population Stratification: This curve shape might imply that different sub-populations
or disease subtypes could be better distinguished with additional tests or measurements.

4.3. Shortcomings of This Study

The main shortcomings of this study were the following:

1. The OGTT was used as a reference diagnostic method for diabetes mellitus. The
diagnostic threshold for 2-h PG was established in relation to the risk of diabetic
retinopathy, a microvascular complication of diabetes mellitus [40]. However, glucose
tolerance is influenced by complex interactions of factors, both physiological and
environmental, which pose significant implications for clinical diagnosis and research.
The considerations that could affect glucose tolerance and, therefore, the interpretation
of the 2-h PG measurement, include the following:

(a) Age and Gender: Age and gender are significant variables in glucose toler-
ance. Insulin sensitivity often decreases with age, resulting in higher 2-h PG
levels [41]. Gender differences, particularly related to hormonal changes in
females, could also affect glucose metabolism [42].

(b) Diurnal Variability: Glucose tolerance is subject to diurnal variation, which
could affect the 2-h PG test outcomes. Insulin sensitivity is generally higher in
the morning than in the evening [43].

(c) Physical Activity: Exercise improves insulin sensitivity and therefore could
affect glucose tolerance tests. The timing and intensity of physical activity
could have a direct influence on the 2-h PG results [44].

(d) Dietary Patterns: Short-term and long-term dietary habits, including the
macronutrient composition of the diet, may alter the body’s glucose and insulin
response [45].

(e) Stress and Emotional States: The acute stress response includes a transient rise
in glucose levels as a result of catecholamine release, potentially affecting the
2-h PG test [46].

(f) Medications: Certain medications like corticosteroids, antipsychotics, and di-
uretics affect glucose metabolism, thereby influencing 2-h PG test outcomes [47].
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(g) Genetic Factors: Genetic predispositions influence glucose tolerance, and not
accounting for this introduce variability in the 2-h PG test [48].

2. The lognormal distributions and the KDE, as parameterized in Table 2, fitted only
approximately to the NHANES datasets of FPG and HbA1c measurements. It is well
known that biological measurands, such as FPG and HbA1c, may not follow textbook
statistical distributions like normal or lognormal distributions. Numerous papers
have noted the skewness or kurtosis in the distribution of metabolic variables, urging
the use of flexible statistical models [49,50].

Related Statistical Software

All major general or Bayesian statistical software packages (OpenBUGS, Ver. 3.2.3,
JASP®, Ver. 0.18.1, Matlab®, Ver. R2023b, NCSS®, Ver. 23.0.2, R, Ver. 4.3.1, SAS®, Ver.9.4M8,
SPSS®, Ver. 29, Stan, Ver. 2.33.0, and Stata® Ver. 18) include routines for Bayesian inference.
The program presented in this work provides 29 different types of parametric and nonpara-
metric plots. None of the above-mentioned programs provide this range of plots without
advanced statistical programming.

5. Conclusions and Future Directions

The intricacies of the double-sigmoid curve and multimodal distributions introduce a
new frontier in personalizing healthcare provision. While smoother relationships between
measurements and Bayesian probability facilitate clinical interpretability, multimodal dis-
tributions might serve as sentinel indicators of underlying complexities or methodological
shortcomings, thus providing a useful tool in the field of medical diagnosis.

As a pivotal next step, future research should aim to validate the utility and reliability
of the Bayesian inference based method applied in this study through real-world clinical
trials, in addition to extending its application to include more diagnostic modalities. The
aim is to combine this approach with existing clinical protocols, thereby optimizing the
diagnostic precision and consequently improving patient outcomes.

In addition to its potential for clinical applications, the computational tool developed
for this study could hold considerable promise as an educational and research adjunct.
By facilitating the analysis of Bayesian probabilities in disease diagnosis, it serves as an
invaluable resource for both medical practitioners in training and experienced researchers
in the field. Its modular design and user-friendly interface make it easily adaptable to
various research settings and educational curricula, thereby accelerating the adoption and
dissemination of Bayesian approaches in medical statistics and diagnostics.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13193135/s1, BayesianDiagnosis.nb: The program as a
Wolfram Notebook. Available at https://www.hcsl.com/Tools/BayesianDiagnosis/BayesianDiagnosis.
nb (accessed on 28 September 2023); Supplementary File: BayesianDiagnosis.nb can be found at https:
//zenodo.org/record/8414309 (accessed on 6 October 2023); Supplementary File S1 can be found at
https://zenodo.org/record/8407804 (accessed on 6 October 2023); Supplementary File S2 can be found
at https://zenodo.org/record/8414841 (accessed on 6 October 2023).
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PDF probability density function
CDF cumulative distribution function
KDE kernel density estimator
OGTT oral glucose tolerance test
PG plasma glucose
2-h PG plasma glucose, measured two hours after oral administration of 75 g of glucose,

during an OGTT
FPG fasting plasma glucose
HbA1c glycated hemoglobin A1c
NHANES National Health and Nutrition Examination Survey

Appendix A

Appendix A.1. Formalisms and Notation

Appendix A.1.1. Tuples

x: an n-tuple (x1, x2, . . . , xn)

Appendix A.1.2. Parameters

v: prevalence of disease
µ, m: mean
σ, s: standard deviation
ρ, r: correlation coefficient
k: shape parameter
ϑ: scale parameter
h: nonparametric kernel density bandwidth

Appendix A.1.3. Functions

f−1: the inverse of the function f
|H|: determinant of the matrix H
P(A): probability of the event A
P(A, B): conditional probability of the event A given the event B
cov(X, Y): covariance of two jointly distributed random variables X and Y
E[Z]: expected value of a random variable Z
ln(x): natural logarithm
L(θ|z ): likelihood function of the parameter θ given the observed value z of the random
variable Z
L(θ|z): likelihood function of the parameter θ given the observed values z of the random
variable Z.
l(θ|z ): loglikelihood function of the parameter θ given the observed value z of the random
variable Z
l(θ|z): loglikelihood function of the parameter θ given the of observed values z of the
random variable Z.
p(x): probability mass function of a discrete variable X
PQ(k; q): the k th q-quantile of a random variable
er f (z): error function
er f c(z): complementary error function

https://wwwn.cdc.gov/nchs/nhanes/default.aspx
https://wwwn.cdc.gov/nchs/nhanes/default.aspx
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Γ(z): gamma function
Γ(z, x): incomplete gamma function
Q(a, z): regularized incomplete gamma function
Γ(z, x0, x1): generalized incomplete gamma function
Q(z, x0, x1): regularized generalized incomplete gamma function
K(u): kernel function
f (x): univariate PDF
f (x;θ), f ( x|θ): univariate PDF given the multivariate parameter θ
f (x, y): bivariate PDF
f (x, y;θ), f ( x, y|θ): bivariate PDF given the multivariate parameter θ
F(x): univariate CDF
F(x;θ), F( x|θ): univariate CDF given the multivariate parameter θ
F(x, y): bivariate CDF
F(x, y;θ), F( x, y|θ): bivariate CDF given the multivariate parameter θ

Definitions of the aforementioned functions are presented in Supplementary File S2.

Appendix A.2. Bayes Theorem

For the purposes of our study, Bayes’ theorem is formulated as follows:

P(D|T) = P(T|D)P(D)

P(T)
=

P(T|D)P(D)

P(T|D)P(D) + P
(
T
∣∣D)(1 − P(D))

where:

P(D|T) represents the posterior probability of having the disease given the test results z.
P(T|D) denotes the likelihood of obtaining the test results z given the presence of the
disease.
P
(
T
∣∣D) denotes the likelihood of obtaining the test results z given the absence of the

disease.
P(D) is the prior probability or prevalence v of the disease.
P(T) signifies the overall probability of the test results z.

Therefore, for the possibly multivariate parameter θ:

P(D|T) = LD(θ|z)v
LD(z|θ)v + LD(z|θ)(1 − v)

=
fD(z|θ)v

fD(z|θ)v + fD(z|θ)(1 − v)

where LD(θ|z) and fD(z|θ) denote the likelihood function and the PDF in the presence of
the disease, while LD(z|θ) and fD(z|θ) denote the respective functions in the absence of
the disease.

Appendix A.3. Parametric Distributions

Appendix A.3.1. Normal Distribution

(a) Univariate

The univariate normal distribution or Gaussian distribution is a continuous probability
distribution of a random variable X. The general form of its PDF is:

fN(x; µ, σ) =
e−

1
2 (

x−µ
σ )

2

σ
√

2π

where the parameter µ is the mean of X, while σ is its standard deviation [52].

(b) Bivariate
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The bivariate normal distribution or Gaussian distribution is a continuous probability
distribution of two normally distributed random variables X and Y. The general form of its
PDF is:

fN(x, y; µX , σX , µY, σY, ρ) =
e
− 1

2(1−ρ2)
(
(x−µX )2

σX
2 − 2ρ(x−µX )(y−µY )

σX σY
+

(y−µY )2

σY
2 )

2πσXσY
√

1 − ρ2

where µX and µY are the means of X and Y, σX and σY are their standard deviations, and
ρ their correlation coefficient [52].

Appendix A.3.2. Lognormal Distribution

(a) Univariate

The univariate lognormal distribution is a continuous probability distribution of a
random variable X whose logarithm is normally distributed. The general form of its PDF
is:

fL(x; m, s) =
e(−

1
2 (

ln(x)−m
σ )

2
)

xs
√

2π

where m is the mean and s the standard deviation of ln(X) [52].
If µ and σ are the mean and the standard deviation of X, we have:

µ = em+ 1
2 s2

σ =
√

e2m+2s2

Therefore,

m = ln

(
µ2√

σ2 + µ2

)

s = ln
(

1 +
σ2

µ2

)

fL(x; µ, σ) =
e

− 1
2


ln(x)−ln

 µ2√
σ2+µ2


ln(1+ σ2

µ2 )


2

√
2πxln

(
1 + σ2

µ2

) =
e


(

2ln(x)−2ln(µ)+ln
(

1+ σ2

µ2

))2

8ln
(

1+ σ2
µ2

)


x
√

2πln
(

1 + σ2

µ2

)
(b) Bivariate

The bivariate lognormal distribution is a continuous probability distribution of two
lognormally distributed variables X and Y. If mX and mY are the means of ln(X) and ln(Y),
sX and sY their standard deviations, and r their correlation coefficient, the general form of
its PDF is [52]:

fL(x, y; mX , sX , mY, sY, r) =
1
d

ea

where

a =
1
2

(
−(ln(y)− mY)b − (ln(x)− mX)c

sX2σY
2 − r2sX2sY

2

)
b = (ln(y)− mY)sX

2 − r(ln(x)− mX)sXsY

c = (ln(x)− mX)sY
2 − r(ln(y)− mY)sXsY

d = 2πxy
√

sX2sY
2 − r2sX2sY

2
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We have

r =
µXµY
σXσY

−1 + e
ρ

√
ln(1+ σX

2

µX
2 )ln(1+

σY
2

µY
2 )

√ln
(

1 +
σX2

µX2

)
ln
(

1 +
σY

2

µY
2

)

where µX and µY are the means of X and Y, σX and σY are their standard deviations and ρ
their correlation coefficient.

Therefore,

fL(x, y; µX , µY, σX , σY, ρ) =
e

ab+c
d

g

where

a = −2

−1 + e
ρ

√
ln(1+

σ2
X

µ2
X
)ln(1+

σ2
Y

µ2
Y
)


ln(x)− ln

 µ2
X√

µ2
X + σ2

X



b = mXmY

√√√√ln

(
1 +

σ2
X

µ2
X

)
ln

(
1 +

σ2
Y

µ2
Y

)ln(y)− ln

 µ2
Y√

µ2
Y + σ2

Y



c =

ln(y)− ln

 µ2
Y√

µ2
Y + σ2

Y

2

σ2
X +

ln(x)− ln

 µ2
X√

µ2
X + σ2

X

2

σ2
Y

d = 2


−1 + e

ρ

√
ln(1+

σ2
X

µ2
X
)ln(1+

σ2
Y

µ2
Y
)


2

ln

(
1 +

σ2
X

µ2
X

)
ln

(
1 +

σ2
Y

µ2
Y

)
µ2

Xµ2
Y − σ2

Xσ2
Y



g = 2πxy

√√√√√√−

−1 + e
ρ

√
ln(1+

σ2
X

µ2
X
)ln(1+

σ2
Y

µ2
Y
)


2

ln

(
1 +

σ2
X

µ2
X

)
ln

(
1 +

σ2
Y

µ2
Y

)
µ2

Xµ2
Y + σ2

Xσ2
Y

Appendix A.3.3. Gamma Distribution

(a) Univariate

The univariate Gamma distribution is a continuous probability distribution of a ran-
dom variable X. The general form of its PDF is:

fG(x; k, ϑ) =
1

Γ(k)ϑk xk−1e−
x
ϑ

where k is a shape parameter, θ a scale parameter and Γ(u) the gamma function [52].
The mean µ and the standard deviation σ of X, are calculated as following:

µ = kϑ

σ = kϑ2

Therefore,

k =
µ2

σ2

ϑ =
σ2

µ
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and

fG(x; µ, σ) =
1

Γ
(

µ2

σ2

)(
σ2

µ

) µ2

σ2

x(
µ2

σ2 −1)e
− x µ

µ2

(b) Bivariate

The bivariate Gamma distribution is a continuous probability distribution of two
variables X and Y. The copula version of its PDF is:

fG(x, y; kX , kY, ϑX , ϑY, ρ) =
ab
c

where

a = e
(er f c−1(2Q(kY ,0, y

ϑY
))

2
+

(−ρer f c−1(2Q(kX ,0, x
ϑX

))+er f c−1(2Q(kY ,0, y
ϑY

)))
2

−1+ρ2 − y
ϑY

− x
ϑX

)

b = x−1+kX y−1+kY ϑ
−kY
Y ϑ−kX

X

c =
√

1 − ρ2Γ(kX)Γ(kY)

and kX , kY are shape parameters, ϑX , ϑY are scale parameters, and ρ the correlation coeffi-
cient of X and Y.

If µX and µY are the means of X and Y, σX and σY their standard deviations, and ρ
their correlation coefficient, it can be shown that:

fG(x, y; µX , µY, σX , σY, ρ) =
ab
c

where

a = e
(er f c−1(2Q(

µ2
Y

σ2
Y

,0, yµY
σ2
Y
))

2

+

(−ρ er f c−1(2Q(
µ2

X
σX2 ,0,

xµX
σX2 ))+er f c−1(2Q(

µ2
Y

σ2
Y

,0,
yµY
σ2
Y

)))

2

−1+ρ2 − xµX
σX2 −

yµY
σ2
Y
)

b = x(−1+
µ2

X
σX2 )y

(−1+
µ2

Y
σ2
Y
)
σX− 2µ2

X
σX2 µ

µ2
X

σX2
X µ

µ2
Y

σ2
Y

Y σ
−

2µ2
Y

σ2
Y

Y

c =
√

1 − ρ2Γ

(
µ2

X

σX2

)
Γ

(
µ2

Y
σ2

Y

)

Appendix A.4. Copulas

If µX and µY are the means of the variables X and Y, σX and σY their standard
deviations, and ρ their correlation coefficient, it can be shown that the bivariate PDFs of the
other copulas of the program are defined as follows:

Appendix A.4.1. X: Normally Distributed—Y: Lognormally Distributed

fNL(x, y; µX , µY, σX , σY, ρ) =
ecd
g
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Appendix A.4.3. X: Normally Distributed—Y: Gamma Distributed

fNG(x, y; µX , µY, σX , σY, ρ) =

e
(er f c−1(2Q(

µ2
Y

σ2
Y

,0, yµY
σ2
Y
))

2

− (x−µX )2

2σ2
X

+

(xρ−ρµX+
√

2σX er f c−1(2Q(
µ2

Y
σ2
Y

,0,
yµY
σ2
Y

)))

2

2(−1+ρ2)σ2
X

− yµY
σ2
Y
)
(

yµY
σ2

Y

) µ2
Y

σ2
Y

yσX
√

2π(1 − ρ2)Γ

(
yµY
σ2

Y

)
Appendix A.4.4. X: Gamma Distributed– Y: Normally Distributed
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Appendix A.4.5. X: Lognormally Distributed—Y: Gamma Distributed
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Appendix A.4.6. X: Gamma Distributed—Y: Lognormally Distributed

fGL(x, y; µX , µY, σX , σY, ρ) =
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Appendix A.5. Nonparametric Distributions

Appendix A.5.1. Histograms

A histogram is a graphical representation of the distribution of a tuple of observed
values of a variable X. If X is a continuous random variable, the histogram is an estimate of
the probability distribution of X.

Appendix A.5.2. KDEs

Given a tuple of independent and identically distributed observed values (x 1, x2, . . . , xn)
of a random variable X, the univariate KDE f̂K(x; n, h) is defined as [53]:

f̂K(x; n, h) =
1

nh∑n
i=1K

(
x − xi

h

)
where:

1. n is the number of the observed values of the variable.
2. h is the bandwidth, a positive scalar that determines the width and smoothness of the

kernel.
3. K(u) is the kernel function.

Given two tuples of independent and identically distributed observed values
(x 1, x2, . . . , xn) and (y 1, y2, . . . , yn) of two random variables X and Y, the bivariate KDE
f̂ (x, y; n, h1, h2) is defined as [53]:

f̂ (x, y; n, h1, h2) =
1

n|H|
1
2
∑n

i=1K
(
(z − zi)

T H−1(z − zi)
)

where

z =

[
x
y

]
zi =

[
xi
yi

]
H =

[
h2

1 ρh1h2
ρh1h2 h2

2

]
and ρ is the correlation coefficient of the two tuples.
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The program uses the Gaussian kernel function:

K(u) =
1√
2π

e−
u2
2

(a) Univariate KDE

f̂ (x; n, h) =
1

nh

n

∑
i=1

1√
2π

e−
(

x−xi
h )

2

2

(b) Bivariate KDE

f̂ (x, y; n, h1, h2) =
1

2πn|H|
1
2

n

∑
i=1

e−
1
2 (z−zi)

T H−1(z−zi)

where

z =

[
x
y

]
zi =

[
xi
yi

]
H =

[
h2

1 ρh1h2
ρh1h2 h2

2

]
Additional details concerning parametric and nonparametric distributions can be

found in Supplementary File S2.

Appendix B

Appendix B.1. Software Availability and Requirements

B.1.1. Program name: Bayesian Diagnosis
B.1.2. Project home page: https://www.hcsl.com/Tools/BayesianDiagnosis/ (accessed on
28 September 2023)
B.1.3. Operating systems: Microsoft Windows, Linux, Apple iOS

Programming language: Wolfram Language

B.1.4. Other software requirements:

1. For running the program: Wolfram Player®, freely available at: https://www.wolfram.
com/player/ (accessed on 31 August 2023) or Wolfram Mathematica®.

2. For editing the datasets: Wolfram Mathematica®.

B.1.5. System requirements: Intel® i9™ or equivalent CPU and 32 GB of RAM
B.1.6.6. License: Attribution—Noncommercial—ShareAlike 4.0 International Creative
Commons License

Appendix C

Appendix C.1. A Note about the Program

Appendix C.1.1. About the Program Controls

The program features a tabbed user interface, designed to streamline user interaction
and facilitate navigation across its multiple modules and submodules.

The numerical settings are defined by the user with sliders. Sliders can be finely
manipulated by holding down the alt key or opt key while dragging the mouse. They can
be even more finely manipulated by also holding the shift and/or ctrl keys.

Dragging with the mouse rotates the three-dimensional plots, while dragging with the
mouse while pressing the ctrl, alt, or opt keys zooms in or out.

https://www.hcsl.com/Tools/BayesianDiagnosis/
https://www.wolfram.com/player/
https://www.wolfram.com/player/
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Appendix C.1.2. Range of input parameters

v: 0.010–0.500
µ: 0.01–10,000.00
σ : 0.01–3000.00
ρ: −1.000–1.000
h: 0.01–2.00
x: 0.01–10,000.00
y: 0.01–100,00.00

Appendix C.1.3. Datasets

The software is preloaded with the following datasets:
d1: Quantitative measurements of the first measurand (FPG) from diseased individuals

(diabetic patients), aged 40–60.
d2: Quantitative measurements of the second measurand (HbA1c) from diseased

individuals (diabetic patients), aged 40–60.
nd1: Quantitative measurements of the first measurand (FPG) from nondiseased

individuals (nondiabetic patients), aged 40–60.
nd2: Quantitative measurements of the second measurand (HbA1c) from nondiseased

individuals (nondiabetic patients), aged 40–60.
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